
IPython Documentation
Release 0.11

The IPython Development Team

July 31, 2011

CONTENTS

1 Introduction 1
1.1 Overview . 1
1.2 Enhanced interactive Python shell . 1
1.3 Interactive parallel computing . 3

2 What’s new in IPython 5
2.1 Development version . 5
2.2 0.11 Series . 5
2.3 Issues closed in the 0.11 development cycle . 18
2.4 0.10 series . 35
2.5 0.9 series . 41
2.6 0.8 series . 45

3 Installation 47
3.1 Overview . 47
3.2 Quickstart . 47
3.3 Installing IPython itself . 48
3.4 Basic optional dependencies . 49
3.5 Dependencies for IPython.parallel (parallel computing) . 51
3.6 Dependencies for IPython.zmq . 51
3.7 Dependencies for ipython qtconsole (new GUI) . 51

4 Using IPython for interactive work 53
4.1 Introducing IPython . 53
4.2 IPython Tips & Tricks . 55
4.3 IPython reference . 57
4.4 IPython as a system shell . 81
4.5 A Qt Console for IPython . 86

5 Using IPython for parallel computing 95
5.1 Overview and getting started . 95
5.2 Starting the IPython controller and engines . 99
5.3 IPython’s Direct interface . 110
5.4 The IPython task interface . 123
5.5 Using MPI with IPython . 130

i

5.6 IPython’s Task Database . 132
5.7 Security details of IPython . 134
5.8 Getting started with Windows HPC Server 2008 . 138
5.9 Parallel examples . 147
5.10 DAG Dependencies . 158
5.11 Details of Parallel Computing with IPython . 163
5.12 Transitioning from IPython.kernel to IPython.parallel . 173

6 Configuration and customization 179
6.1 Overview of the IPython configuration system . 179
6.2 IPython extensions . 186
6.3 IPython plugins . 187
6.4 Configuring the ipython command line application . 188
6.5 Editor configuration . 190
6.6 Outdated configuration information that might still be useful 192

7 IPython developer’s guide 197
7.1 How to contribute to IPython . 197
7.2 Working with IPython source code . 198
7.3 Coding guide . 210
7.4 Documenting IPython . 213
7.5 Testing IPython for users and developers . 215
7.6 Releasing IPython . 222
7.7 Development roadmap . 222
7.8 IPython module organization . 224
7.9 Messaging in IPython . 225
7.10 Messaging for Parallel Computing . 242
7.11 Connection Diagrams of The IPython ZMQ Cluster . 248
7.12 The magic commands subsystem . 256
7.13 Notes on code execution in InteractiveShell . 257
7.14 IPython Qt interface . 258
7.15 Porting IPython to a two process model using zeromq . 260

8 The IPython API 263
8.1 config.application . 263
8.2 config.configurable . 268
8.3 config.loader . 275
8.4 core.alias . 283
8.5 core.application . 287
8.6 core.autocall . 292
8.7 core.builtin_trap . 294
8.8 core.compilerop . 296
8.9 core.completer . 297
8.10 core.completerlib . 303
8.11 core.crashhandler . 304
8.12 core.debugger . 305
8.13 core.display . 315
8.14 core.display_trap . 316

ii

8.15 core.displayhook . 318
8.16 core.displaypub . 321
8.17 core.error . 325
8.18 core.excolors . 327
8.19 core.extensions . 327
8.20 core.formatters . 330
8.21 core.history . 358
8.22 core.hooks . 366
8.23 core.inputsplitter . 368
8.24 core.interactiveshell . 375
8.25 core.ipapi . 417
8.26 core.logger . 417
8.27 core.macro . 419
8.28 core.magic . 419
8.29 core.magic_arguments . 444
8.30 core.oinspect . 448
8.31 core.page . 452
8.32 core.payload . 453
8.33 core.payloadpage . 456
8.34 core.plugin . 456
8.35 core.prefilter . 460
8.36 core.profileapp . 512
8.37 core.profiledir . 525
8.38 core.prompts . 529
8.39 core.shellapp . 532
8.40 core.splitinput . 535
8.41 core.ultratb . 536
8.42 lib.backgroundjobs . 547
8.43 lib.clipboard . 553
8.44 lib.deepreload . 553
8.45 lib.demo . 554
8.46 lib.guisupport . 568
8.47 lib.inputhook . 570
8.48 lib.irunner . 573
8.49 lib.latextools . 579
8.50 lib.pretty . 579
8.51 lib.pylabtools . 585
8.52 parallel.apps.baseapp . 586
8.53 parallel.apps.ipclusterapp . 593
8.54 parallel.apps.ipcontrollerapp . 615
8.55 parallel.apps.ipengineapp . 621
8.56 parallel.apps.iploggerapp . 630
8.57 parallel.apps.launcher . 635
8.58 parallel.apps.logwatcher . 717
8.59 parallel.apps.win32support . 720
8.60 parallel.apps.winhpcjob . 721
8.61 parallel.client.asyncresult . 739
8.62 parallel.client.client . 743

iii

8.63 parallel.client.map . 752
8.64 parallel.client.remotefunction . 753
8.65 parallel.client.view . 756
8.66 parallel.controller.dependency . 772
8.67 parallel.controller.dictdb . 775
8.68 parallel.controller.heartmonitor . 781
8.69 parallel.controller.hub . 784
8.70 parallel.controller.scheduler . 794
8.71 parallel.controller.sqlitedb . 800
8.72 parallel.engine.engine . 803
8.73 parallel.engine.kernelstarter . 806
8.74 parallel.engine.streamkernel . 807
8.75 parallel.error . 811
8.76 parallel.factory . 823
8.77 parallel.util . 825
8.78 testing . 829
8.79 testing.decorators . 830
8.80 testing.globalipapp . 832
8.81 testing.iptest . 835
8.82 testing.ipunittest . 836
8.83 testing.mkdoctests . 838
8.84 testing.nosepatch . 840
8.85 testing.plugin.dtexample . 840
8.86 testing.plugin.show_refs . 842
8.87 testing.plugin.simple . 843
8.88 testing.plugin.test_ipdoctest . 843
8.89 testing.plugin.test_refs . 844
8.90 testing.skipdoctest . 845
8.91 testing.tools . 845
8.92 utils.PyColorize . 848
8.93 utils.attic . 849
8.94 utils.autoattr . 851
8.95 utils.codeutil . 854
8.96 utils.coloransi . 854
8.97 utils.daemonize . 859
8.98 utils.data . 859
8.99 utils.decorators . 860
8.100 utils.dir2 . 860
8.101 utils.doctestreload . 860
8.102 utils.frame . 861
8.103 utils.generics . 862
8.104 utils.growl . 863
8.105 utils.importstring . 864
8.106 utils.io . 864
8.107 utils.ipstruct . 867
8.108 utils.jsonutil . 871
8.109 utils.newserialized . 872
8.110 utils.notification . 875

iv

8.111 utils.path . 877
8.112 utils.pickleshare . 880
8.113 utils.pickleutil . 882
8.114 utils.process . 884
8.115 utils.strdispatch . 885
8.116 utils.sysinfo . 886
8.117 utils.syspathcontext . 887
8.118 utils.terminal . 888
8.119 utils.text . 889
8.120 utils.timing . 899
8.121 utils.traitlets . 900
8.122 utils.upgradedir . 935
8.123 utils.warn . 935
8.124 utils.wildcard . 936

9 About IPython 939
9.1 Credits . 939
9.2 History . 943
9.3 License and Copyright . 944

Bibliography 947

Python Module Index 949

Index 951

v

vi

CHAPTER

ONE

INTRODUCTION

1.1 Overview

One of Python’s most useful features is its interactive interpreter. This system allows very fast testing of
ideas without the overhead of creating test files as is typical in most programming languages. However, the
interpreter supplied with the standard Python distribution is somewhat limited for extended interactive use.

The goal of IPython is to create a comprehensive environment for interactive and exploratory computing.
To support this goal, IPython has two main components:

• An enhanced interactive Python shell.

• An architecture for interactive parallel computing.

All of IPython is open source (released under the revised BSD license).

1.2 Enhanced interactive Python shell

IPython’s interactive shell (ipython), has the following goals, amongst others:

1. Provide an interactive shell superior to Python’s default. IPython has many features for object in-
trospection, system shell access, and its own special command system for adding functionality when
working interactively. It tries to be a very efficient environment both for Python code development
and for exploration of problems using Python objects (in situations like data analysis).

2. Serve as an embeddable, ready to use interpreter for your own programs. IPython can be started with
a single call from inside another program, providing access to the current namespace. This can be
very useful both for debugging purposes and for situations where a blend of batch-processing and
interactive exploration are needed. New in the 0.9 version of IPython is a reusable wxPython based
IPython widget.

3. Offer a flexible framework which can be used as the base environment for other systems with Python
as the underlying language. Specifically scientific environments like Mathematica, IDL and Matlab
inspired its design, but similar ideas can be useful in many fields.

4. Allow interactive testing of threaded graphical toolkits. IPython has support for interactive, non-
blocking control of GTK, Qt and WX applications via special threading flags. The normal Python
shell can only do this for Tkinter applications.

1

IPython Documentation, Release 0.11

1.2.1 Main features of the interactive shell

• Dynamic object introspection. One can access docstrings, function definition prototypes, source code,
source files and other details of any object accessible to the interpreter with a single keystroke (‘?’,
and using ‘??’ provides additional detail).

• Searching through modules and namespaces with ‘*’ wildcards, both when using the ‘?’ system and
via the ‘%psearch’ command.

• Completion in the local namespace, by typing TAB at the prompt. This works for keywords, modules,
methods, variables and files in the current directory. This is supported via the readline library, and full
access to configuring readline’s behavior is provided. Custom completers can be implemented easily
for different purposes (system commands, magic arguments etc.)

• Numbered input/output prompts with command history (persistent across sessions and tied to each
profile), full searching in this history and caching of all input and output.

• User-extensible ‘magic’ commands. A set of commands prefixed with ‘%’ is available for controlling
IPython itself and provides directory control, namespace information and many aliases to common
system shell commands.

• Alias facility for defining your own system aliases.

• Complete system shell access. Lines starting with ‘!’ are passed directly to the system shell, and
using ‘!!’ or ‘var = !cmd’ captures shell output into python variables for further use.

• Background execution of Python commands in a separate thread. IPython has an internal job manager
called jobs, and a convenience backgrounding magic function called ‘%bg’.

• The ability to expand python variables when calling the system shell. In a shell command, any python
variable prefixed with ‘$’ is expanded. A double ‘$$’ allows passing a literal ‘$’ to the shell (for
access to shell and environment variables like PATH).

• Filesystem navigation, via a magic ‘%cd’ command, along with a persistent bookmark system (using
‘%bookmark’) for fast access to frequently visited directories.

• A lightweight persistence framework via the ‘%store’ command, which allows you to save arbitrary
Python variables. These get restored automatically when your session restarts.

• Automatic indentation (optional) of code as you type (through the readline library).

• Macro system for quickly re-executing multiple lines of previous input with a single name. Macros
can be stored persistently via ‘%store’ and edited via ‘%edit’.

• Session logging (you can then later use these logs as code in your programs). Logs can optionally
timestamp all input, and also store session output (marked as comments, so the log remains valid
Python source code).

• Session restoring: logs can be replayed to restore a previous session to the state where you left it.

• Verbose and colored exception traceback printouts. Easier to parse visually, and in verbose mode they
produce a lot of useful debugging information (basically a terminal version of the cgitb module).

• Auto-parentheses: callable objects can be executed without parentheses: ‘sin 3’ is automatically
converted to ‘sin(3)’.

2 Chapter 1. Introduction

IPython Documentation, Release 0.11

• Auto-quoting: using ‘,’, or ‘;’ as the first character forces auto-quoting of the rest of
the line: ‘,my_function a b’ becomes automatically ‘my_function("a","b")’, while
‘;my_function a b’ becomes ‘my_function("a b")’.

• Extensible input syntax. You can define filters that pre-process user input to simplify input in special
situations. This allows for example pasting multi-line code fragments which start with ‘>>>’ or ‘...’
such as those from other python sessions or the standard Python documentation.

• Flexible configuration system. It uses a configuration file which allows permanent setting of all
command-line options, module loading, code and file execution. The system allows recursive file
inclusion, so you can have a base file with defaults and layers which load other customizations for
particular projects.

• Embeddable. You can call IPython as a python shell inside your own python programs. This can be
used both for debugging code or for providing interactive abilities to your programs with knowledge
about the local namespaces (very useful in debugging and data analysis situations).

• Easy debugger access. You can set IPython to call up an enhanced version of the Python debugger
(pdb) every time there is an uncaught exception. This drops you inside the code which triggered the
exception with all the data live and it is possible to navigate the stack to rapidly isolate the source of
a bug. The ‘%run’ magic command (with the ‘-d’ option) can run any script under pdb’s control,
automatically setting initial breakpoints for you. This version of pdb has IPython-specific improve-
ments, including tab-completion and traceback coloring support. For even easier debugger access, try
‘%debug’ after seeing an exception. winpdb is also supported, see ipy_winpdb extension.

• Profiler support. You can run single statements (similar to ‘profile.run()’) or complete pro-
grams under the profiler’s control. While this is possible with standard cProfile or profile modules,
IPython wraps this functionality with magic commands (see ‘%prun’ and ‘%run -p’) convenient
for rapid interactive work.

• Doctest support. The special ‘%doctest_mode’ command toggles a mode that allows you to paste
existing doctests (with leading ‘>>>’ prompts and whitespace) and uses doctest-compatible prompts
and output, so you can use IPython sessions as doctest code.

1.3 Interactive parallel computing

Increasingly, parallel computer hardware, such as multicore CPUs, clusters and supercomputers, is becom-
ing ubiquitous. Over the last 3 years, we have developed an architecture within IPython that allows such
hardware to be used quickly and easily from Python. Moreover, this architecture is designed to support
interactive and collaborative parallel computing.

The main features of this system are:

• Quickly parallelize Python code from an interactive Python/IPython session.

• A flexible and dynamic process model that be deployed on anything from multicore workstations to
supercomputers.

• An architecture that supports many different styles of parallelism, from message passing to task farm-
ing. And all of these styles can be handled interactively.

• Both blocking and fully asynchronous interfaces.

1.3. Interactive parallel computing 3

IPython Documentation, Release 0.11

• High level APIs that enable many things to be parallelized in a few lines of code.

• Write parallel code that will run unchanged on everything from multicore workstations to supercom-
puters.

• Full integration with Message Passing libraries (MPI).

• Capabilities based security model with full encryption of network connections.

• Share live parallel jobs with other users securely. We call this collaborative parallel computing.

• Dynamically load balanced task farming system.

• Robust error handling. Python exceptions raised in parallel execution are gathered and presented to
the top-level code.

For more information, see our overview of using IPython for parallel computing.

1.3.1 Portability and Python requirements

As of the 0.11 release, IPython works with Python 2.6 and 2.7. Versions 0.9 and 0.10 worked with Python
2.4 and above. IPython now also supports Python 3, although for now the code for this is separate, and kept
up to date with the main IPython repository. In the future, these will converge to a single codebase which
can be automatically translated using 2to3.

IPython is known to work on the following operating systems:

• Linux

• Most other Unix-like OSs (AIX, Solaris, BSD, etc.)

• Mac OS X

• Windows (CygWin, XP, Vista, etc.)

See here for instructions on how to install IPython.

4 Chapter 1. Introduction

CHAPTER

TWO

WHAT’S NEW IN IPYTHON

This section documents the changes that have been made in various versions of IPython. Users should
consult these pages to learn about new features, bug fixes and backwards incompatibilities. Developers
should summarize the development work they do here in a user friendly format.

2.1 Development version

The changes listed here are a brief summary of the substantial work on IPython since the 0.11.x release
series. For more details, please consult the actual source.

2.1.1 Main ipython branch

New features

Backwards incompatible changes

2.2 0.11 Series

2.2.1 Release 0.11

IPython 0.11 is a major overhaul of IPython, two years in the making. Most of the code base has been
rewritten or at least reorganized, breaking backward compatibility with several APIs in previous versions. It
is the first major release in two years, and probably the most significant change to IPython since its inception.
We plan to have a relatively quick succession of releases, as people discover new bugs and regressions. Once
we iron out any significant bugs in this process and settle down the new APIs, this series will become IPython
1.0. We encourage feedback now on the core APIs, which we hope to maintain stable during the 1.0 series.

Since the internal APIs have changed so much, projects using IPython as a library (as opposed to end-users
of the application) are the most likely to encounter regressions or changes that break their existing use
patterns. We will make every effort to provide updated versions of the APIs to facilitate the transition, and
we encourage you to contact us on the development mailing list with questions and feedback.

5

http://mail.scipy.org/mailman/listinfo/ipython-dev

IPython Documentation, Release 0.11

Chris Fonnesbeck recently wrote an excellent post that highlights some of our major new features, with
examples and screenshots. We encourage you to read it as it provides an illustrated, high-level overview
complementing the detailed feature breakdown in this document.

A quick summary of the major changes (see below for details):

• Standalone Qt console: a new rich console has been added to IPython, started with ipython qtconsole.
In this application we have tried to retain the feel of a terminal for fast and efficient workflows, while
adding many features that a line-oriented terminal simply can not support, such as inline figures, full
multiline editing with syntax highlighting, graphical tooltips for function calls and much more. This
development was sponsored by Enthought Inc.. See below for details.

• High-level parallel computing with ZeroMQ. Using the same architecture that our Qt console is
based on, we have completely rewritten our high-level parallel computing machinery that in prior
versions used the Twisted networking framework. While this change will require users to update
their codes, the improvements in performance, memory control and internal consistency across our
codebase convinced us it was a price worth paying. We have tried to explain how to best proceed with
this update, and will be happy to answer questions that may arise. A full tutorial describing these
features was presented at SciPy‘11, more details below.

• New model for GUI/plotting support in the terminal. Now instead of the various -Xthread flags we
had before, GUI support is provided without the use of any threads, by directly integrating GUI event
loops with Python’s PyOS_InputHook API. A new command-line flag –gui controls GUI support, and
it can also be enabled after IPython startup via the new %gui magic. This requires some changes if
you want to execute GUI-using scripts inside IPython, see the GUI support section for more details.

• A two-process architecture. The Qt console is the first use of a new model that splits IPython
between a kernel process where code is executed and a client that handles user interaction. We plan
on also providing terminal and web-browser based clients using this infrastructure in future releases.
This model allows multiple clients to interact with an IPython process through a well-documented
messaging protocol using the ZeroMQ networking library.

• Refactoring. the entire codebase has been refactored, in order to make it more modular and easier
to contribute to. IPython has traditionally been a hard project to participate because the old codebase
was very monolithic. We hope this (ongoing) restructuring will make it easier for new developers to
join us.

• Vim integration. Vim can be configured to seamlessly control an IPython kernel, see the files in
docs/examples/vim for the full details. This work was done by Paul Ivanov, who prepared a
nice video demonstration of the features it provides.

• Integration into Microsoft Visual Studio. Thanks to the work of the Microsoft Python Tools for
Visual Studio team, this version of IPython has been integrated into Microsoft Visual Studio’s Python
tools open source plug-in. Details below

• Improved unicode support. We closed many bugs related to unicode input.

• Python 3. IPython now runs on Python 3.x. See Python 3 support for details.

• New profile model. Profiles are now directories that contain all relevant infromation for that session,
and thus better isolate IPython use-cases.

• SQLite storage for history. All history is now stored in a SQLite database, providing support for
multiple simultaneous sessions that won’t clobber each other as well as the ability to perform queries

6 Chapter 2. What’s new in IPython

http://stronginference.com/weblog/2011/7/15/innovations-in-ipython.html
http://enthought.com
http://minrk.github.com/scipy-tutorial-2011
http://pirsquared.org/blog/2011/07/28/vim-ipython/
http://pytools.codeplex.com
http://pytools.codeplex.com

IPython Documentation, Release 0.11

on all stored data.

• New configuration system. All parts of IPython are now configured via a mechanism inspired by the
Enthought Traits library. Any configurable element can have its attributes set either via files that now
use real Python syntax or from the command-line.

• Pasting of code with prompts. IPython now intelligently strips out input prompts , be they plain
Python ones (>>> and ...) or IPython ones (In [N]: and ‘‘ ...:‘‘). More details here.

Authors and support

Over 60 separate authors have contributed to this release, see below for a full list. In particular, we want to
highlight the extremely active participation of two new core team members: Evan Patterson implemented the
Qt console, and Thomas Kluyver started with our Python 3 port and by now has made major contributions
to just about every area of IPython.

We are also grateful for the support we have received during this development cycle from several institutions:

• Enthought Inc funded the development of our new Qt console, an effort that required developing
major pieces of underlying infrastructure, which now power not only the Qt console but also our new
parallel machinery. We’d like to thank Eric Jones and Travis Oliphant for their support, as well as Ilan
Schnell for his tireless work integrating and testing IPython in the Enthought Python Distribution.

• Nipy/NIH: funding via the NiPy project (NIH grant 5R01MH081909-02) helped us jumpstart the
development of this series by restructuring the entire codebase two years ago in a way that would
make modular development and testing more approachable. Without this initial groundwork, all the
new features we have added would have been impossible to develop.

• Sage/NSF: funding via the grant Sage: Unifying Mathematical Software for Scientists, Engineers,
and Mathematicians (NSF grant DMS-1015114) supported a meeting in spring 2011 of several of the
core IPython developers where major progress was made integrating the last key pieces leading to this
release.

• Microsoft’s team working on Python Tools for Visual Studio developed the integraton of IPython into
the Python plugin for Visual Studio 2010.

• Google Summer of Code: in 2010, we had two students developing prototypes of the new machinery
that is now maturing in this release: Omar Zapata and Gerardo Gutiérrez.

Development summary: moving to Git and Github

In April 2010, after one breakage too many with bzr, we decided to move our entire development process
to Git and Github.com. This has proven to be one of the best decisions in the project’s history, as the
combination of git and github have made us far, far more productive than we could be with our previous
tools. We first converted our bzr repo to a git one without losing history, and a few weeks later ported all
open Launchpad bugs to github issues with their comments mostly intact (modulo some formatting changes).
This ensured a smooth transition where no development history or submitted bugs were lost. Feel free to
use our little Launchpad to Github issues porting script if you need to make a similar transition.

2.2. 0.11 Series 7

http://enthought.com
http://www.enthought.com/products/epd.php
http://nipy.org
http://modular.math.washington.edu/grants/compmath09
http://modular.math.washington.edu/grants/compmath09
http://pytools.codeplex.com
http://ipythonzmq.blogspot.com/2010/08/ipython-zmq-status.html
http://ipythonqt.blogspot.com/2010/04/ipython-qt-interface-gsoc-2010-proposal.html\T1\textgreater {}
http://mail.scipy.org/pipermail/ipython-dev/2010-April/005944.html
https://gist.github.com/835577

IPython Documentation, Release 0.11

These simple statistics show how much work has been done on the new release, by comparing the current
code to the last point it had in common with the 0.10 series. A huge diff and ~2200 commits make up this
cycle:

git diff $(git merge-base 0.10.2 HEAD) | wc -l
288019

git log $(git merge-base 0.10.2 HEAD)..HEAD --oneline | wc -l
2200

Since our move to github, 511 issues were closed, 226 of which were pull requests and 285 regular issues (a
full list with links is available for those interested in the details). Github’s pull requests are a fantastic mech-
anism for reviewing code and building a shared ownership of the project, and we are making enthusiastic
use of it.

Note: This undercounts the number of issues closed in this development cycle, since we only moved to
github for issue tracking in May 2010, but we have no way of collecting statistics on the number of issues
closed in the old Launchpad bug tracker prior to that.

Qt Console

IPython now ships with a Qt application that feels very much like a terminal, but is in fact a rich GUI that
runs an IPython client but supports inline figures, saving sessions to PDF and HTML, multiline editing with
syntax highlighting, graphical calltips and much more:

We hope that many projects will embed this widget, which we’ve kept deliberately very lightweight, into
their own environments. In the future we may also offer a slightly more featureful application (with menus
and other GUI elements), but we remain committed to always shipping this easy to embed widget.

See the Qt console section of the docs for a detailed description of the console’s features and use.

High-level parallel computing with ZeroMQ

We have completely rewritten the Twisted-based code for high-level parallel computing to work atop our
new ZeroMQ architecture. While we realize this will break compatibility for a number of users, we hope
to make the transition as easy as possible with our docs, and we are convinced the change is worth it.
ZeroMQ provides us with much tighter control over memory, higher performance, and its communications
are impervious to the Python Global Interpreter Lock because they take place in a system-level C++ thread.
The impact of the GIL in our previous code was something we could simply not work around, given that
Twisted is itself a Python library. So while Twisted is a very capable framework, we think ZeroMQ fits our
needs much better and we hope you will find the change to be a significant improvement in the long run.

Our manual contains a full description of how to use IPython for parallel computing, and the tutorial pre-
sented by Min Ragan-Kelley at the SciPy 2011 conference provides a hands-on complement to the reference
docs.

8 Chapter 2. What’s new in IPython

http://minrk.github.com/scipy-tutorial-2011

IPython Documentation, Release 0.11

Figure 2.1: The Qt console for IPython, using inline matplotlib plots.

2.2. 0.11 Series 9

IPython Documentation, Release 0.11

Refactoring

As of this release, a signifiant portion of IPython has been refactored. This refactoring is founded on a
number of new abstractions. The main new classes that implement these abstractions are:

• IPython.utils.traitlets.HasTraits.

• IPython.config.configurable.Configurable.

• IPython.config.application.Application.

• IPython.config.loader.ConfigLoader.

• IPython.config.loader.Config

We are still in the process of writing developer focused documentation about these classes, but for now our
configuration documentation contains a high level overview of the concepts that these classes express.

The biggest user-visible change is likely the move to using the config system to determine the command-line
arguments for IPython applications. The benefit of this is that all configurable values in IPython are exposed
on the command-line, but the syntax for specifying values has changed. The gist is that assigning values is
pure Python assignment. Simple flags exist for commonly used options, these are always prefixed with ‘–‘.

The IPython command-line help has the details of all the options (via ipythyon --help), but a simple
example should clarify things; the pylab flag can be used to start in pylab mode with the qt4 backend:

ipython --pylab=qt

which is equivalent to using the fully qualified form:

ipython --TerminalIPythonApp.pylab=qt

The long-form options can be listed via ipython --help-all.

ZeroMQ architecture

There is a new GUI framework for IPython, based on a client-server model in which multiple clients can
communicate with one IPython kernel, using the ZeroMQ messaging framework. There is already a Qt
console client, which can be started by calling ipython qtconsole. The protocol is documented.

The parallel computing framework has also been rewritten using ZMQ. The protocol is described here, and
the code is in the new IPython.parallel module.

Python 3 support

A Python 3 version of IPython has been prepared. For the time being, this is maintained separately and
updated from the main codebase. Its code can be found here. The parallel computing components are not
perfect on Python3, but most functionality appears to be working. As this work is evolving quickly, the best
place to find updated information about it is our Python 3 wiki page.

10 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython-py3k
http://wiki.ipython.org/index.php?title=Python_3

IPython Documentation, Release 0.11

Unicode

Entering non-ascii characters in unicode literals (u"Cø") now works properly on all platforms. However,
entering these in byte/string literals ("Cø") will not work as expected on Windows (or any platform where
the terminal encoding is not UTF-8, as it typically is for Linux & Mac OS X). You can use escape sequences
("\xe9\x82") to get bytes above 128, or use unicode literals and encode them. This is a limitation of
Python 2 which we cannot easily work around.

Integration with Microsoft Visual Studio

IPython can be used as the interactive shell in the Python plugin for Microsoft Visual Studio, as seen here:

Figure 2.2: IPython console embedded in Microsoft Visual Studio.

The Microsoft team developing this currently has a release candidate out using IPython 0.11. We will
continue to collaborate with them to ensure that as they approach their final release date, the integration
with IPython remains smooth. We’d like to thank Dino Viehland and Shahrokh Mortazavi for the work they
have done towards this feature, as well as Wenming Ye for his support of our WinHPC capabilities.

Additional new features

• Added Bytes traitlet, removing Str. All ‘string’ traitlets should either be Unicode if a real string,
or Bytes if a C-string. This removes ambiguity and helps the Python 3 transition.

• New magic %loadpy loads a python file from disk or web URL into the current input buffer.

2.2. 0.11 Series 11

http://pytools.codeplex.com

IPython Documentation, Release 0.11

• New magic %pastebin for sharing code via the ‘Lodge it’ pastebin.

• New magic %precision for controlling float and numpy pretty printing.

• IPython applications initiate logging, so any object can gain access to a the logger of the currently
running Application with:

from IPython.config.application import Application
logger = Application.instance().log

• You can now get help on an object halfway through typing a command. For instance, typing a =
zip? shows the details of zip(). It also leaves the command at the next prompt so you can carry
on with it.

• The input history is now written to an SQLite database. The API for retrieving items from the history
has also been redesigned.

• The IPython.extensions.pretty extension has been moved out of quarantine and fully up-
dated to the new extension API.

• New magics for loading/unloading/reloading extensions have been added: %load_ext,
%unload_ext and %reload_ext.

• The configuration system and configuration files are brand new. See the configuration system docu-
mentation for more details.

• The InteractiveShell class is now a Configurable subclass and has traitlets that determine
the defaults and runtime environment. The __init__ method has also been refactored so this class
can be instantiated and run without the old ipmaker module.

• The methods of InteractiveShell have been organized into sections to make it easier to turn
more sections of functionality into components.

• The embedded shell has been refactored into a truly standalone subclass of InteractiveShell
called InteractiveShellEmbed. All embedding logic has been taken out of the base class and
put into the embedded subclass.

• Added methods of InteractiveShell to help it cleanup after itself. The cleanup() method
controls this. We couldn’t do this in __del__() because we have cycles in our object graph that
prevent it from being called.

• Created a new module IPython.utils.importstring for resolving strings like
foo.bar.Bar to the actual class.

• Completely refactored the IPython.core.prefilter module into Configurable sub-
classes. Added a new layer into the prefilter system, called “transformations” that all new prefilter
logic should use (rather than the older “checker/handler” approach).

• Aliases are now components (IPython.core.alias).

• New top level embed() function that can be called to embed IPython at any place in user’s code. On
the first call it will create an InteractiveShellEmbed instance and call it. In later calls, it just
calls the previously created InteractiveShellEmbed.

• Created a configuration system (IPython.config.configurable) that is based on
IPython.utils.traitlets. Configurables are arranged into a runtime containment tree (not

12 Chapter 2. What’s new in IPython

IPython Documentation, Release 0.11

inheritance) that i) automatically propagates configuration information and ii) allows singletons to
discover each other in a loosely coupled manner. In the future all parts of IPython will be subclasses
of Configurable. All IPython developers should become familiar with the config system.

• Created a new Config for holding configuration information. This is a dict like class with a few ex-
tras: i) it supports attribute style access, ii) it has a merge function that merges two Config instances
recursively and iii) it will automatically create sub-Config instances for attributes that start with an
uppercase character.

• Created new configuration loaders in IPython.config.loader. These loaders provide a unified
loading interface for all configuration information including command line arguments and configura-
tion files. We have two default implementations based on argparse and plain python files. These
are used to implement the new configuration system.

• Created a top-level Application class in IPython.core.application that is designed to
encapsulate the starting of any basic Python program. An application loads and merges all the config-
uration objects, constructs the main application, configures and initiates logging, and creates and
configures any Configurable instances and then starts the application running. An extended
BaseIPythonApplication class adds logic for handling the IPython directory as well as pro-
files, and all IPython entry points extend it.

• The Type and Instance traitlets now handle classes given as strings, like foo.bar.Bar. This
is needed for forward declarations. But, this was implemented in a careful way so that string to class
resolution is done at a single point, when the parent HasTraitlets is instantiated.

• IPython.utils.ipstruct has been refactored to be a subclass of dict. It also now has full
docstrings and doctests.

• Created a Traits like implementation in IPython.utils.traitlets. This is a pure Python,
lightweight version of a library that is similar to Enthought’s Traits project, but has no dependencies
on Enthought’s code. We are using this for validation, defaults and notification in our new component
system. Although it is not 100% API compatible with Enthought’s Traits, we plan on moving in
this direction so that eventually our implementation could be replaced by a (yet to exist) pure Python
version of Enthought Traits.

• Added a new module IPython.lib.inputhook to manage the integration with GUI event loops
using PyOS_InputHook. See the docstrings in this module or the main IPython docs for details.

• For users, GUI event loop integration is now handled through the new %gui magic command. Type
%gui? at an IPython prompt for documentation.

• For developers IPython.lib.inputhook provides a simple interface for managing the event
loops in their interactive GUI applications. Examples can be found in our docs/examples/lib
directory.

Backwards incompatible changes

• The Twisted-based IPython.kernel has been removed, and completely rewritten as
IPython.parallel, using ZeroMQ.

• Profiles are now directories. Instead of a profile being a single config file, profiles are now self-
contained directories. By default, profiles get their own IPython history, log files, and everything. To

2.2. 0.11 Series 13

IPython Documentation, Release 0.11

create a new profile, do ipython profile create <name>.

• All IPython applications have been rewritten to use KeyValueConfigLoader. This means that
command-line options have changed. Now, all configurable values are accessible from the command-
line with the same syntax as in a configuration file.

• The command line options -wthread, -qthread and -gthread have been removed. Use
--gui=wx, --gui=qt, --gui=gtk instead.

• The extension loading functions have been renamed to load_ipython_extension() and
unload_ipython_extension().

• InteractiveShell no longer takes an embedded argument. Instead just use the
InteractiveShellEmbed class.

• __IPYTHON__ is no longer injected into __builtin__.

• Struct.__init__() no longer takes None as its first argument. It must be a dict or Struct.

• ipmagic() has been renamed ()

• The functions ipmagic() and ipalias() have been removed from __builtins__.

• The references to the global InteractiveShell instance (_ip, and __IP) have been removed
from the user’s namespace. They are replaced by a new function called get_ipython() that re-
turns the current InteractiveShell instance. This function is injected into the user’s namespace
and is now the main way of accessing the running IPython.

• Old style configuration files ipythonrc and ipy_user_conf.py are no longer supported. Users
should migrate there configuration files to the new format described here and here.

• The old IPython extension API that relied on ipapi() has been completely removed. The new
extension API is described here.

• Support for qt3 has been dropped. Users who need this should use previous versions of IPython.

• Removed shellglobals as it was obsolete.

• Removed all the threaded shells in IPython.core.shell. These are no longer needed because
of the new capabilities in IPython.lib.inputhook.

• New top-level sub-packages have been created: IPython.core, IPython.lib,
IPython.utils, IPython.deathrow, IPython.quarantine. All existing top-level
modules have been moved to appropriate sub-packages. All internal import statements have been
updated and tests have been added. The build system (setup.py and friends) have been updated. See
this section of the documentation for descriptions of these new sub-packages.

• IPython.ipapi has been moved to IPython.core.ipapi. IPython.Shell and
IPython.iplib have been split and removed as part of the refactor.

• Extensions has been moved to extensions and all existing extensions have been moved to
either IPython.quarantine or IPython.deathrow. IPython.quarantine contains
modules that we plan on keeping but that need to be updated. IPython.deathrow contains mod-
ules that are either dead or that should be maintained as third party libraries. More details about this
can be found here.

14 Chapter 2. What’s new in IPython

IPython Documentation, Release 0.11

• Previous IPython GUIs in IPython.frontend and IPython.gui are likely broken, and have
been removed to IPython.deathrow because of the refactoring in the core. With proper updates,
these should still work.

Known Regressions

We do our best to improve IPython, but there are some known regressions in 0.11 relative to 0.10.2. First
of all, there are features that have yet to be ported to the new APIs, and in order to ensure that all of the
installed code runs for our users, we have moved them to two separate directories in the source distribution,
quarantine and deathrow. Finally, we have some other miscellaneous regressions that we hope to fix as soon
as possible. We now describe all of these in more detail.

Quarantine

These are tools and extensions that we consider relatively easy to update to the new classes and APIs, but
that we simply haven’t had time for. Any user who is interested in one of these is encouraged to help us by
porting it and submitting a pull request on our development site.

Currently, the quarantine directory contains:

clearcmd.py ipy_fsops.py ipy_signals.py
envpersist.py ipy_gnuglobal.py ipy_synchronize_with.py
ext_rescapture.py ipy_greedycompleter.py ipy_system_conf.py
InterpreterExec.py ipy_jot.py ipy_which.py
ipy_app_completers.py ipy_lookfor.py ipy_winpdb.py
ipy_autoreload.py ipy_profile_doctest.py ipy_workdir.py
ipy_completers.py ipy_pydb.py jobctrl.py
ipy_editors.py ipy_rehashdir.py ledit.py
ipy_exportdb.py ipy_render.py pspersistence.py
ipy_extutil.py ipy_server.py win32clip.py

Deathrow

These packages may be harder to update or make most sense as third-party libraries. Some of them are
completely obsolete and have been already replaced by better functionality (we simply haven’t had the time
to carefully weed them out so they are kept here for now). Others simply require fixes to code that the
current core team may not be familiar with. If a tool you were used to is included here, we encourage you to
contact the dev list and we can discuss whether it makes sense to keep it in IPython (if it can be maintained).

Currently, the deathrow directory contains:

astyle.py ipy_defaults.py ipy_vimserver.py
dtutils.py ipy_kitcfg.py numeric_formats.py
Gnuplot2.py ipy_legacy.py numutils.py
GnuplotInteractive.py ipy_p4.py outputtrap.py
GnuplotRuntime.py ipy_profile_none.py PhysicalQInput.py
ibrowse.py ipy_profile_numpy.py PhysicalQInteractive.py
igrid.py ipy_profile_scipy.py quitter.py*
ipipe.py ipy_profile_sh.py scitedirector.py

2.2. 0.11 Series 15

http://github.com/ipython/ipython

IPython Documentation, Release 0.11

iplib.py ipy_profile_zope.py Shell.py
ipy_constants.py ipy_traits_completer.py twshell.py

Other regressions

• The machinery that adds functionality to the ‘sh’ profile for using IPython as your system shell has
not been updated to use the new APIs. As a result, only the aesthetic (prompt) changes are still
implemented. We intend to fix this by 0.12. Tracked as issue 547.

• The installation of scripts on Windows was broken without setuptools, so we now depend on se-
tuptools on Windows. We hope to fix setuptools-less installation, and then remove the setuptools
dependency. Issue 539.

• The directory history _dh is not saved between sessions. Issue 634.

Removed Features

As part of the updating of IPython, we have removed a few features for the purpsoes of cleaning up the code-
base and interfaces. These removals are permanent, but for any item listed below, equivalent functionality
is available.

• The magics Exit and Quit have been dropped as ways to exit IPython. Instead, the lowercase forms of
both work either as a bare name (exit) or a function call (exit()). You can assign these to other
names using exec_lines in the config file.

Credits

Many users and developers contributed code, features, bug reports and ideas to this release. Please do not
hesitate in contacting us if we’ve failed to acknowledge your contribution here. In particular, for this release
we have contribution from the following people, a mix of new and regular names (in alphabetical order by
first name):

• Aenugu Sai Kiran Reddy <saikrn08-at-gmail.com>

• andy wilson <wilson.andrew.j+github-at-gmail.com>

• Antonio Cuni <antocuni>

• Barry Wark <barrywark-at-gmail.com>

• Beetoju Anuradha <anu.beethoju-at-gmail.com>

• Benjamin Ragan-Kelley <minrk-at-Mercury.local>

• Brad Reisfeld

• Brian E. Granger <ellisonbg-at-gmail.com>

• Christoph Gohlke <cgohlke-at-uci.edu>

• Cody Precord

16 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython/issues/547
https://github.com/ipython/ipython/issues/539
https://github.com/ipython/ipython/issues/634

IPython Documentation, Release 0.11

• dan.milstein

• Darren Dale <dsdale24-at-gmail.com>

• Dav Clark <davclark-at-berkeley.edu>

• David Warde-Farley <wardefar-at-iro.umontreal.ca>

• epatters <ejpatters-at-gmail.com>

• epatters <epatters-at-caltech.edu>

• epatters <epatters-at-enthought.com>

• Eric Firing <efiring-at-hawaii.edu>

• Erik Tollerud <erik.tollerud-at-gmail.com>

• Evan Patterson <epatters-at-enthought.com>

• Fernando Perez <Fernando.Perez-at-berkeley.edu>

• Gael Varoquaux <gael.varoquaux-at-normalesup.org>

• Gerardo <muzgash-at-Muzpelheim>

• Jason Grout <jason.grout-at-drake.edu>

• John Hunter <jdh2358-at-gmail.com>

• Jens Hedegaard Nielsen <jenshnielsen-at-gmail.com>

• Johann Cohen-Tanugi <johann.cohentanugi-at-gmail.com>

• Jörgen Stenarson <jorgen.stenarson-at-bostream.nu>

• Justin Riley <justin.t.riley-at-gmail.com>

• Kiorky

• Laurent Dufrechou <laurent.dufrechou-at-gmail.com>

• Luis Pedro Coelho <lpc-at-cmu.edu>

• Mani chandra <mchandra-at-iitk.ac.in>

• Mark E. Smith

• Mark Voorhies <mark.voorhies-at-ucsf.edu>

• Martin Spacek <git-at-mspacek.mm.st>

• Michael Droettboom <mdroe-at-stsci.edu>

• MinRK <benjaminrk-at-gmail.com>

• muzuiget <muzuiget-at-gmail.com>

• Nick Tarleton <nick-at-quixey.com>

• Nicolas Rougier <Nicolas.rougier-at-inria.fr>

• Omar Andres Zapata Mesa <andresete.chaos-at-gmail.com>

2.2. 0.11 Series 17

IPython Documentation, Release 0.11

• Paul Ivanov <pivanov314-at-gmail.com>

• Pauli Virtanen <pauli.virtanen-at-iki.fi>

• Prabhu Ramachandran

• Ramana <sramana9-at-gmail.com>

• Robert Kern <robert.kern-at-gmail.com>

• Sathesh Chandra <satheshchandra88-at-gmail.com>

• Satrajit Ghosh <satra-at-mit.edu>

• Sebastian Busch

• Skipper Seabold <jsseabold-at-gmail.com>

• Stefan van der Walt <bzr-at-mentat.za.net>

• Stephan Peijnik <debian-at-sp.or.at>

• Steven Bethard

• Thomas Kluyver <takowl-at-gmail.com>

• Thomas Spura <tomspur-at-fedoraproject.org>

• Tom Fetherston <tfetherston-at-aol.com>

• Tom MacWright

• tzanko

• vankayala sowjanya <hai.sowjanya-at-gmail.com>

• Vivian De Smedt <vds2212-at-VIVIAN>

• Ville M. Vainio <vivainio-at-gmail.com>

• Vishal Vatsa <vishal.vatsa-at-gmail.com>

• Vishnu S G <sgvishnu777-at-gmail.com>

• Walter Doerwald <walter-at-livinglogic.de>

Note: This list was generated with the output of git log dev-0.11 HEAD --format=’* %aN
<%aE>’ | sed ’s/@/\-at\-/’ | sed ’s/<>//’ | sort -u after some cleanup. If you
should be on this list, please add yourself.

2.3 Issues closed in the 0.11 development cycle

In this cycle, we closed a total of 511 issues, 226 pull requests and 285 regular issues; this is the full list
(generated with the script tools/github_stats.py). We should note that a few of these were made on the 0.10.x
series, but we have no automatic way of filtering the issues by branch, so this reflects all of our development
over the last two years, including work already released in 0.10.2:

18 Chapter 2. What’s new in IPython

IPython Documentation, Release 0.11

Pull requests (226):

• 620: Release notes and updates to GUI support docs for 0.11

• 642: fix typo in docs/examples/vim/README.rst

• 631: two-way vim-ipython integration

• 637: print is a function, this allows to properly exit ipython

• 635: support html representations in the notebook frontend

• 639: Updating the credits file

• 628: import pexpect from IPython.external in irunner

• 596: Irunner

• 598: Fix templates for CrashHandler

• 590: Desktop

• 600: Fix bug with non-ascii reprs inside pretty-printed lists.

• 618: I617

• 599: Gui Qt example and docs

• 619: manpage update

• 582: Updating sympy profile to match the exec_lines of isympy.

• 578: Check to see if correct source for decorated functions can be displayed

• 589: issue 588

• 591: simulate shell expansion on %run arguments, at least tilde expansion

• 576: Show message about %paste magic on an IndentationError

• 574: Getcwdu

• 565: don’t move old config files, keep nagging the user

• 575: Added more docstrings to IPython.zmq.session.

• 567: fix trailing whitespace from reseting indentation

• 564: Command line args in docs

• 560: reorder qt support in kernel

• 561: command-line suggestions

• 556: qt_for_kernel: use matplotlib rcParams to decide between PyQt4 and PySide

• 557: Update usage.py to newapp

• 555: Rm default old config

• 552: update parallel code for py3k

• 504: Updating string formatting

2.3. Issues closed in the 0.11 development cycle 19

https://github.com/ipython/ipython/issues/620
https://github.com/ipython/ipython/issues/642
https://github.com/ipython/ipython/issues/631
https://github.com/ipython/ipython/issues/637
https://github.com/ipython/ipython/issues/635
https://github.com/ipython/ipython/issues/639
https://github.com/ipython/ipython/issues/628
https://github.com/ipython/ipython/issues/596
https://github.com/ipython/ipython/issues/598
https://github.com/ipython/ipython/issues/590
https://github.com/ipython/ipython/issues/600
https://github.com/ipython/ipython/issues/618
https://github.com/ipython/ipython/issues/599
https://github.com/ipython/ipython/issues/619
https://github.com/ipython/ipython/issues/582
https://github.com/ipython/ipython/issues/578
https://github.com/ipython/ipython/issues/589
https://github.com/ipython/ipython/issues/591
https://github.com/ipython/ipython/issues/576
https://github.com/ipython/ipython/issues/574
https://github.com/ipython/ipython/issues/565
https://github.com/ipython/ipython/issues/575
https://github.com/ipython/ipython/issues/567
https://github.com/ipython/ipython/issues/564
https://github.com/ipython/ipython/issues/560
https://github.com/ipython/ipython/issues/561
https://github.com/ipython/ipython/issues/556
https://github.com/ipython/ipython/issues/557
https://github.com/ipython/ipython/issues/555
https://github.com/ipython/ipython/issues/552
https://github.com/ipython/ipython/issues/504

IPython Documentation, Release 0.11

• 551: Make pylab import all configurable

• 496: Qt editing keybindings

• 550: Support v2 PyQt4 APIs and PySide in kernel’s GUI support

• 546: doc update

• 548: Fix sympy profile to work with sympy 0.7.

• 542: issue 440

• 533: Remove unused configobj and validate libraries from externals.

• 538: fix various tests on Windows

• 540: support -pylab flag with deprecation warning

• 537: Docs update

• 536: setup.py install depends on setuptools on Windows

• 480: Get help mid-command

• 462: Str and Bytes traitlets

• 534: Handle unicode properly in IPython.zmq.iostream

• 527: ZMQ displayhook

• 526: Handle asynchronous output in Qt console

• 528: Do not import deprecated functions from external decorators library.

• 454: New BaseIPythonApplication

• 532: Zmq unicode

• 531: Fix Parallel test

• 525: fallback on lsof if otool not found in libedit detection

• 517: Merge IPython.parallel.streamsession into IPython.zmq.session

• 521: use dict.get(key) instead of dict[key] for safety from KeyErrors

• 492: add QtConsoleApp using newapplication

• 485: terminal IPython with newapp

• 486: Use newapp in parallel code

• 511: Add a new line before displaying multiline strings in the Qt console.

• 509: i508

• 501: ignore EINTR in channel loops

• 495: Better selection of Qt bindings when QT_API is not specified

• 498: Check for .pyd as extension for binary files.

• 494: QtConsole zoom adjustments

20 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython/issues/551
https://github.com/ipython/ipython/issues/496
https://github.com/ipython/ipython/issues/550
https://github.com/ipython/ipython/issues/546
https://github.com/ipython/ipython/issues/548
https://github.com/ipython/ipython/issues/542
https://github.com/ipython/ipython/issues/533
https://github.com/ipython/ipython/issues/538
https://github.com/ipython/ipython/issues/540
https://github.com/ipython/ipython/issues/537
https://github.com/ipython/ipython/issues/536
https://github.com/ipython/ipython/issues/480
https://github.com/ipython/ipython/issues/462
https://github.com/ipython/ipython/issues/534
https://github.com/ipython/ipython/issues/527
https://github.com/ipython/ipython/issues/526
https://github.com/ipython/ipython/issues/528
https://github.com/ipython/ipython/issues/454
https://github.com/ipython/ipython/issues/532
https://github.com/ipython/ipython/issues/531
https://github.com/ipython/ipython/issues/525
https://github.com/ipython/ipython/issues/517
https://github.com/ipython/ipython/issues/521
https://github.com/ipython/ipython/issues/492
https://github.com/ipython/ipython/issues/485
https://github.com/ipython/ipython/issues/486
https://github.com/ipython/ipython/issues/511
https://github.com/ipython/ipython/issues/509
https://github.com/ipython/ipython/issues/501
https://github.com/ipython/ipython/issues/495
https://github.com/ipython/ipython/issues/498
https://github.com/ipython/ipython/issues/494

IPython Documentation, Release 0.11

• 490: fix UnicodeEncodeError writing SVG string to .svg file, fixes #489

• 491: add QtConsoleApp using newapplication

• 479: embed() doesn’t load default config

• 483: Links launchpad -> github

• 419: %xdel magic

• 477: Add n to lines in the log

• 459: use os.system for shell.system in Terminal frontend

• 475: i473

• 471: Add test decorator onlyif_unicode_paths.

• 474: Fix support for raw GTK and WX matplotlib backends.

• 472: Kernel event loop is robust against random SIGINT.

• 460: Share code for magic_edit

• 469: Add exit code when running all tests with iptest.

• 464: Add home directory expansion to IPYTHON_DIR environment variables.

• 455: Bugfix with logger

• 448: Separate out skip_doctest decorator

• 453: Draft of new main BaseIPythonApplication.

• 452: Use list/tuple/dict/set subclass’s overridden __repr__ instead of the pretty

• 398: allow toggle of svg/png inline figure format

• 381: Support inline PNGs of matplotlib plots

• 413: Retries and Resubmit (#411 and #412)

• 370: Fixes to the display system

• 449: Fix issue 447 - inspecting old-style classes.

• 423: Allow type checking on elements of List,Tuple,Set traits

• 400: Config5

• 421: Generalise mechanism to put text at the next prompt in the Qt console.

• 443: pinfo code duplication

• 429: add check_pid, and handle stale PID info in ipcluster.

• 431: Fix error message in test_irunner

• 427: handle different SyntaxError messages in test_irunner

• 424: Irunner test failure

• 430: Small parallel doc typo

2.3. Issues closed in the 0.11 development cycle 21

https://github.com/ipython/ipython/issues/490
https://github.com/ipython/ipython/issues/491
https://github.com/ipython/ipython/issues/479
https://github.com/ipython/ipython/issues/483
https://github.com/ipython/ipython/issues/419
https://github.com/ipython/ipython/issues/477
https://github.com/ipython/ipython/issues/459
https://github.com/ipython/ipython/issues/475
https://github.com/ipython/ipython/issues/471
https://github.com/ipython/ipython/issues/474
https://github.com/ipython/ipython/issues/472
https://github.com/ipython/ipython/issues/460
https://github.com/ipython/ipython/issues/469
https://github.com/ipython/ipython/issues/464
https://github.com/ipython/ipython/issues/455
https://github.com/ipython/ipython/issues/448
https://github.com/ipython/ipython/issues/453
https://github.com/ipython/ipython/issues/452
https://github.com/ipython/ipython/issues/398
https://github.com/ipython/ipython/issues/381
https://github.com/ipython/ipython/issues/413
https://github.com/ipython/ipython/issues/370
https://github.com/ipython/ipython/issues/449
https://github.com/ipython/ipython/issues/423
https://github.com/ipython/ipython/issues/400
https://github.com/ipython/ipython/issues/421
https://github.com/ipython/ipython/issues/443
https://github.com/ipython/ipython/issues/429
https://github.com/ipython/ipython/issues/431
https://github.com/ipython/ipython/issues/427
https://github.com/ipython/ipython/issues/424
https://github.com/ipython/ipython/issues/430

IPython Documentation, Release 0.11

• 422: Make ipython-qtconsole a GUI script

• 420: Permit kernel std* to be redirected

• 408: History request

• 388: Add Emacs-style kill ring to Qt console

• 414: Warn on old config files

• 415: Prevent prefilter from crashing IPython

• 418: Minor configuration doc fixes

• 407: Update What’s new documentation

• 410: Install notebook frontend

• 406: install IPython.zmq.gui

• 393: ipdir unicode

• 397: utils.io.Term.cin/out/err -> utils.io.stdin/out/err

• 389: DB fixes and Scheduler HWM

• 374: Various Windows-related fixes to IPython.parallel

• 362: fallback on defaultencoding if filesystemencoding is None

• 382: Shell’s reset method clears namespace from last %run command.

• 385: Update iptest exclusions (fix #375)

• 383: Catch errors in querying readline which occur with pyreadline.

• 373: Remove runlines etc.

• 364: Single output

• 372: Multiline input push

• 363: Issue 125

• 361: don’t rely on setuptools for readline dependency check

• 349: Fix %autopx magic

• 355: History save thread

• 356: Usability improvements to history in Qt console

• 357: Exit autocall

• 353: Rewrite quit()/exit()/Quit()/Exit() calls as magic

• 354: Cell tweaks

• 345: Attempt to address (partly) issue ipython/#342 by rewriting quit(), exit(), etc.

• 352: #342: Try to recover as intelligently as possible if user calls magic().

• 346: Dedent prefix bugfix + tests: #142

22 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython/issues/422
https://github.com/ipython/ipython/issues/420
https://github.com/ipython/ipython/issues/408
https://github.com/ipython/ipython/issues/388
https://github.com/ipython/ipython/issues/414
https://github.com/ipython/ipython/issues/415
https://github.com/ipython/ipython/issues/418
https://github.com/ipython/ipython/issues/407
https://github.com/ipython/ipython/issues/410
https://github.com/ipython/ipython/issues/406
https://github.com/ipython/ipython/issues/393
https://github.com/ipython/ipython/issues/397
https://github.com/ipython/ipython/issues/389
https://github.com/ipython/ipython/issues/374
https://github.com/ipython/ipython/issues/362
https://github.com/ipython/ipython/issues/382
https://github.com/ipython/ipython/issues/385
https://github.com/ipython/ipython/issues/383
https://github.com/ipython/ipython/issues/373
https://github.com/ipython/ipython/issues/364
https://github.com/ipython/ipython/issues/372
https://github.com/ipython/ipython/issues/363
https://github.com/ipython/ipython/issues/361
https://github.com/ipython/ipython/issues/349
https://github.com/ipython/ipython/issues/355
https://github.com/ipython/ipython/issues/356
https://github.com/ipython/ipython/issues/357
https://github.com/ipython/ipython/issues/353
https://github.com/ipython/ipython/issues/354
https://github.com/ipython/ipython/issues/345
https://github.com/ipython/ipython/issues/352
https://github.com/ipython/ipython/issues/346

IPython Documentation, Release 0.11

• 348: %reset doesn’t reset prompt number.

• 347: Make ip.reset() work the same in interactive or non-interactive code.

• 343: make readline a dependency on OSX

• 344: restore auto debug behavior

• 339: fix for issue 337: incorrect/phantom tooltips for magics

• 254: newparallel branch (add zmq.parallel submodule)

• 334: Hard reset

• 316: Unicode win process

• 332: AST splitter

• 325: Removetwisted

• 330: Magic pastebin

• 309: Bug tests for GH Issues 238, 284, 306, 307. Skip module machinery if not installed. Known
failures reported as ‘K’

• 331: Tweak config loader for PyPy compatibility.

• 319: Rewrite code to restore readline history after an action

• 329: Do not store file contents in history when running a .ipy file.

• 179: Html notebook

• 323: Add missing external.pexpect to packages

• 295: Magic local scope

• 315: Unicode magic args

• 310: allow Unicode Command-Line options

• 313: Readline shortcuts

• 311: Qtconsole exit

• 312: History memory

• 294: Issue 290

• 292: Issue 31

• 252: Unicode issues

• 235: Fix history magic command’s bugs wrt to full history and add -O option to display full history

• 236: History minus p flag

• 261: Adapt magic commands to new history system.

• 282: SQLite history

• 191: Unbundle external libraries

2.3. Issues closed in the 0.11 development cycle 23

https://github.com/ipython/ipython/issues/348
https://github.com/ipython/ipython/issues/347
https://github.com/ipython/ipython/issues/343
https://github.com/ipython/ipython/issues/344
https://github.com/ipython/ipython/issues/339
https://github.com/ipython/ipython/issues/254
https://github.com/ipython/ipython/issues/334
https://github.com/ipython/ipython/issues/316
https://github.com/ipython/ipython/issues/332
https://github.com/ipython/ipython/issues/325
https://github.com/ipython/ipython/issues/330
https://github.com/ipython/ipython/issues/309
https://github.com/ipython/ipython/issues/331
https://github.com/ipython/ipython/issues/319
https://github.com/ipython/ipython/issues/329
https://github.com/ipython/ipython/issues/179
https://github.com/ipython/ipython/issues/323
https://github.com/ipython/ipython/issues/295
https://github.com/ipython/ipython/issues/315
https://github.com/ipython/ipython/issues/310
https://github.com/ipython/ipython/issues/313
https://github.com/ipython/ipython/issues/311
https://github.com/ipython/ipython/issues/312
https://github.com/ipython/ipython/issues/294
https://github.com/ipython/ipython/issues/292
https://github.com/ipython/ipython/issues/252
https://github.com/ipython/ipython/issues/235
https://github.com/ipython/ipython/issues/236
https://github.com/ipython/ipython/issues/261
https://github.com/ipython/ipython/issues/282
https://github.com/ipython/ipython/issues/191

IPython Documentation, Release 0.11

• 199: Magic arguments

• 204: Emacs completion bugfix

• 293: Issue 133

• 249: Writing unicode characters to a log file. (IPython 0.10.2.git)

• 283: Support for 256-color escape sequences in Qt console

• 281: Refactored and improved Qt console’s HTML export facility

• 237: Fix185 (take two)

• 251: Issue 129

• 278: add basic XDG_CONFIG_HOME support

• 275: inline pylab cuts off labels on log plots

• 280: Add %precision magic

• 259: Pyside support

• 193: Make ipython cProfile-able

• 272: Magic examples

• 219: Doc magic pycat

• 221: Doc magic alias

• 230: Doc magic edit

• 224: Doc magic cpaste

• 229: Doc magic pdef

• 273: Docs build

• 228: Doc magic who

• 233: Doc magic cd

• 226: Doc magic pwd

• 218: Doc magic history

• 231: Doc magic reset

• 225: Doc magic save

• 222: Doc magic timeit

• 223: Doc magic colors

• 203: Small typos in zmq/blockingkernelmanager.py

• 227: Doc magic logon

• 232: Doc magic profile

• 264: Kernel logging

24 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython/issues/199
https://github.com/ipython/ipython/issues/204
https://github.com/ipython/ipython/issues/293
https://github.com/ipython/ipython/issues/249
https://github.com/ipython/ipython/issues/283
https://github.com/ipython/ipython/issues/281
https://github.com/ipython/ipython/issues/237
https://github.com/ipython/ipython/issues/251
https://github.com/ipython/ipython/issues/278
https://github.com/ipython/ipython/issues/275
https://github.com/ipython/ipython/issues/280
https://github.com/ipython/ipython/issues/259
https://github.com/ipython/ipython/issues/193
https://github.com/ipython/ipython/issues/272
https://github.com/ipython/ipython/issues/219
https://github.com/ipython/ipython/issues/221
https://github.com/ipython/ipython/issues/230
https://github.com/ipython/ipython/issues/224
https://github.com/ipython/ipython/issues/229
https://github.com/ipython/ipython/issues/273
https://github.com/ipython/ipython/issues/228
https://github.com/ipython/ipython/issues/233
https://github.com/ipython/ipython/issues/226
https://github.com/ipython/ipython/issues/218
https://github.com/ipython/ipython/issues/231
https://github.com/ipython/ipython/issues/225
https://github.com/ipython/ipython/issues/222
https://github.com/ipython/ipython/issues/223
https://github.com/ipython/ipython/issues/203
https://github.com/ipython/ipython/issues/227
https://github.com/ipython/ipython/issues/232
https://github.com/ipython/ipython/issues/264

IPython Documentation, Release 0.11

• 220: Doc magic edit

• 268: PyZMQ >= 2.0.10

• 267: GitHub Pages (again)

• 266: OSX-specific fixes to the Qt console

• 255: Gitwash typo

• 265: Fix string input2

• 260: Kernel crash with empty history

• 243: New display system

• 242: Fix terminal exit

• 250: always use Session.send

• 239: Makefile command & script for GitHub Pages

• 244: My exit

• 234: Timed history save

• 217: Doc magic lsmagic

• 215: History fix

• 195: Formatters

• 192: Ready colorize bug

• 198: Windows workdir

• 174: Whitespace cleanup

• 188: Version info: update our version management system to use git.

• 158: Ready for merge

• 187: Resolved Print shortcut collision with ctrl-P emacs binding

• 183: cleanup of exit/quit commands for qt console

• 184: Logo added to sphinx docs

• 180: Cleanup old code

• 171: Expose Pygments styles as options

• 170: HTML Fixes

• 172: Fix del method exit test

• 164: Qt frontend shutdown behavior fixes and enhancements

• 167: Added HTML export

• 163: Execution refactor

• 159: Ipy3 preparation

2.3. Issues closed in the 0.11 development cycle 25

https://github.com/ipython/ipython/issues/220
https://github.com/ipython/ipython/issues/268
https://github.com/ipython/ipython/issues/267
https://github.com/ipython/ipython/issues/266
https://github.com/ipython/ipython/issues/255
https://github.com/ipython/ipython/issues/265
https://github.com/ipython/ipython/issues/260
https://github.com/ipython/ipython/issues/243
https://github.com/ipython/ipython/issues/242
https://github.com/ipython/ipython/issues/250
https://github.com/ipython/ipython/issues/239
https://github.com/ipython/ipython/issues/244
https://github.com/ipython/ipython/issues/234
https://github.com/ipython/ipython/issues/217
https://github.com/ipython/ipython/issues/215
https://github.com/ipython/ipython/issues/195
https://github.com/ipython/ipython/issues/192
https://github.com/ipython/ipython/issues/198
https://github.com/ipython/ipython/issues/174
https://github.com/ipython/ipython/issues/188
https://github.com/ipython/ipython/issues/158
https://github.com/ipython/ipython/issues/187
https://github.com/ipython/ipython/issues/183
https://github.com/ipython/ipython/issues/184
https://github.com/ipython/ipython/issues/180
https://github.com/ipython/ipython/issues/171
https://github.com/ipython/ipython/issues/170
https://github.com/ipython/ipython/issues/172
https://github.com/ipython/ipython/issues/164
https://github.com/ipython/ipython/issues/167
https://github.com/ipython/ipython/issues/163
https://github.com/ipython/ipython/issues/159

IPython Documentation, Release 0.11

• 155: Ready startup fix

• 152: 0.10.1 sge

• 151: mk_object_info -> object_info

• 149: Simple bug-fix

Regular issues (285):

• 630: new.py in pwd prevents ipython from starting

• 623: Execute DirectView commands while running LoadBalancedView tasks

• 437: Users should have autocompletion in the notebook

• 583: update manpages

• 594: irunner command line options defer to file extensions

• 603: Users should see colored text in tracebacks and the pager

• 597: UnicodeDecodeError: ‘ascii’ codec can’t decode byte 0xc2

• 608: Organize and layout buttons in the notebook panel sections

• 609: Implement controls in the Kernel panel section

• 611: Add kernel status widget back to notebook

• 610: Implement controls in the Cell section panel

• 612: Implement Help panel section

• 621: [qtconsole] on windows xp, cannot PageUp more than once

• 616: Store exit status of last command

• 605: Users should be able to open different notebooks in the cwd

• 302: Users should see a consistent behavior in the Out prompt in the html notebook

• 435: Notebook should not import anything by default

• 595: qtconsole command issue

• 588: ipython-qtconsole uses 100% CPU

• 586: ? + plot() Command B0rks QTConsole Strangely

• 585: %pdoc throws Errors for classes without __init__ or docstring

• 584: %pdoc throws TypeError

• 580: Client instantiation AssertionError

• 569: UnicodeDecodeError during startup

• 572: Indented command hits error

• 573: -wthread breaks indented top-level statements

• 570: “–pylab inline” vs. “–pylab=inline”

26 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython/issues/155
https://github.com/ipython/ipython/issues/152
https://github.com/ipython/ipython/issues/151
https://github.com/ipython/ipython/issues/149
https://github.com/ipython/ipython/issues/630
https://github.com/ipython/ipython/issues/623
https://github.com/ipython/ipython/issues/437
https://github.com/ipython/ipython/issues/583
https://github.com/ipython/ipython/issues/594
https://github.com/ipython/ipython/issues/603
https://github.com/ipython/ipython/issues/597
https://github.com/ipython/ipython/issues/608
https://github.com/ipython/ipython/issues/609
https://github.com/ipython/ipython/issues/611
https://github.com/ipython/ipython/issues/610
https://github.com/ipython/ipython/issues/612
https://github.com/ipython/ipython/issues/621
https://github.com/ipython/ipython/issues/616
https://github.com/ipython/ipython/issues/605
https://github.com/ipython/ipython/issues/302
https://github.com/ipython/ipython/issues/435
https://github.com/ipython/ipython/issues/595
https://github.com/ipython/ipython/issues/588
https://github.com/ipython/ipython/issues/586
https://github.com/ipython/ipython/issues/585
https://github.com/ipython/ipython/issues/584
https://github.com/ipython/ipython/issues/580
https://github.com/ipython/ipython/issues/569
https://github.com/ipython/ipython/issues/572
https://github.com/ipython/ipython/issues/573
https://github.com/ipython/ipython/issues/570

IPython Documentation, Release 0.11

• 566: Can’t use exec_file in config file

• 562: update docs to reflect ‘–args=values’

• 558: triple quote and %s at beginning of line

• 554: Update 0.11 docs to explain Qt console and how to do a clean install

• 553: embed() fails if config files not installed

• 8: Ensure %gui qt works with new Mayavi and pylab

• 269: Provide compatibility api for IPython.Shell().start().mainloop()

• 66: Update the main What’s New document to reflect work on 0.11

• 549: Don’t check for ‘linux2’ value in sys.platform

• 505: Qt windows created within imported functions won’t show()

• 545: qtconsole ignores exec_lines

• 371: segfault in qtconsole when kernel quits

• 377: Failure: error (nothing to repeat)

• 544: Ipython qtconsole pylab config issue.

• 543: RuntimeError in completer

• 440: %run filename autocompletion “The kernel heartbeat has been inactive ... ” error

• 541: log_level is broken in the ipython Application

• 369: windows source install doesn’t create scripts correctly

• 351: Make sure that the Windows installer handles the top-level IPython scripts.

• 512: Two displayhooks in zmq

• 340: Make sure that the Windows HPC scheduler support is working for 0.11

• 98: Should be able to get help on an object mid-command

• 529: unicode problem in qtconsole for windows

• 476: Separate input area in Qt Console

• 175: Qt console needs configuration support

• 156: Key history lost when debugging program crash

• 470: decorator: uses deprecated features

• 30: readline in OS X does not have correct key bindings

• 503: merge IPython.parallel.streamsession and IPython.zmq.session

• 456: pathname in document punctuated by dots not slashes

• 451: Allow switching the default image format for inline mpl backend

• 79: Implement more robust handling of config stages in Application

2.3. Issues closed in the 0.11 development cycle 27

https://github.com/ipython/ipython/issues/566
https://github.com/ipython/ipython/issues/562
https://github.com/ipython/ipython/issues/558
https://github.com/ipython/ipython/issues/554
https://github.com/ipython/ipython/issues/553
https://github.com/ipython/ipython/issues/8
https://github.com/ipython/ipython/issues/269
https://github.com/ipython/ipython/issues/66
https://github.com/ipython/ipython/issues/549
https://github.com/ipython/ipython/issues/505
https://github.com/ipython/ipython/issues/545
https://github.com/ipython/ipython/issues/371
https://github.com/ipython/ipython/issues/377
https://github.com/ipython/ipython/issues/544
https://github.com/ipython/ipython/issues/543
https://github.com/ipython/ipython/issues/440
https://github.com/ipython/ipython/issues/541
https://github.com/ipython/ipython/issues/369
https://github.com/ipython/ipython/issues/351
https://github.com/ipython/ipython/issues/512
https://github.com/ipython/ipython/issues/340
https://github.com/ipython/ipython/issues/98
https://github.com/ipython/ipython/issues/529
https://github.com/ipython/ipython/issues/476
https://github.com/ipython/ipython/issues/175
https://github.com/ipython/ipython/issues/156
https://github.com/ipython/ipython/issues/470
https://github.com/ipython/ipython/issues/30
https://github.com/ipython/ipython/issues/503
https://github.com/ipython/ipython/issues/456
https://github.com/ipython/ipython/issues/451
https://github.com/ipython/ipython/issues/79

IPython Documentation, Release 0.11

• 522: Encoding problems

• 524: otool should not be unconditionally called on osx

• 523: Get profile and config file inheritance working

• 519: qtconsole –pure: “TypeError: string indices must be integers, not str”

• 516: qtconsole –pure: “KeyError: ‘ismagic”’

• 520: qtconsole –pure: “TypeError: string indices must be integers, not str”

• 450: resubmitted tasks sometimes stuck as pending

• 518: JSON serialization problems with ObjectId type (MongoDB)

• 178: Channels should be named for their function, not their socket type

• 515: [ipcluster] termination on os x

• 510: qtconsole: indentation problem printing numpy arrays

• 508: “AssertionError: Missing message part.” in ipython-qtconsole –pure

• 499: “ZMQError: Interrupted system call” when saving inline figure

• 426: %edit magic fails in qtconsole

• 497: Don’t show info from .pyd files

• 493: QFont::setPointSize: Point size <= 0 (0), must be greater than 0

• 489: UnicodeEncodeError in qt.svg.save_svg

• 458: embed() doesn’t load default config

• 488: Using IPython with RubyPython leads to problems with
IPython.parallel.client.client.Client.__init()

• 401: Race condition when running lbview.apply() fast multiple times in loop

• 168: Scrub Launchpad links from code, docs

• 141: garbage collection problem (revisited)

• 59: test_magic.test_obj_del fails on win32

• 457: Backgrounded Tasks not Allowed? (but easy to slip by . . .)

• 297: Shouldn’t use pexpect for subprocesses in in-process terminal frontend

• 110: magic to return exit status

• 473: OSX readline detection fails in the debugger

• 466: tests fail without unicode filename support

• 468: iptest script has 0 exit code even when tests fail

• 465: client.db_query() behaves different with SQLite and MongoDB

• 467: magic_install_default_config test fails when there is no .ipython directory

28 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython/issues/522
https://github.com/ipython/ipython/issues/524
https://github.com/ipython/ipython/issues/523
https://github.com/ipython/ipython/issues/519
https://github.com/ipython/ipython/issues/516
https://github.com/ipython/ipython/issues/520
https://github.com/ipython/ipython/issues/450
https://github.com/ipython/ipython/issues/518
https://github.com/ipython/ipython/issues/178
https://github.com/ipython/ipython/issues/515
https://github.com/ipython/ipython/issues/510
https://github.com/ipython/ipython/issues/508
https://github.com/ipython/ipython/issues/499
https://github.com/ipython/ipython/issues/426
https://github.com/ipython/ipython/issues/497
https://github.com/ipython/ipython/issues/493
https://github.com/ipython/ipython/issues/489
https://github.com/ipython/ipython/issues/458
https://github.com/ipython/ipython/issues/488
https://github.com/ipython/ipython/issues/401
https://github.com/ipython/ipython/issues/168
https://github.com/ipython/ipython/issues/141
https://github.com/ipython/ipython/issues/59
https://github.com/ipython/ipython/issues/457
https://github.com/ipython/ipython/issues/297
https://github.com/ipython/ipython/issues/110
https://github.com/ipython/ipython/issues/473
https://github.com/ipython/ipython/issues/466
https://github.com/ipython/ipython/issues/468
https://github.com/ipython/ipython/issues/465
https://github.com/ipython/ipython/issues/467

IPython Documentation, Release 0.11

• 463: IPYTHON_DIR (and IPYTHONDIR) don’t expand tilde to ‘~’ directory

• 446: Test machinery is imported at normal runtime

• 438: Users should be able to use Up/Down for cell navigation

• 439: Users should be able to copy notebook input and output

• 291: Rename special display methods and put them lower in priority than display functions

• 447: Instantiating classes without __init__ function causes kernel to crash

• 444: Ctrl + t in WxIPython Causes Unexpected Behavior

• 445: qt and console Based Startup Errors

• 428: ipcluster doesn’t handle stale pid info well

• 434: 10.0.2 seg fault with rpy2

• 441: Allow running a block of code in a file

• 432: Silent request fails

• 409: Test failure in IPython.lib

• 402: History section of messaging spec is incorrect

• 88: Error when inputting UTF8 CJK characters

• 366: Ctrl-K should kill line and store it, so that Ctrl-y can yank it back

• 425: typo in %gui magic help

• 304: Persistent warnings if old configuration files exist

• 216: crash of ipython when alias is used with %s and echo

• 412: add support to automatic retry of tasks

• 411: add support to continue tasks

• 417: IPython should display things unsorted if it can’t sort them

• 416: wrong encode when printing unicode string

• 376: Failing InputsplitterTest

• 405: TraitError in traitlets.py(332) on any input

• 392: UnicodeEncodeError on start

• 137: sys.getfilesystemencoding return value not checked

• 300: Users should be able to manage kernels and kernel sessions from the notebook UI

• 301: Users should have access to working Kernel, Tabs, Edit, Help menus in the notebook

• 396: cursor move triggers a lot of IO access

• 379: Minor doc nit: –paging argument

• 399: Add task queue limit in engine when load-balancing

2.3. Issues closed in the 0.11 development cycle 29

https://github.com/ipython/ipython/issues/463
https://github.com/ipython/ipython/issues/446
https://github.com/ipython/ipython/issues/438
https://github.com/ipython/ipython/issues/439
https://github.com/ipython/ipython/issues/291
https://github.com/ipython/ipython/issues/447
https://github.com/ipython/ipython/issues/444
https://github.com/ipython/ipython/issues/445
https://github.com/ipython/ipython/issues/428
https://github.com/ipython/ipython/issues/434
https://github.com/ipython/ipython/issues/441
https://github.com/ipython/ipython/issues/432
https://github.com/ipython/ipython/issues/409
https://github.com/ipython/ipython/issues/402
https://github.com/ipython/ipython/issues/88
https://github.com/ipython/ipython/issues/366
https://github.com/ipython/ipython/issues/425
https://github.com/ipython/ipython/issues/304
https://github.com/ipython/ipython/issues/216
https://github.com/ipython/ipython/issues/412
https://github.com/ipython/ipython/issues/411
https://github.com/ipython/ipython/issues/417
https://github.com/ipython/ipython/issues/416
https://github.com/ipython/ipython/issues/376
https://github.com/ipython/ipython/issues/405
https://github.com/ipython/ipython/issues/392
https://github.com/ipython/ipython/issues/137
https://github.com/ipython/ipython/issues/300
https://github.com/ipython/ipython/issues/301
https://github.com/ipython/ipython/issues/396
https://github.com/ipython/ipython/issues/379
https://github.com/ipython/ipython/issues/399

IPython Documentation, Release 0.11

• 78: StringTask won’t take unicode code strings

• 391: MongoDB.add_record() does not work in 0.11dev

• 365: newparallel on Windows

• 386: FAIL: test that pushed functions have access to globals

• 387: Interactively defined functions can’t access user namespace

• 118: Snow Leopard ipy_vimserver POLL error

• 394: System escape interpreted in multi-line string

• 26: find_job_cmd is too hasty to fail on Windows

• 368: Installation instructions in dev docs are completely wrong

• 380: qtconsole pager RST - HTML not happening consistently

• 367: Qt console doesn’t support ibus input method

• 375: Missing libraries cause ImportError in tests

• 71: temp file errors in iptest IPython.core

• 350: Decide how to handle displayhook being triggered multiple times

• 360: Remove runlines method

• 125: Exec lines in config should not contribute to line numbering or history

• 20: Robust readline support on OS X’s builtin Python

• 147: On Windows, %page is being too restrictive to split line by rn only

• 326: Update docs and examples for parallel stuff to reflect movement away from Twisted

• 341: FIx Parallel Magics for newparallel

• 338: Usability improvements to Qt console

• 142: unexpected auto-indenting when varibles names that start with ‘pass’

• 296: Automatic PDB via %pdb doesn’t work

• 337: exit(and quit(in Qt console produces phantom signature/docstring popup, even though quit() or
exit() raises NameError

• 318: %debug broken in master: invokes missing save_history() method

• 307: lines ending with semicolon should not go to cache

• 104: have ipengine run start-up scripts before registering with the controller

• 33: The skip_doctest decorator is failing to work on Shell.MatplotlibShellBase.magic_run

• 336: Missing figure development/figs/iopubfade.png for docs

• 49: %clear should also delete _NN references and Out[NN] ones

• 335: using setuptools installs every script twice

30 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython/issues/78
https://github.com/ipython/ipython/issues/391
https://github.com/ipython/ipython/issues/365
https://github.com/ipython/ipython/issues/386
https://github.com/ipython/ipython/issues/387
https://github.com/ipython/ipython/issues/118
https://github.com/ipython/ipython/issues/394
https://github.com/ipython/ipython/issues/26
https://github.com/ipython/ipython/issues/368
https://github.com/ipython/ipython/issues/380
https://github.com/ipython/ipython/issues/367
https://github.com/ipython/ipython/issues/375
https://github.com/ipython/ipython/issues/71
https://github.com/ipython/ipython/issues/350
https://github.com/ipython/ipython/issues/360
https://github.com/ipython/ipython/issues/125
https://github.com/ipython/ipython/issues/20
https://github.com/ipython/ipython/issues/147
https://github.com/ipython/ipython/issues/326
https://github.com/ipython/ipython/issues/341
https://github.com/ipython/ipython/issues/338
https://github.com/ipython/ipython/issues/142
https://github.com/ipython/ipython/issues/296
https://github.com/ipython/ipython/issues/337
https://github.com/ipython/ipython/issues/318
https://github.com/ipython/ipython/issues/307
https://github.com/ipython/ipython/issues/104
https://github.com/ipython/ipython/issues/33
https://github.com/ipython/ipython/issues/336
https://github.com/ipython/ipython/issues/49
https://github.com/ipython/ipython/issues/335

IPython Documentation, Release 0.11

• 306: multiline strings at end of input cause noop

• 327: PyPy compatibility

• 328: %run script.ipy raises “ERROR! Session/line number was not unique in database.”

• 7: Update the changes doc to reflect the kernel config work

• 303: Users should be able to scroll a notebook w/o moving the menu/buttons

• 322: Embedding an interactive IPython shell

• 321: %debug broken in master

• 287: Crash when using %macros in sqlite-history branch

• 55: Can’t edit files whose names begin with numbers

• 284: In variable no longer works in 0.11

• 92: Using multiprocessing module crashes parallel iPython

• 262: Fail to recover history after force-kill.

• 320: Tab completing re.search objects crashes IPython

• 317: IPython.kernel: parallel map issues

• 197: ipython-qtconsole unicode problem in magic ls

• 305: more readline shortcuts in qtconsole

• 314: Multi-line, multi-block cells can’t be executed.

• 308: Test suite should set sqlite history to work in :memory:

• 202: Matplotlib native ‘MacOSX’ backend broken in ‘-pylab’ mode

• 196: IPython can’t deal with unicode file name.

• 25: unicode bug - encoding input

• 290: try/except/else clauses can’t be typed, code input stops too early.

• 43: Implement SSH support in ipcluster

• 6: Update the Sphinx docs for the new ipcluster

• 9: Getting “DeadReferenceError: Calling Stale Broker” after ipcontroller restart

• 132: Ipython prevent south from working

• 27: generics.complete_object broken

• 60: Improve absolute import management for iptest.py

• 31: Issues in magic_whos code

• 52: Document testing process better

• 44: Merge history from multiple sessions

• 182: ipython q4thread in version 10.1 not starting properly

2.3. Issues closed in the 0.11 development cycle 31

https://github.com/ipython/ipython/issues/306
https://github.com/ipython/ipython/issues/327
https://github.com/ipython/ipython/issues/328
https://github.com/ipython/ipython/issues/7
https://github.com/ipython/ipython/issues/303
https://github.com/ipython/ipython/issues/322
https://github.com/ipython/ipython/issues/321
https://github.com/ipython/ipython/issues/287
https://github.com/ipython/ipython/issues/55
https://github.com/ipython/ipython/issues/284
https://github.com/ipython/ipython/issues/92
https://github.com/ipython/ipython/issues/262
https://github.com/ipython/ipython/issues/320
https://github.com/ipython/ipython/issues/317
https://github.com/ipython/ipython/issues/197
https://github.com/ipython/ipython/issues/305
https://github.com/ipython/ipython/issues/314
https://github.com/ipython/ipython/issues/308
https://github.com/ipython/ipython/issues/202
https://github.com/ipython/ipython/issues/196
https://github.com/ipython/ipython/issues/25
https://github.com/ipython/ipython/issues/290
https://github.com/ipython/ipython/issues/43
https://github.com/ipython/ipython/issues/6
https://github.com/ipython/ipython/issues/9
https://github.com/ipython/ipython/issues/132
https://github.com/ipython/ipython/issues/27
https://github.com/ipython/ipython/issues/60
https://github.com/ipython/ipython/issues/31
https://github.com/ipython/ipython/issues/52
https://github.com/ipython/ipython/issues/44
https://github.com/ipython/ipython/issues/182

IPython Documentation, Release 0.11

• 143: Ipython.gui.wx.ipython_view.IPShellWidget: ignores user*_ns arguments

• 127: %edit does not work on filenames consisted of pure numbers

• 126: Can’t transfer command line argument to script

• 28: Offer finer control for initialization of input streams

• 58: ipython change char ‘0xe9’ to 4 spaces

• 68: Problems with Control-C stopping ipcluster on Windows/Python2.6

• 24: ipcluster does not start all the engines

• 240: Incorrect method displayed in %psource

• 120: inspect.getsource fails for functions defined on command line

• 212: IPython ignores exceptions in the first evaulation of class attrs

• 108: ipython disables python logger

• 100: Overzealous introspection

• 18: %cpaste freeze sync frontend

• 200: Unicode error when starting ipython in a folder with non-ascii path

• 130: Deadlock when importing a module that creates an IPython client

• 134: multline block scrolling

• 46: Input to %timeit is not preparsed

• 285: ipcluster local -n 4 fails

• 205: In the Qt console, Tab should insert 4 spaces when not completing

• 145: Bug on MSW sytems: idle can not be set as default IPython editor. Fix Suggested.

• 77: ipython oops in cygwin

• 121: If plot windows are closed via window controls, no more plotting is possible.

• 111: Iterator version of TaskClient.map() that returns results as they become available

• 109: WinHPCLauncher is a hard dependency that causes errors in the test suite

• 86: Make IPython work with multiprocessing

• 15: Implement SGE support in ipcluster

• 3: Implement PBS support in ipcluster

• 53: Internal Python error in the inspect module

• 74: Manager() [from multiprocessing module] hangs ipythonx but not ipython

• 51: Out not working with ipythonx

• 201: use session.send throughout zmq code

• 115: multiline specials not defined in 0.11 branch

32 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython/issues/143
https://github.com/ipython/ipython/issues/127
https://github.com/ipython/ipython/issues/126
https://github.com/ipython/ipython/issues/28
https://github.com/ipython/ipython/issues/58
https://github.com/ipython/ipython/issues/68
https://github.com/ipython/ipython/issues/24
https://github.com/ipython/ipython/issues/240
https://github.com/ipython/ipython/issues/120
https://github.com/ipython/ipython/issues/212
https://github.com/ipython/ipython/issues/108
https://github.com/ipython/ipython/issues/100
https://github.com/ipython/ipython/issues/18
https://github.com/ipython/ipython/issues/200
https://github.com/ipython/ipython/issues/130
https://github.com/ipython/ipython/issues/134
https://github.com/ipython/ipython/issues/46
https://github.com/ipython/ipython/issues/285
https://github.com/ipython/ipython/issues/205
https://github.com/ipython/ipython/issues/145
https://github.com/ipython/ipython/issues/77
https://github.com/ipython/ipython/issues/121
https://github.com/ipython/ipython/issues/111
https://github.com/ipython/ipython/issues/109
https://github.com/ipython/ipython/issues/86
https://github.com/ipython/ipython/issues/15
https://github.com/ipython/ipython/issues/3
https://github.com/ipython/ipython/issues/53
https://github.com/ipython/ipython/issues/74
https://github.com/ipython/ipython/issues/51
https://github.com/ipython/ipython/issues/201
https://github.com/ipython/ipython/issues/115

IPython Documentation, Release 0.11

• 93: when looping, cursor appears at leftmost point in newline

• 133: whitespace after Source introspection

• 50: Ctrl-C with -gthread on Windows, causes uncaught IOError

• 65: Do not use .message attributes in exceptions, deprecated in 2.6

• 76: syntax error when raise is inside except process

• 107: bdist_rpm causes traceback looking for a non-existant file

• 113: initial magic ? (question mark) fails before wildcard

• 128: Pdb instance has no attribute ‘curframe’

• 139: running with -pylab pollutes namespace

• 140: malloc error during tab completion of numpy array member functions starting with ‘c’

• 153: ipy_vimserver traceback on Windows

• 154: using ipython in Slicer3 show how os.environ[’HOME’] is not defined

• 185: show() blocks in pylab mode with ipython 0.10.1

• 189: Crash on tab completion

• 274: bashism in sshx.sh

• 276: Calling sip.setapi does not work if app has already imported from PyQt4

• 277: matplotlib.image imgshow from 10.1 segfault

• 288: Incorrect docstring in zmq/kernelmanager.py

• 286: Fix IPython.Shell compatibility layer

• 99: blank lines in history

• 129: psearch: TypeError: expected string or buffer

• 190: Add option to format float point output

• 246: Application not conforms XDG Base Directory Specification

• 48: IPython should follow the XDG Base Directory spec for configuration

• 176: Make client-side history persistence readline-independent

• 279: Backtraces when using ipdb do not respect -colour LightBG setting

• 119: Broken type filter in magic_who_ls

• 271: Intermittent problem with print output in Qt console.

• 270: Small typo in IPython developer’s guide

• 166: Add keyboard accelerators to Qt close dialog

• 173: asymmetrical ctrl-A/ctrl-E behavior in multiline

• 45: Autosave history for robustness

2.3. Issues closed in the 0.11 development cycle 33

https://github.com/ipython/ipython/issues/93
https://github.com/ipython/ipython/issues/133
https://github.com/ipython/ipython/issues/50
https://github.com/ipython/ipython/issues/65
https://github.com/ipython/ipython/issues/76
https://github.com/ipython/ipython/issues/107
https://github.com/ipython/ipython/issues/113
https://github.com/ipython/ipython/issues/128
https://github.com/ipython/ipython/issues/139
https://github.com/ipython/ipython/issues/140
https://github.com/ipython/ipython/issues/153
https://github.com/ipython/ipython/issues/154
https://github.com/ipython/ipython/issues/185
https://github.com/ipython/ipython/issues/189
https://github.com/ipython/ipython/issues/274
https://github.com/ipython/ipython/issues/276
https://github.com/ipython/ipython/issues/277
https://github.com/ipython/ipython/issues/288
https://github.com/ipython/ipython/issues/286
https://github.com/ipython/ipython/issues/99
https://github.com/ipython/ipython/issues/129
https://github.com/ipython/ipython/issues/190
https://github.com/ipython/ipython/issues/246
https://github.com/ipython/ipython/issues/48
https://github.com/ipython/ipython/issues/176
https://github.com/ipython/ipython/issues/279
https://github.com/ipython/ipython/issues/119
https://github.com/ipython/ipython/issues/271
https://github.com/ipython/ipython/issues/270
https://github.com/ipython/ipython/issues/166
https://github.com/ipython/ipython/issues/173
https://github.com/ipython/ipython/issues/45

IPython Documentation, Release 0.11

• 162: make command history persist in ipythonqt

• 161: make ipythonqt exit without dialog when exit() is called

• 263: [ipython + numpy] Some test errors

• 256: reset docstring ipython 0.10

• 258: allow caching to avoid matplotlib object referrences

• 248: Can’t open and read files after upgrade from 0.10 to 0.10.0

• 247: ipython + Stackless

• 245: Magic save and macro missing newlines, line ranges don’t match prompt numbers.

• 241: “exit” hangs on terminal version of IPython

• 213: ipython -pylab no longer plots interactively on 0.10.1

• 4: wx frontend don’t display well commands output

• 5: ls command not supported in ipythonx wx frontend

• 1: Document winhpcjob.py and launcher.py

• 83: Usage of testing.util.DeferredTestCase should be replace with twisted.trial.unittest.TestCase

• 117: Redesign how Component instances are tracked and queried

• 47: IPython.kernel.client cannot be imported inside an engine

• 105: Refactor the task dependencies system

• 210: 0.10.1 doc mistake - New IPython Sphinx directive error

• 209: can’t activate IPython parallel magics

• 206: Buggy linewrap in Mac OSX Terminal

• 194: !sudo <command> displays password in plain text

• 186: %edit issue under OS X 10.5 - IPython 0.10.1

• 11: Create a daily build PPA for ipython

• 144: logo missing from sphinx docs

• 181: cls command does not work on windows

• 169: Kernel can only be bound to localhost

• 36: tab completion does not escape ()

• 177: Report tracebacks of interactively entered input

• 148: dictionary having multiple keys having frozenset fails to print on iPython

• 160: magic_gui throws TypeError when gui magic is used

• 150: History entries ending with parentheses corrupt command line on OS X 10.6.4

• 146: -ipythondir - using an alternative .ipython dir for rc type stuff

34 Chapter 2. What’s new in IPython

https://github.com/ipython/ipython/issues/162
https://github.com/ipython/ipython/issues/161
https://github.com/ipython/ipython/issues/263
https://github.com/ipython/ipython/issues/256
https://github.com/ipython/ipython/issues/258
https://github.com/ipython/ipython/issues/248
https://github.com/ipython/ipython/issues/247
https://github.com/ipython/ipython/issues/245
https://github.com/ipython/ipython/issues/241
https://github.com/ipython/ipython/issues/213
https://github.com/ipython/ipython/issues/4
https://github.com/ipython/ipython/issues/5
https://github.com/ipython/ipython/issues/1
https://github.com/ipython/ipython/issues/83
https://github.com/ipython/ipython/issues/117
https://github.com/ipython/ipython/issues/47
https://github.com/ipython/ipython/issues/105
https://github.com/ipython/ipython/issues/210
https://github.com/ipython/ipython/issues/209
https://github.com/ipython/ipython/issues/206
https://github.com/ipython/ipython/issues/194
https://github.com/ipython/ipython/issues/186
https://github.com/ipython/ipython/issues/11
https://github.com/ipython/ipython/issues/144
https://github.com/ipython/ipython/issues/181
https://github.com/ipython/ipython/issues/169
https://github.com/ipython/ipython/issues/36
https://github.com/ipython/ipython/issues/177
https://github.com/ipython/ipython/issues/148
https://github.com/ipython/ipython/issues/160
https://github.com/ipython/ipython/issues/150
https://github.com/ipython/ipython/issues/146

IPython Documentation, Release 0.11

• 114: Interactive strings get mangled with “_ip.magic”

• 135: crash on invalid print

• 69: Usage of “mycluster” profile in docs and examples

• 37: Fix colors in output of ResultList on Windows

2.4 0.10 series

2.4.1 Release 0.10.2

IPython 0.10.2 was released April 9, 2011. This is a minor bugfix release that preserves backward com-
patibility. At this point, all IPython development resources are focused on the 0.11 series that includes a
complete architectural restructuring of the project as well as many new capabilities, so this is likely to be the
last release of the 0.10.x series. We have tried to fix all major bugs in this series so that it remains a viable
platform for those not ready yet to transition to the 0.11 and newer codebase (since that will require some
porting effort, as a number of APIs have changed).

Thus, we are not opening a 0.10.3 active development branch yet, but if the user community requires new
patches and is willing to maintain/release such a branch, we’ll be happy to host it on the IPython github
repositories.

Highlights of this release:

• The main one is the closing of github ticket #185, a major regression we had in 0.10.1 where pylab
mode with GTK (or gthread) was not working correctly, hence plots were blocking with GTK. Since
this is the default matplotlib backend on Unix systems, this was a major annoyance for many users.
Many thanks to Paul Ivanov for helping resolve this issue.

• Fix IOError bug on Windows when used with -gthread.

• Work robustly if $HOME is missing from environment.

• Better POSIX support in ssh scripts (remove bash-specific idioms).

• Improved support for non-ascii characters in log files.

• Work correctly in environments where GTK can be imported but not started (such as a linux text
console without X11).

For this release we merged 24 commits, contributed by the following people (please let us know if we
ommitted your name and we’ll gladly fix this in the notes for the future):

• Fernando Perez

• MinRK

• Paul Ivanov

• Pieter Cristiaan de Groot

• TvrtkoM

2.4. 0.10 series 35

https://github.com/ipython/ipython/issues/114
https://github.com/ipython/ipython/issues/135
https://github.com/ipython/ipython/issues/69
https://github.com/ipython/ipython/issues/37

IPython Documentation, Release 0.11

2.4.2 Release 0.10.1

IPython 0.10.1 was released October 11, 2010, over a year after version 0.10. This is mostly a bugfix release,
since after version 0.10 was released, the development team’s energy has been focused on the 0.11 series.
We have nonetheless tried to backport what fixes we could into 0.10.1, as it remains the stable series that
many users have in production systems they rely on.

Since the 0.11 series changes many APIs in backwards-incompatible ways, we are willing to continue main-
taining the 0.10.x series. We don’t really have time to actively write new code for 0.10.x, but we are happy
to accept patches and pull requests on the IPython github site. If sufficient contributions are made that im-
prove 0.10.1, we will roll them into future releases. For this purpose, we will have a branch called 0.10.2 on
github, on which you can base your contributions.

For this release, we applied approximately 60 commits totaling a diff of over 7000 lines:

(0.10.1)amirbar[dist]> git diff --oneline rel-0.10.. | wc -l
7296

Highlights of this release:

• The only significant new feature is that IPython’s parallel computing machinery now supports natively
the Sun Grid Engine and LSF schedulers. This work was a joint contribution from Justin Riley, Satra
Ghosh and Matthieu Brucher, who put a lot of work into it. We also improved traceback handling in
remote tasks, as well as providing better control for remote task IDs.

• New IPython Sphinx directive contributed by John Hunter. You can use this directive to mark blocks in
reSructuredText documents as containing IPython syntax (including figures) and the will be executed
during the build:

In [2]: plt.figure() # ensure a fresh figure

@savefig psimple.png width=4in
In [3]: plt.plot([1,2,3])
Out[3]: [<matplotlib.lines.Line2D object at 0x9b74d8c>]

• Various fixes to the standalone ipython-wx application.

• We now ship internally the excellent argparse library, graciously licensed under BSD terms by Steven
Bethard. Now (2010) that argparse has become part of Python 2.7 this will be less of an issue, but
Steven’s relicensing allowed us to start updating IPython to using argparse well before Python 2.7.
Many thanks!

• Robustness improvements so that IPython doesn’t crash if the readline library is absent (though obvi-
ously a lot of functionality that requires readline will not be available).

• Improvements to tab completion in Emacs with Python 2.6.

• Logging now supports timestamps (see %logstart? for full details).

• A long-standing and quite annoying bug where parentheses would be added to print statements,
under Python 2.5 and 2.6, was finally fixed.

• Improved handling of libreadline on Apple OSX.

• Fix reload method of IPython demos, which was broken.

36 Chapter 2. What’s new in IPython

http://github.com/ipython

IPython Documentation, Release 0.11

• Fixes for the ipipe/ibrowse system on OSX.

• Fixes for Zope profile.

• Fix %timeit reporting when the time is longer than 1000s.

• Avoid lockups with ? or ?? in SunOS, due to a bug in termios.

• The usual assortment of miscellaneous bug fixes and small improvements.

The following people contributed to this release (please let us know if we omitted your name and we’ll
gladly fix this in the notes for the future):

• Beni Cherniavsky

• Boyd Waters.

• David Warde-Farley

• Fernando Perez

• Gökhan Sever

• John Hunter

• Justin Riley

• Kiorky

• Laurent Dufrechou

• Mark E. Smith

• Matthieu Brucher

• Satrajit Ghosh

• Sebastian Busch

• Václav Šmilauer

2.4.3 Release 0.10

This release brings months of slow but steady development, and will be the last before a major restructuring
and cleanup of IPython’s internals that is already under way. For this reason, we hope that 0.10 will be
a stable and robust release so that while users adapt to some of the API changes that will come with the
refactoring that will become IPython 0.11, they can safely use 0.10 in all existing projects with minimal
changes (if any).

IPython 0.10 is now a medium-sized project, with roughly (as reported by David Wheeler’s sloccount
utility) 40750 lines of Python code, and a diff between 0.9.1 and this release that contains almost 28000
lines of code and documentation. Our documentation, in PDF format, is a 495-page long PDF document
(also available in HTML format, both generated from the same sources).

Many users and developers contributed code, features, bug reports and ideas to this release. Please do not
hesitate in contacting us if we’ve failed to acknowledge your contribution here. In particular, for this release

2.4. 0.10 series 37

IPython Documentation, Release 0.11

we have contribution from the following people, a mix of new and regular names (in alphabetical order by
first name):

• Alexander Clausen: fix #341726.

• Brian Granger: lots of work everywhere (features, bug fixes, etc).

• Daniel Ashbrook: bug report on MemoryError during compilation, now fixed.

• Darren Dale: improvements to documentation build system, feedback, design ideas.

• Fernando Perez: various places.

• Gaël Varoquaux: core code, ipythonx GUI, design discussions, etc. Lots...

• John Hunter: suggestions, bug fixes, feedback.

• Jorgen Stenarson: work on many fronts, tests, fixes, win32 support, etc.

• Laurent Dufréchou: many improvements to ipython-wx standalone app.

• Lukasz Pankowski: prefilter, %edit, demo improvements.

• Matt Foster: TextMate support in %edit.

• Nathaniel Smith: fix #237073.

• Pauli Virtanen: fixes and improvements to extensions, documentation.

• Prabhu Ramachandran: improvements to %timeit.

• Robert Kern: several extensions.

• Sameer D’Costa: help on critical bug #269966.

• Stephan Peijnik: feedback on Debian compliance and many man pages.

• Steven Bethard: we are now shipping his argparse module.

• Tom Fetherston: many improvements to IPython.demo module.

• Ville Vainio: lots of work everywhere (features, bug fixes, etc).

• Vishal Vasta: ssh support in ipcluster.

• Walter Doerwald: work on the IPython.ipipe system.

Below we give an overview of new features, bug fixes and backwards-incompatible changes. For a detailed
account of every change made, feel free to view the project log with bzr log.

New features

• New %paste magic automatically extracts current contents of clipboard and pastes it directly, while
correctly handling code that is indented or prepended with >>> or ... python prompt markers. A very
useful new feature contributed by Robert Kern.

• IPython ‘demos’, created with the IPython.demo module, can now be created from files on disk
or strings in memory. Other fixes and improvements to the demo system, by Tom Fetherston.

38 Chapter 2. What’s new in IPython

IPython Documentation, Release 0.11

• Added find_cmd() function to IPython.platutils module, to find commands in a cross-
platform manner.

• Many improvements and fixes to Gaël Varoquaux’s ipythonx, a WX-based lightweight IPython in-
stance that can be easily embedded in other WX applications. These improvements have made it
possible to now have an embedded IPython in Mayavi and other tools.

• MultiengineClient objects now have a benchmark() method.

• The manual now includes a full set of auto-generated API documents from the code sources, using
Sphinx and some of our own support code. We are now using the Numpy Documentation Standard
for all docstrings, and we have tried to update as many existing ones as possible to this format.

• The new IPython.Extensions.ipy_pretty extension by Robert Kern provides configurable
pretty-printing.

• Many improvements to the ipython-wx standalone WX-based IPython application by Laurent Dufré-
chou. It can optionally run in a thread, and this can be toggled at runtime (allowing the loading of
Matplotlib in a running session without ill effects).

• IPython includes a copy of Steven Bethard’s argparse in the IPython.external package, so we
can use it internally and it is also available to any IPython user. By installing it in this manner,
we ensure zero conflicts with any system-wide installation you may already have while minimizing
external dependencies for new users. In IPython 0.10, We ship argparse version 1.0.

• An improved and much more robust test suite, that runs groups of tests in separate subprocesses using
either Nose or Twisted’s trial runner to ensure proper management of Twisted-using code. The test
suite degrades gracefully if optional dependencies are not available, so that the iptest command can
be run with only Nose installed and nothing else. We also have more and cleaner test decorators to
better select tests depending on runtime conditions, do setup/teardown, etc.

• The new ipcluster now has a fully working ssh mode that should work on Linux, Unix and OS X.
Thanks to Vishal Vatsa for implementing this!

• The wonderful TextMate editor can now be used with %edit on OS X. Thanks to Matt Foster for this
patch.

• The documentation regarding parallel uses of IPython, including MPI and PBS, has been significantly
updated and improved.

• The developer guidelines in the documentation have been updated to explain our workflow using bzr
and Launchpad.

• Fully refactored ipcluster command line program for starting IPython clusters. This new version is a
complete rewrite and 1) is fully cross platform (we now use Twisted’s process management), 2) has
much improved performance, 3) uses subcommands for different types of clusters, 4) uses argparse
for parsing command line options, 5) has better support for starting clusters using mpirun, 6) has
experimental support for starting engines using PBS. It can also reuse FURL files, by appropriately
passing options to its subcommands. However, this new version of ipcluster should be considered a
technology preview. We plan on changing the API in significant ways before it is final.

• Full description of the security model added to the docs.

• cd completer: show bookmarks if no other completions are available.

2.4. 0.10 series 39

http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines#docstring-standard
http://code.google.com/p/argparse/

IPython Documentation, Release 0.11

• sh profile: easy way to give ‘title’ to prompt: assign to variable ‘_prompt_title’. It looks like this:

[~]|1> _prompt_title = ’sudo!’
sudo![~]|2>

• %edit: If you do ‘%edit pasted_block’, pasted_block variable gets updated with new data (so repeated
editing makes sense)

Bug fixes

• Fix #368719, removed top-level debian/ directory to make the job of Debian packagers easier.

• Fix #291143 by including man pages contributed by Stephan Peijnik from the Debian project.

• Fix #358202, effectively a race condition, by properly synchronizing file creation at cluster startup
time.

• %timeit now handles correctly functions that take a long time to execute even the first time, by not
repeating them.

• Fix #239054, releasing of references after exiting.

• Fix #341726, thanks to Alexander Clausen.

• Fix #269966. This long-standing and very difficult bug (which is actually a problem in Python itself)
meant long-running sessions would inevitably grow in memory size, often with catastrophic conse-
quences if users had large objects in their scripts. Now, using %run repeatedly should not cause any
memory leaks. Special thanks to John Hunter and Sameer D’Costa for their help with this bug.

• Fix #295371, bug in %history.

• Improved support for py2exe.

• Fix #270856: IPython hangs with PyGTK

• Fix #270998: A magic with no docstring breaks the ‘%magic magic’

• fix #271684: -c startup commands screw up raw vs. native history

• Numerous bugs on Windows with the new ipcluster have been fixed.

• The ipengine and ipcontroller scripts now handle missing furl files more gracefully by giving better
error messages.

• %rehashx: Aliases no longer contain dots. python3.0 binary will create alias python30. Fixes:
#259716 “commands with dots in them don’t work”

• %cpaste: %cpaste -r repeats the last pasted block. The block is assigned to pasted_block even if code
raises exception.

• Bug #274067 ‘The code in get_home_dir is broken for py2exe’ was fixed.

• Many other small bug fixes not listed here by number (see the bzr log for more info).

40 Chapter 2. What’s new in IPython

IPython Documentation, Release 0.11

Backwards incompatible changes

• ipykit and related files were unmaintained and have been removed.

• The IPython.genutils.doctest_reload() does not actually call reload(doctest) anymore,
as this was causing many problems with the test suite. It still resets doctest.master to None.

• While we have not deliberately broken Python 2.4 compatibility, only minor testing was done with
Python 2.4, while 2.5 and 2.6 were fully tested. But if you encounter problems with 2.4, please do
report them as bugs.

• The ipcluster now requires a mode argument; for example to start a cluster on the local machine with
4 engines, you must now type:

$ ipcluster local -n 4

• The controller now has a -r flag that needs to be used if you want to reuse existing furl files. Other-
wise they are deleted (the default).

• Remove ipy_leo.py. You can use easy_install ipython-extension to get it. (done to decouple it from
ipython release cycle)

2.5 0.9 series

2.5.1 Release 0.9.1

This release was quickly made to restore compatibility with Python 2.4, which version 0.9 accidentally
broke. No new features were introduced, other than some additional testing support for internal use.

2.5.2 Release 0.9

New features

• All furl files and security certificates are now put in a read-only directory named ~./ipython/security.

• A single function get_ipython_dir(), in IPython.genutils that determines the user’s
IPython directory in a robust manner.

• Laurent’s WX application has been given a top-level script called ipython-wx, and it has received
numerous fixes. We expect this code to be architecturally better integrated with Gael’s WX ‘ipython
widget’ over the next few releases.

• The Editor synchronization work by Vivian De Smedt has been merged in. This code adds a number
of new editor hooks to synchronize with editors under Windows.

• A new, still experimental but highly functional, WX shell by Gael Varoquaux. This work was spon-
sored by Enthought, and while it’s still very new, it is based on a more cleanly organized arhictecture
of the various IPython components. We will continue to develop this over the next few releases as a
model for GUI components that use IPython.

2.5. 0.9 series 41

IPython Documentation, Release 0.11

• Another GUI frontend, Cocoa based (Cocoa is the OSX native GUI framework), authored by Barry
Wark. Currently the WX and the Cocoa ones have slightly different internal organizations, but the
whole team is working on finding what the right abstraction points are for a unified codebase.

• As part of the frontend work, Barry Wark also implemented an experimental event notification system
that various ipython components can use. In the next release the implications and use patterns of this
system regarding the various GUI options will be worked out.

• IPython finally has a full test system, that can test docstrings with IPython-specific functionality.
There are still a few pieces missing for it to be widely accessible to all users (so they can run the test
suite at any time and report problems), but it now works for the developers. We are working hard on
continuing to improve it, as this was probably IPython’s major Achilles heel (the lack of proper test
coverage made it effectively impossible to do large-scale refactoring). The full test suite can now be
run using the iptest command line program.

• The notion of a task has been completely reworked. An ITask interface has been created. This
interface defines the methods that tasks need to implement. These methods are now respon-
sible for things like submitting tasks and processing results. There are two basic task types:
IPython.kernel.task.StringTask (this is the old Task object, but renamed) and the new
IPython.kernel.task.MapTask, which is based on a function.

• A new interface, IPython.kernel.mapper.IMapper has been defined to standardize the
idea of a map method. This interface has a single map method that has the same syntax as the
built-in map. We have also defined a mapper factory interface that creates objects that implement
IPython.kernel.mapper.IMapper for different controllers. Both the multiengine and task
controller now have mapping capabilties.

• The parallel function capabilities have been reworks. The major changes are that i) there is now an
@parallel magic that creates parallel functions, ii) the syntax for mulitple variable follows that of
map, iii) both the multiengine and task controller now have a parallel function implementation.

• All of the parallel computing capabilities from ipython1-dev have been merged into IPython proper.
This resulted in the following new subpackages: IPython.kernel, IPython.kernel.core,
IPython.config, IPython.tools and IPython.testing.

• As part of merging in the ipython1-dev stuff, the setup.py script and friends have been completely
refactored. Now we are checking for dependencies using the approach that matplotlib uses.

• The documentation has been completely reorganized to accept the documentation from ipython1-dev.

• We have switched to using Foolscap for all of our network protocols in IPython.kernel. This
gives us secure connections that are both encrypted and authenticated.

• We have a brand new COPYING.txt files that describes the IPython license and copyright. The biggest
change is that we are putting “The IPython Development Team” as the copyright holder. We give more
details about exactly what this means in this file. All developer should read this and use the new banner
in all IPython source code files.

• sh profile: ./foo runs foo as system command, no need to do !./foo anymore

• String lists now support sort(field, nums = True) method (to easily sort system command
output). Try it with a = !ls -l ; a.sort(1, nums=1).

• ‘%cpaste foo’ now assigns the pasted block as string list, instead of string

42 Chapter 2. What’s new in IPython

IPython Documentation, Release 0.11

• The ipcluster script now run by default with no security. This is done because the main usage of the
script is for starting things on localhost. Eventually when ipcluster is able to start things on other
hosts, we will put security back.

• ‘cd –foo’ searches directory history for string foo, and jumps to that dir. Last part of dir name is
checked first. If no matches for that are found, look at the whole path.

Bug fixes

• The Windows installer has been fixed. Now all IPython scripts have .bat versions created. Also, the
Start Menu shortcuts have been updated.

• The colors escapes in the multiengine client are now turned off on win32 as they don’t print correctly.

• The IPython.kernel.scripts.ipengine script was exec’ing mpi_import_statement incor-
rectly, which was leading the engine to crash when mpi was enabled.

• A few subpackages had missing __init__.py files.

• The documentation is only created if Sphinx is found. Previously, the setup.py script would fail if
it was missing.

• Greedy cd completion has been disabled again (it was enabled in 0.8.4) as it caused problems on
certain platforms.

Backwards incompatible changes

• The clusterfile options of the ipcluster command has been removed as it was not working and
it will be replaced soon by something much more robust.

• The IPython.kernel configuration now properly find the user’s IPython directory.

• In ipapi, the make_user_ns() function has been replaced with make_user_namespaces(),
to support dict subclasses in namespace creation.

• IPython.kernel.client.Task has been renamed IPython.kernel.client.StringTask
to make way for new task types.

• The keyword argument style has been renamed dist in scatter, gather and map.

• Renamed the values that the rename dist keyword argument can have from ‘basic’ to ‘b’.

• IPython has a larger set of dependencies if you want all of its capabilities. See the setup.py script for
details.

• The constructors for IPython.kernel.client.MultiEngineClient and
IPython.kernel.client.TaskClient no longer take the (ip,port) tuple. Instead they
take the filename of a file that contains the FURL for that client. If the FURL file is in your
IPYTHONDIR, it will be found automatically and the constructor can be left empty.

• The asynchronous clients in IPython.kernel.asyncclient are now created using the factory
functions get_multiengine_client() and get_task_client(). These return a Deferred
to the actual client.

2.5. 0.9 series 43

IPython Documentation, Release 0.11

• The command line options to ipcontroller and ipengine have changed to reflect the new Foolscap
network protocol and the FURL files. Please see the help for these scripts for details.

• The configuration files for the kernel have changed because of the Foolscap stuff. If you were using
custom config files before, you should delete them and regenerate new ones.

Changes merged in from IPython1

New features

• Much improved setup.py and setupegg.py scripts. Because Twisted and zope.interface are
now easy installable, we can declare them as dependencies in our setupegg.py script.

• IPython is now compatible with Twisted 2.5.0 and 8.x.

• Added a new example of how to use ipython1.kernel.asynclient.

• Initial draft of a process daemon in ipython1.daemon. This has not been merged into IPython
and is still in ipython1-dev.

• The TaskController now has methods for getting the queue status.

• The TaskResult objects not have information about how long the task took to run.

• We are attaching additional attributes to exceptions (_ipython_*) that we use to carry additional
info around.

• New top-level module asyncclient that has asynchronous versions (that return deferreds) of the
client classes. This is designed to users who want to run their own Twisted reactor.

• All the clients in client are now based on Twisted. This is done by running the Twisted reactor in
a separate thread and using the blockingCallFromThread() function that is in recent versions
of Twisted.

• Functions can now be pushed/pulled to/from engines using
MultiEngineClient.push_function() and MultiEngineClient.pull_function().

• Gather/scatter are now implemented in the client to reduce the work load of the controller and improve
performance.

• Complete rewrite of the IPython docuementation. All of the documentation from the IPython website
has been moved into docs/source as restructured text documents. PDF and HTML documentation are
being generated using Sphinx.

• New developer oriented documentation: development guidelines and roadmap.

• Traditional ChangeLog has been changed to a more useful changes.txt file that is organized by
release and is meant to provide something more relevant for users.

Bug fixes

• Created a proper MANIFEST.in file to create source distributions.

44 Chapter 2. What’s new in IPython

IPython Documentation, Release 0.11

• Fixed a bug in the MultiEngine interface. Previously, multi-engine actions were being collected
with a DeferredList with fireononeerrback=1. This meant that methods were returning
before all engines had given their results. This was causing extremely odd bugs in certain cases. To
fix this problem, we have 1) set fireononeerrback=0 to make sure all results (or exceptions) are
in before returning and 2) introduced a CompositeError exception that wraps all of the engine
exceptions. This is a huge change as it means that users will have to catch CompositeError rather
than the actual exception.

Backwards incompatible changes

• All names have been renamed to conform to the lowercase_with_underscore convention. This will
require users to change references to all names like queueStatus to queue_status.

• Previously, methods like MultiEngineClient.push() and
MultiEngineClient.push() used *args and **kwargs. This was becoming a prob-
lem as we weren’t able to introduce new keyword arguments into the API. Now these methods simple
take a dict or sequence. This has also allowed us to get rid of the *All methods like pushAll()
and pullAll(). These things are now handled with the targets keyword argument that defaults
to ’all’.

• The MultiEngineClient.magicTargets has been renamed to
MultiEngineClient.targets.

• All methods in the MultiEngine interface now accept the optional keyword argument block.

• Renamed RemoteController to MultiEngineClient and TaskController to
TaskClient.

• Renamed the top-level module from api to client.

• Most methods in the multiengine interface now raise a CompositeError exception that wraps the
user’s exceptions, rather than just raising the raw user’s exception.

• Changed the setupNS and resultNames in the Task class to push and pull.

2.6 0.8 series

2.6.1 Release 0.8.4

This was a quick release to fix an unfortunate bug that slipped into the 0.8.3 release. The --twisted
option was disabled, as it turned out to be broken across several platforms.

2.6.2 Release 0.8.3

• pydb is now disabled by default (due to %run -d problems). You can enable it by passing -pydb
command line argument to IPython. Note that setting it in config file won’t work.

2.6. 0.8 series 45

IPython Documentation, Release 0.11

2.6.3 Release 0.8.2

• %pushd/%popd behave differently; now “pushd /foo” pushes CURRENT directory and jumps to /foo.
The current behaviour is closer to the documented behaviour, and should not trip anyone.

2.6.4 Older releases

Changes in earlier releases of IPython are described in the older file ChangeLog. Please refer to this
document for details.

46 Chapter 2. What’s new in IPython

CHAPTER

THREE

INSTALLATION

3.1 Overview

This document describes the steps required to install IPython. IPython is organized into a number of sub-
packages, each of which has its own dependencies. All of the subpackages come with IPython, so you don’t
need to download and install them separately. However, to use a given subpackage, you will need to install
all of its dependencies.

Please let us know if you have problems installing IPython or any of its dependencies. Officially, IPython
requires Python version 2.6 or 2.7. There is an experimental port of IPython for Python3 on GitHub

Warning: Officially, IPython supports Python versions 2.6 and 2.7.
IPython 0.11 has a hard syntax dependency on 2.6, and will no longer work on Python <= 2.5.

Some of the installation approaches use the setuptools package and its easy_install command line pro-
gram. In many scenarios, this provides the most simple method of installing IPython and its dependencies.
It is not required though. More information about setuptools can be found on its website.

Note: On Windows, IPython does depend on setuptools, and it is recommended that you install the
distribute package, which improves setuptools and fixes various bugs.

We hope to remove this dependency in 0.12.

More general information about installing Python packages can be found in Python’s documentation at
http://www.python.org/doc/.

3.2 Quickstart

If you have setuptools installed and you are on OS X or Linux (not Windows), the following will
download and install IPython and the main optional dependencies:

$ easy_install ipython[zmq,test]

This will get pyzmq, which is needed for IPython’s parallel computing features as well as the nose package,
which will enable you to run IPython’s test suite.

47

https://github.com/ipython/ipython-py3k
http://www.python.org/doc/

IPython Documentation, Release 0.11

To run IPython’s test suite, use the iptest command:

$ iptest

Read on for more specific details and instructions for Windows.

3.3 Installing IPython itself

Given a properly built Python, the basic interactive IPython shell will work with no external dependencies.
However, some Python distributions (particularly on Windows and OS X), don’t come with a working
readlinemodule. The IPython shell will work without readline, but will lack many features that users
depend on, such as tab completion and command line editing. If you install IPython with setuptools,
(e.g. with easy_install), then the appropriate readline for your platform will be installed. See below for
details of how to make sure you have a working readline.

3.3.1 Installation using easy_install

If you have setuptools installed, the easiest way of getting IPython is to simple use easy_install:

$ easy_install ipython

That’s it.

3.3.2 Installation from source

If you don’t want to use easy_install, or don’t have it installed, just grab the latest stable build of IPython
from here. Then do the following:

$ tar -xzf ipython.tar.gz
$ cd ipython
$ python setup.py install

If you are installing to a location (like /usr/local) that requires higher permissions, you may need to
run the last command with sudo.

3.3.3 Windows

Note: On Windows, IPython requires setuptools or distribute.

We hope to remove this dependency in 0.12.

There are a few caveats for Windows users. The main issue is that a basic python setup.py install
approach won’t create .bat file or Start Menu shortcuts, which most users want. To get an installation with
these, you can use any of the following alternatives:

1. Install using easy_install.

48 Chapter 3. Installation

https://github.com/ipython/ipython/downloads

IPython Documentation, Release 0.11

2. Install using our binary .exe Windows installer, which can be found here

3. Install from source, but using setuptools (python setupegg.py install).

IPython by default runs in a terminal window, but the normal terminal application supplied by Microsoft
Windows is very primitive. You may want to download the excellent and free Console application instead,
which is a far superior tool. You can even configure Console to give you by default an IPython tab, which is
very convenient to create new IPython sessions directly from the working terminal.

Note for Windows 64 bit users: you may have difficulties with the stock installer on 64 bit systems; in this
case (since we currently do not have 64 bit builds of the Windows installer) your best bet is to install from
source with the setuptools method indicated in #3 above. See this bug report for further details.

3.3.4 Installing the development version

It is also possible to install the development version of IPython from our Git source code repository. To do
this you will need to have Git installed on your system. Then just do:

$ git clone https://github.com/ipython/ipython.git
$ cd ipython
$ python setup.py install

Again, this last step on Windows won’t create .bat files or Start Menu shortcuts, so you will have to use
one of the other approaches listed above.

Some users want to be able to follow the development branch as it changes. If you have setuptools
installed, this is easy. Simply replace the last step by:

$ python setupegg.py develop

This creates links in the right places and installs the command line script to the appropriate places. Then, if
you want to update your IPython at any time, just do:

$ git pull

3.4 Basic optional dependencies

There are a number of basic optional dependencies that most users will want to get. These are:

• readline (for command line editing, tab completion, etc.)

• nose (to run the IPython test suite)

• pexpect (to use things like irunner)

If you are comfortable installing these things yourself, have at it, otherwise read on for more details.

3.4.1 readline

In principle, all Python distributions should come with a working readline module. But, reality is not
quite that simple. There are two common situations where you won’t have a working readline module:

3.4. Basic optional dependencies 49

http://ipython.scipy.org/dist/
http://sourceforge.net/projects/console
https://bugs.launchpad.net/ipython/+bug/382214
http://git-scm.com/

IPython Documentation, Release 0.11

• If you are using the built-in Python on Mac OS X.

• If you are running Windows, which doesn’t have a readline module.

When IPython is installed with setuptools, (e.g. with easy_install), readline is added as a dependency
on OS X, and PyReadline on Windows, and will be installed on your system. However, if you do not use
setuptools, you may have to install one of these packages yourself.

On OS X, the built-in Python doesn’t not have readline because of license issues. Starting with OS
X 10.5 (Leopard), Apple’s built-in Python has a BSD-licensed not-quite-compatible readline replacement.
As of IPython 0.9, many of the issues related to the differences between readline and libedit seem to have
been resolved. While you may find libedit sufficient, we have occasional reports of bugs with it and several
developers who use OS X as their main environment consider libedit unacceptable for productive, regular
use with IPython.

Therefore, we strongly recommend that on OS X you get the full readline module. We will not consider
completion/history problems to be bugs for IPython if you are using libedit.

To get a working readline module, just do (with setuptools installed):

$ easy_install readline

Note: Other Python distributions on OS X (such as fink, MacPorts and the official python.org binaries)
already have readline installed so you likely don’t have to do this step.

If needed, the readline egg can be build and installed from source (see the wiki page at
http://ipython.scipy.org/moin/InstallationOSXLeopard).

On Windows, you will need the PyReadline module. PyReadline is a separate, Windows only implementa-
tion of readline that uses native Windows calls through ctypes. The easiest way of installing PyReadline
is you use the binary installer available here.

3.4.2 nose

To run the IPython test suite you will need the nose package. Nose provides a great way of sniffing out and
running all of the IPython tests. The simplest way of getting nose, is to use easy_install:

$ easy_install nose

Another way of getting this is to do:

$ easy_install ipython[test]

For more installation options, see the nose website.

Once you have nose installed, you can run IPython’s test suite using the iptest command:

$ iptest

50 Chapter 3. Installation

http://ipython.scipy.org/moin/InstallationOSXLeopard
https://launchpad.net/pyreadline/+download
http://somethingaboutorange.com/mrl/projects/nose/

IPython Documentation, Release 0.11

3.4.3 pexpect

The pexpect package is used in IPython’s irunner script, as well as for managing subprocesses [pexpect].
IPython now includes a version of pexpect in IPython.external, but if you have installed pexpect,
IPython will use that instead. On Unix platforms (including OS X), just do:

$ easy_install pexpect

Windows users are out of luck as pexpect does not run there.

3.5 Dependencies for IPython.parallel (parallel computing)

IPython.kernel has been replaced by IPython.parallel, which uses ZeroMQ for all communi-
cation.

IPython.parallel provides a nice architecture for parallel computing. The main focus of this architecture is
on interactive parallel computing. These features require just one package: pyzmq. See the next section for
pyzmq details.

On a Unix style platform (including OS X), if you want to use setuptools, you can just do:

$ easy_install ipython[zmq] # will include pyzmq

Security in IPython.parallel is provided by SSH tunnels. By default, Linux and OSX clients will use the
shell ssh command, but on Windows, we also support tunneling with paramiko [paramiko].

3.6 Dependencies for IPython.zmq

3.6.1 pyzmq

IPython 0.11 introduced some new functionality, including a two-process execution model using ZeroMQ
for communication [ZeroMQ]. The Python bindings to ZeroMQ are found in the pyzmq project, which is
easy_install-able once you have ZeroMQ installed. If you are on Python 2.6 or 2.7 on OSX, or 2.7 on
Windows, pyzmq has eggs that include ZeroMQ itself.

IPython.zmq depends on pyzmq >= 2.1.4.

3.7 Dependencies for ipython qtconsole (new GUI)

3.7.1 Qt

Also with 0.11, a new GUI was added using the work in IPython.zmq, which can be launched with
ipython qtconsole. The GUI is built on Qt, and works with either PyQt, which can be installed from
the PyQt website, or PySide, from Nokia.

3.5. Dependencies for IPython.parallel (parallel computing) 51

http://www.riverbankcomputing.co.uk/
http://www.pyside.org/

IPython Documentation, Release 0.11

3.7.2 pygments

The syntax-highlighting in ipython qtconsole is done with the pygments project, which is
easy_install-able [pygments].

52 Chapter 3. Installation

CHAPTER

FOUR

USING IPYTHON FOR INTERACTIVE
WORK

4.1 Introducing IPython

You don’t need to know anything beyond Python to start using IPython – just type commands as you would
at the standard Python prompt. But IPython can do much more than the standard prompt. Some key features
are described here. For more information, check the tips page, or look at examples in the IPython cookbook.

If you’ve never used Python before, you might want to look at the official tutorial or an alternative, Dive into
Python.

4.1.1 Tab completion

Tab completion, especially for attributes, is a convenient way to explore the structure of any object you’re
dealing with. Simply type object_name.<TAB> to view the object’s attributes (see the readline section
for more). Besides Python objects and keywords, tab completion also works on file and directory names.

4.1.2 Exploring your objects

Typing object_name? will print all sorts of details about any object, including docstrings, function
definition lines (for call arguments) and constructor details for classes. To get specific information on an
object, you can use the magic commands %pdoc, %pdef, %psource and %pfile

4.1.3 Magic functions

IPython has a set of predefined ‘magic functions’ that you can call with a command line style syntax. These
include:

• Functions that work with code: %run, %edit, %save, %macro, %recall, etc.

• Functions which affect the shell: %colors, %xmode, %autoindent, etc.

• Other functions such as %reset, %timeit or %paste.

53

http://ipython.scipy.org/moin/Cookbook
http://docs.python.org/tutorial/
http://diveintopython.org/toc/index.html
http://diveintopython.org/toc/index.html

IPython Documentation, Release 0.11

You can always call these using the % prefix, and if you’re typing one on a line by itself, you can omit even
that:

run thescript.py

For more details on any magic function, call %somemagic? to read its docstring. To see all the available
magic functions, call %lsmagic.

Running and Editing

The %run magic command allows you to run any python script and load all of its data directly into the
interactive namespace. Since the file is re-read from disk each time, changes you make to it are reflected
immediately (unlike imported modules, which have to be specifically reloaded). IPython also includes
dreload, a recursive reload function.

%run has special flags for timing the execution of your scripts (-t), or for running them under the control of
either Python’s pdb debugger (-d) or profiler (-p).

The %edit command gives a reasonable approximation of multiline editing, by invoking your favorite editor
on the spot. IPython will execute the code you type in there as if it were typed interactively.

Debugging

After an exception occurs, you can call %debug to jump into the Python debugger (pdb) and examine the
problem. Alternatively, if you call %pdb, IPython will automatically start the debugger on any uncaught
exception. You can print variables, see code, execute statements and even walk up and down the call stack
to track down the true source of the problem. Running programs with %run and pdb active can be an
efficient way to develop and debug code, in many cases eliminating the need for print statements or external
debugging tools.

You can also step through a program from the beginning by calling %run -d theprogram.py.

4.1.4 History

IPython stores both the commands you enter, and the results it produces. You can easily go through previous
commands with the up- and down-arrow keys, or access your history in more sophisticated ways.

Input and output history are kept in variables called In and Out, which can both be indexed by the prompt
number on which they occurred, e.g. In[4]. The last three objects in output history are also kept in
variables named _, __ and ___.

You can use the %history magic function to examine past input and output. Input history from previous
sessions is saved in a database, and IPython can be configured to save output history.

Several other magic functions can use your input history, including %edit, %rerun, %recall, %macro,
%save and %pastebin. You can use a standard format to refer to lines:

%pastebin 3 18-20 ~1/1-5

This will take line 3 and lines 18 to 20 from the current session, and lines 1-5 from the previous session.

54 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

4.1.5 System shell commands

To run any command at the system shell, simply prefix it with !, e.g.:

!ping www.bbc.co.uk

You can capture the output into a Python list, e.g.: files = !ls. To pass the values of Python variables
or expressions to system commands, prefix them with $: !grep -rF $pattern ipython/*. See our
shell section for more details.

Define your own system aliases

It’s convenient to have aliases to the system commands you use most often. This allows you to work
seamlessly from inside IPython with the same commands you are used to in your system shell. IPython
comes with some pre-defined aliases and a complete system for changing directories, both via a stack (see
%pushd, %popd and %dhist) and via direct %cd. The latter keeps a history of visited directories and allows
you to go to any previously visited one.

4.1.6 Configuration

Much of IPython can be tweaked through configuration. To get started, use the command
ipython profile create to produce the default config files. These will be placed in
~/.ipython/profile_default or ~/.config/ipython/profile_default, and contain
comments explaining what the various options do.

Profiles allow you to use IPython for different tasks, keeping separate config files and history for each one.
More details in the profiles section.

4.2 IPython Tips & Tricks

The IPython cookbook details more things you can do with IPython.

4.2.1 Embed IPython in your programs

A few lines of code are enough to load a complete IPython inside your own programs, giving you the ability
to work with your data interactively after automatic processing has been completed. See the embedding
section.

4.2.2 Run doctests

Run your doctests from within IPython for development and debugging. The special %doctest_mode com-
mand toggles a mode where the prompt, output and exceptions display matches as closely as possible that
of the default Python interpreter. In addition, this mode allows you to directly paste in code that contains
leading ‘>>>’ prompts, even if they have extra leading whitespace (as is common in doctest files). This

4.2. IPython Tips & Tricks 55

http://ipython.scipy.org/moin/Cookbook

IPython Documentation, Release 0.11

combined with the %history -t call to see your translated history allows for an easy doctest workflow,
where you can go from doctest to interactive execution to pasting into valid Python code as needed.

4.2.3 Use IPython to present interactive demos

Use the IPython.lib.demo.Demo class to load any Python script as an interactive demo. With a
minimal amount of simple markup, you can control the execution of the script, stopping as needed. See here
for more.

4.2.4 Suppress output

Put a ‘;’ at the end of a line to suppress the printing of output. This is useful when doing calculations which
generate long output you are not interested in seeing.

4.2.5 Lightweight ‘version control’

When you call %editwith no arguments, IPython opens an empty editor with a temporary file, and it returns
the contents of your editing session as a string variable. Thanks to IPython’s output caching mechanism,
this is automatically stored:

In [1]: %edit

IPython will make a temporary file named: /tmp/ipython_edit_yR-HCN.py

Editing... done. Executing edited code...

hello - this is a temporary file

Out[1]: "print ’hello - this is a temporary file’\n"

Now, if you call %edit -p, IPython tries to open an editor with the same data as the last time you used
%edit. So if you haven’t used %edit in the meantime, this same contents will reopen; however, it will be
done in a new file. This means that if you make changes and you later want to find an old version, you
can always retrieve it by using its output number, via ‘%edit _NN’, where NN is the number of the output
prompt.

Continuing with the example above, this should illustrate this idea:

In [2]: edit -p

IPython will make a temporary file named: /tmp/ipython_edit_nA09Qk.py

Editing... done. Executing edited code...

hello - now I made some changes

Out[2]: "print ’hello - now I made some changes’\n"

In [3]: edit _1

56 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

IPython will make a temporary file named: /tmp/ipython_edit_gy6-zD.py

Editing... done. Executing edited code...

hello - this is a temporary file

IPython version control at work :)

Out[3]: "print ’hello - this is a temporary file’\nprint ’IPython version control at work :)’\n"

This section was written after a contribution by Alexander Belchenko on the IPython user list.

4.3 IPython reference

4.3.1 Command-line usage

You start IPython with the command:

$ ipython [options] files

If invoked with no options, it executes all the files listed in sequence and drops you into the interpreter while
still acknowledging any options you may have set in your ipython_config.py. This behavior is different from
standard Python, which when called as python -i will only execute one file and ignore your configuration
setup.

Please note that some of the configuration options are not available at the command line, simply because
they are not practical here. Look into your ipythonrc configuration file for details on those. This file is
typically installed in the IPYTHON_DIR directory. For Linux users, this will be $HOME/.config/ipython,
and for other users it will be $HOME/.ipython. For Windows users, $HOME resolves to C:\Documents and
Settings\YourUserName in most instances.

Eventloop integration

Previously IPython had command line options for controlling GUI event loop integration (-gthread, -qthread,
-q4thread, -wthread, -pylab). As of IPython version 0.11, these have been removed. Please see the new
%guimagic command or this section for details on the new interface, or specify the gui at the commandline:

$ ipython --gui=qt

Regular Options

After the above threading options have been given, regular options can follow in any order. All options can
be abbreviated to their shortest non-ambiguous form and are case-sensitive. One or two dashes can be used.
Some options have an alternate short form, indicated after a |.

4.3. IPython reference 57

IPython Documentation, Release 0.11

Most options can also be set from your ipythonrc configuration file. See the provided example for more
details on what the options do. Options given at the command line override the values set in the ipythonrc
file.

All options with a [no] prepended can be specified in negated form (–no-option instead of –option) to turn
the feature off.

-h, --help print a help message and exit.

--pylab, pylab=<name> See Matplotlib support for more details.

--autocall=<val> Make IPython automatically call any callable object even if you didn’t
type explicit parentheses. For example, ‘str 43’ becomes ‘str(43)’ automatically. The
value can be ‘0’ to disable the feature, ‘1’ for smart autocall, where it is not applied
if there are no more arguments on the line, and ‘2’ for full autocall, where all callable
objects are automatically called (even if no arguments are present). The default is ‘1’.

--[no-]autoindent Turn automatic indentation on/off.

--[no-]automagic make magic commands automatic (without needing their first charac-
ter to be %). Type %magic at the IPython prompt for more information.

--[no-]autoedit_syntax When a syntax error occurs after editing a file, automatically
open the file to the trouble causing line for convenient fixing.

--[no-]banner Print the initial information banner (default on).

--c=<command> execute the given command string. This is similar to the -c option in the
normal Python interpreter.

--cache-size=<n> size of the output cache (maximum number of entries to hold in mem-
ory). The default is 1000, you can change it permanently in your config file. Setting it to
0 completely disables the caching system, and the minimum value accepted is 20 (if you
provide a value less than 20, it is reset to 0 and a warning is issued) This limit is defined
because otherwise you’ll spend more time re-flushing a too small cache than working.

--classic Gives IPython a similar feel to the classic Python prompt.

--colors=<scheme> Color scheme for prompts and exception reporting. Currently imple-
mented: NoColor, Linux and LightBG.

--[no-]color_info IPython can display information about objects via a set of functions,
and optionally can use colors for this, syntax highlighting source code and various other
elements. However, because this information is passed through a pager (like ‘less’) and
many pagers get confused with color codes, this option is off by default. You can test it
and turn it on permanently in your ipythonrc file if it works for you. As a reference, the
‘less’ pager supplied with Mandrake 8.2 works ok, but that in RedHat 7.2 doesn’t.

Test it and turn it on permanently if it works with your system. The magic function
%color_info allows you to toggle this interactively for testing.

--[no-]debug Show information about the loading process. Very useful to pin down prob-
lems with your configuration files or to get details about session restores.

--[no-]deep_reload IPython can use the deep_reload module which reloads changes
in modules recursively (it replaces the reload() function, so you don’t need to change

58 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

anything to use it). deep_reload() forces a full reload of modules whose code may have
changed, which the default reload() function does not.

When deep_reload is off, IPython will use the normal reload(), but deep_reload will still
be available as dreload(). This feature is off by default [which means that you have both
normal reload() and dreload()].

--editor=<name> Which editor to use with the %edit command. By default, IPython will
honor your EDITOR environment variable (if not set, vi is the Unix default and notepad
the Windows one). Since this editor is invoked on the fly by IPython and is meant for
editing small code snippets, you may want to use a small, lightweight editor here (in case
your default EDITOR is something like Emacs).

--ipython_dir=<name> name of your IPython configuration directory IPYTHON_DIR.
This can also be specified through the environment variable IPYTHON_DIR.

--logfile=<name> specify the name of your logfile.

This implies %logstart at the beginning of your session

generate a log file of all input. The file is named ipython_log.py in your current direc-
tory (which prevents logs from multiple IPython sessions from trampling each other).
You can use this to later restore a session by loading your logfile with ipython --i
ipython_log.py

--logplay=<name>

NOT AVAILABLE in 0.11

you can replay a previous log. For restoring a session as close as possible to the
state you left it in, use this option (don’t just run the logfile). With -logplay, IPython
will try to reconstruct the previous working environment in full, not just execute the
commands in the logfile.

When a session is restored, logging is automatically turned on again with the name
of the logfile it was invoked with (it is read from the log header). So once you’ve
turned logging on for a session, you can quit IPython and reload it as many times as
you want and it will continue to log its history and restore from the beginning every
time.

Caveats: there are limitations in this option. The history variables _i*,_* and _dh
don’t get restored properly. In the future we will try to implement full session saving
by writing and retrieving a ‘snapshot’ of the memory state of IPython. But our first
attempts failed because of inherent limitations of Python’s Pickle module, so this
may have to wait.

--[no-]messages Print messages which IPython collects about its startup process (default
on).

--[no-]pdb Automatically call the pdb debugger after every uncaught exception. If you are
used to debugging using pdb, this puts you automatically inside of it after any call (either
in IPython or in code called by it) which triggers an exception which goes uncaught.

--[no-]pprint ipython can optionally use the pprint (pretty printer) module for displaying
results. pprint tends to give a nicer display of nested data structures. If you like it, you can

4.3. IPython reference 59

IPython Documentation, Release 0.11

turn it on permanently in your config file (default off).

--profile=<name>

Select the IPython profile by name.

This is a quick way to keep and load multiple config files for different tasks,
especially if you use the include option of config files. You can keep a ba-
sic IPYTHON_DIR/profile_default/ipython_config.py file and then
have other ‘profiles’ which include this one and load extra things for particular tasks.
For example:

1. $IPYTHON_DIR/profile_default : load basic things you always want.

2. $IPYTHON_DIR/profile_math : load (1) and basic math-related modules.

3. $IPYTHON_DIR/profile_numeric : load (1) and Numeric and plotting mod-
ules.

Since it is possible to create an endless loop by having circular file inclusions,
IPython will stop if it reaches 15 recursive inclusions.

InteractiveShell.prompt_in1=<string>

Specify the string used for input prompts. Note that if you are using numbered
prompts, the number is represented with a ‘#’ in the string. Don’t forget to quote
strings with spaces embedded in them. Default: ‘In [#]:’. The prompts section
discusses in detail all the available escapes to customize your prompts.

InteractiveShell.prompt_in2=<string> Similar to the previous option, but used
for the continuation prompts. The special sequence ‘D’ is similar to ‘#’, but with all digits
replaced dots (so you can have your continuation prompt aligned with your input prompt).
Default: ‘ .D.:’ (note three spaces at the start for alignment with ‘In [#]’).

InteractiveShell.prompt_out=<string> String used for output prompts, also
uses numbers like prompt_in1. Default: ‘Out[#]:’

--quick start in bare bones mode (no config file loaded).

config_file=<name> name of your IPython resource configuration file.
Normally IPython loads ipython_config.py (from current directory) or
IPYTHON_DIR/profile_default.

If the loading of your config file fails, IPython starts with a bare bones configuration (no
modules loaded at all).

--[no-]readline use the readline library, which is needed to support name completion
and command history, among other things. It is enabled by default, but may cause prob-
lems for users of X/Emacs in Python comint or shell buffers.

Note that X/Emacs ‘eterm’ buffers (opened with M-x term) support IPython’s readline
and syntax coloring fine, only ‘emacs’ (M-x shell and C-c !) buffers do not.

--TerminalInteractiveShell.screen_length=<n> number of lines of your
screen. This is used to control printing of very long strings. Strings longer than this
number of lines will be sent through a pager instead of directly printed.

60 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

The default value for this is 0, which means IPython will auto-detect your screen size every
time it needs to print certain potentially long strings (this doesn’t change the behavior of
the ‘print’ keyword, it’s only triggered internally). If for some reason this isn’t working
well (it needs curses support), specify it yourself. Otherwise don’t change the default.

--TerminalInteractiveShell.separate_in=<string>

separator before input prompts. Default: ‘n’

--TerminalInteractiveShell.separate_out=<string> separator before out-
put prompts. Default: nothing.

--TerminalInteractiveShell.separate_out2=<string> separator after out-
put prompts. Default: nothing. For these three options, use the value 0 to specify no
separator.

--nosep shorthand for setting the above separators to empty strings.

Simply removes all input/output separators.

--init allows you to initialize a profile dir for configuration when you install a new version of
IPython or want to use a new profile. Since new versions may include new command line
options or example files, this copies updated config files. Note that you should probably
use %upgrade instead,it’s a safer alternative.

--version print version information and exit.

--xmode=<modename>

Mode for exception reporting.

Valid modes: Plain, Context and Verbose.

• Plain: similar to python’s normal traceback printing.

• Context: prints 5 lines of context source code around each line in the traceback.

• Verbose: similar to Context, but additionally prints the variables currently vis-
ible where the exception happened (shortening their strings if too long). This
can potentially be very slow, if you happen to have a huge data structure whose
string representation is complex to compute. Your computer may appear to
freeze for a while with cpu usage at 100%. If this occurs, you can cancel the
traceback with Ctrl-C (maybe hitting it more than once).

4.3.2 Interactive use

IPython is meant to work as a drop-in replacement for the standard interactive interpreter. As such, any
code which is valid python should execute normally under IPython (cases where this is not true should be
reported as bugs). It does, however, offer many features which are not available at a standard python prompt.
What follows is a list of these.

4.3. IPython reference 61

IPython Documentation, Release 0.11

Caution for Windows users

Windows, unfortunately, uses the ‘\’ character as a path separator. This is a terrible choice, because ‘\’ also
represents the escape character in most modern programming languages, including Python. For this reason,
using ‘/’ character is recommended if you have problems with \. However, in Windows commands ‘/’ flags
options, so you can not use it for the root directory. This means that paths beginning at the root must be
typed in a contrived manner like: %copy \opt/foo/bar.txt \tmp

Magic command system

IPython will treat any line whose first character is a % as a special call to a ‘magic’ function. These allow
you to control the behavior of IPython itself, plus a lot of system-type features. They are all prefixed with a
% character, but parameters are given without parentheses or quotes.

Example: typing %cd mydir changes your working directory to ‘mydir’, if it exists.

If you have ‘automagic’ enabled (as it by default), you don’t need to type in the % explicitly. IPython
will scan its internal list of magic functions and call one if it exists. With automagic on you can then just
type cd mydir to go to directory ‘mydir’. The automagic system has the lowest possible precedence in
name searches, so defining an identifier with the same name as an existing magic function will shadow it for
automagic use. You can still access the shadowed magic function by explicitly using the % character at the
beginning of the line.

An example (with automagic on) should clarify all this:

In [1]: cd ipython # %cd is called by automagic

/home/fperez/ipython

In [2]: cd=1 # now cd is just a variable

In [3]: cd .. # and doesn’t work as a function anymore

File "<console>", line 1

cd ..

^

SyntaxError: invalid syntax

In [4]: %cd .. # but %cd always works

/home/fperez

In [5]: del cd # if you remove the cd variable

In [6]: cd ipython # automagic can work again

/home/fperez/ipython

62 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

You can define your own magic functions to extend the system. The following example defines a new magic
command, %impall:

ip = get_ipython()

def doimp(self, arg):

ip = self.api

ip.ex("import %s; reload(%s); from %s import *" % (

arg,arg,arg)

)

ip.expose_magic(’impall’, doimp)

Type %magic for more information, including a list of all available magic functions at any time and their
docstrings. You can also type %magic_function_name? (see below <dynamic_object_info for information
on the ‘?’ system) to get information about any particular magic function you are interested in.

The API documentation for the IPython.core.magic module contains the full docstrings of all cur-
rently available magic commands.

Access to the standard Python help

As of Python 2.1, a help system is available with access to object docstrings and the Python manuals.
Simply type ‘help’ (no quotes) to access it. You can also type help(object) to obtain information about
a given object, and help(‘keyword’) for information on a keyword. As noted here, you need to properly
configure your environment variable PYTHONDOCS for this feature to work correctly.

Dynamic object information

Typing ?word or word? prints detailed information about an object. If certain strings in the object are
too long (docstrings, code, etc.) they get snipped in the center for brevity. This system gives access vari-
able types and values, full source code for any object (if available), function prototypes and other useful
information.

Typing ??word or word?? gives access to the full information without snipping long strings. Long strings
are sent to the screen through the less pager if longer than the screen and printed otherwise. On systems
lacking the less command, IPython uses a very basic internal pager.

The following magic functions are particularly useful for gathering information about your working envi-
ronment. You can get more details by typing %magic or querying them individually (use %function_name?
with or without the %), this is just a summary:

• %pdoc <object>: Print (or run through a pager if too long) the docstring for an object. If the given
object is a class, it will print both the class and the constructor docstrings.

• %pdef <object>: Print the definition header for any callable object. If the object is a class, print the
constructor information.

4.3. IPython reference 63

IPython Documentation, Release 0.11

• %psource <object>: Print (or run through a pager if too long) the source code for an object.

• %pfile <object>: Show the entire source file where an object was defined via a pager, opening it at
the line where the object definition begins.

• %who/%whos: These functions give information about identifiers you have defined interactively
(not things you loaded or defined in your configuration files). %who just prints a list of identifiers and
%whos prints a table with some basic details about each identifier.

Note that the dynamic object information functions (?/??, %pdoc, %pfile, %pdef, %psource) give you
access to documentation even on things which are not really defined as separate identifiers. Try for example
typing {}.get? or after doing import os, type os.path.abspath??.

Readline-based features

These features require the GNU readline library, so they won’t work if your Python installation lacks readline
support. We will first describe the default behavior IPython uses, and then how to change it to suit your
preferences.

Command line completion

At any time, hitting TAB will complete any available python commands or variable names, and show you a
list of the possible completions if there’s no unambiguous one. It will also complete filenames in the current
directory if no python names match what you’ve typed so far.

Search command history

IPython provides two ways for searching through previous input and thus reduce the need for repetitive
typing:

1. Start typing, and then use Ctrl-p (previous,up) and Ctrl-n (next,down) to search through only the
history items that match what you’ve typed so far. If you use Ctrl-p/Ctrl-n at a blank prompt, they just
behave like normal arrow keys.

2. Hit Ctrl-r: opens a search prompt. Begin typing and the system searches your history for lines that
contain what you’ve typed so far, completing as much as it can.

Persistent command history across sessions

IPython will save your input history when it leaves and reload it next time you restart it. By default, the
history file is named $IPYTHON_DIR/profile_<name>/history.sqlite. This allows you to keep separate
histories related to various tasks: commands related to numerical work will not be clobbered by a system
shell history, for example.

64 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

Autoindent

IPython can recognize lines ending in ‘:’ and indent the next line, while also un-indenting automatically
after ‘raise’ or ‘return’.

This feature uses the readline library, so it will honor your ~/.inputrc configuration (or whatever file
your INPUTRC variable points to). Adding the following lines to your .inputrc file can make indent-
ing/unindenting more convenient (M-i indents, M-u unindents):

$if Python
"\M-i": " "
"\M-u": "\d\d\d\d"
$endif

Note that there are 4 spaces between the quote marks after “M-i” above.

Warning: Setting the above indents will cause problems with unicode text entry in the terminal.

Warning: Autoindent is ON by default, but it can cause problems with the pasting of multi-line indented
code (the pasted code gets re-indented on each line). A magic function %autoindent allows you to toggle
it on/off at runtime. You can also disable it permanently on in your ipython_config.py file (set
TerminalInteractiveShell.autoindent=False).
If you want to paste multiple lines, it is recommended that you use %paste.

Customizing readline behavior

All these features are based on the GNU readline library, which has an extremely customizable interface.
Normally, readline is configured via a file which defines the behavior of the library; the details of the
syntax for this can be found in the readline documentation available with your system or on the Internet.
IPython doesn’t read this file (if it exists) directly, but it does support passing to readline valid options via
a simple interface. In brief, you can customize readline by setting the following options in your ipythonrc
configuration file (note that these options can not be specified at the command line):

• readline_parse_and_bind: this option can appear as many times as you want, each time defining a
string to be executed via a readline.parse_and_bind() command. The syntax for valid commands of
this kind can be found by reading the documentation for the GNU readline library, as these commands
are of the kind which readline accepts in its configuration file.

• readline_remove_delims: a string of characters to be removed from the default word-delimiters list
used by readline, so that completions may be performed on strings which contain them. Do not change
the default value unless you know what you’re doing.

• readline_omit__names: when tab-completion is enabled, hitting <tab> after a ‘.’ in a name will
complete all attributes of an object, including all the special methods whose names include double
underscores (like __getitem__ or __class__). If you’d rather not see these names by default, you can
set this option to 1. Note that even when this option is set, you can still see those names by explicitly
typing a _ after the period and hitting <tab>: ‘name._<tab>’ will always complete attribute names
starting with ‘_’.

4.3. IPython reference 65

IPython Documentation, Release 0.11

This option is off by default so that new users see all attributes of any objects they are dealing with.

You will find the default values along with a corresponding detailed explanation in your ipythonrc file.

Session logging and restoring

You can log all input from a session either by starting IPython with the command line switch
--logfile=foo.py (see here) or by activating the logging at any moment with the magic function
%logstart.

Log files can later be reloaded by running them as scripts and IPython will attempt to ‘replay’ the log by
executing all the lines in it, thus restoring the state of a previous session. This feature is not quite perfect,
but can still be useful in many cases.

The log files can also be used as a way to have a permanent record of any code you wrote while experiment-
ing. Log files are regular text files which you can later open in your favorite text editor to extract code or to
‘clean them up’ before using them to replay a session.

The %logstart function for activating logging in mid-session is used as follows:

%logstart [log_name [log_mode]]

If no name is given, it defaults to a file named ‘ipython_log.py’ in your current working directory, in ‘rotate’
mode (see below).

‘%logstart name’ saves to file ‘name’ in ‘backup’ mode. It saves your history up to that point and then
continues logging.

%logstart takes a second optional parameter: logging mode. This can be one of (note that the modes are
given unquoted):

• [over:] overwrite existing log_name.

• [backup:] rename (if exists) to log_name~ and start log_name.

• [append:] well, that says it.

• [rotate:] create rotating logs log_name.1~, log_name.2~, etc.

The %logoff and %logon functions allow you to temporarily stop and resume logging to a file which had
previously been started with %logstart. They will fail (with an explanation) if you try to use them before
logging has been started.

System shell access

Any input line beginning with a ! character is passed verbatim (minus the !, of course) to the underlying
operating system. For example, typing !ls will run ‘ls’ in the current directory.

Manual capture of command output

If the input line begins with two exclamation marks, !!, the command is executed but its output is captured
and returned as a python list, split on newlines. Any output sent by the subprocess to standard error is printed

66 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

separately, so that the resulting list only captures standard output. The !! syntax is a shorthand for the %sx
magic command.

Finally, the %sc magic (short for ‘shell capture’) is similar to %sx, but allowing more fine-grained control
of the capture details, and storing the result directly into a named variable. The direct use of %sc is now
deprecated, and you should ise the var = !cmd syntax instead.

IPython also allows you to expand the value of python variables when making system calls. Any python
variable or expression which you prepend with $ will get expanded before the system call is made:

In [1]: pyvar=’Hello world’
In [2]: !echo "A python variable: $pyvar"
A python variable: Hello world

If you want the shell to actually see a literal $, you need to type it twice:

In [3]: !echo "A system variable: $$HOME"
A system variable: /home/fperez

You can pass arbitrary expressions, though you’ll need to delimit them with {} if there is ambiguity as to
the extent of the expression:

In [5]: x=10
In [6]: y=20
In [13]: !echo $x+y
10+y
In [7]: !echo ${x+y}
30

Even object attributes can be expanded:

In [12]: !echo $sys.argv
[/home/fperez/usr/bin/ipython]

System command aliases

The %alias magic function and the alias option in the ipythonrc configuration file allow you to define magic
functions which are in fact system shell commands. These aliases can have parameters.

%alias alias_name cmd defines ‘alias_name’ as an alias for ‘cmd’

Then, typing %alias_name params will execute the system command ‘cmd params’ (from your under-
lying operating system).

You can also define aliases with parameters using %s specifiers (one per parameter). The following example
defines the %parts function as an alias to the command ‘echo first %s second %s’ where each %s will be
replaced by a positional parameter to the call to %parts:

In [1]: alias parts echo first %s second %s
In [2]: %parts A B
first A second B
In [3]: %parts A
Incorrect number of arguments: 2 expected.
parts is an alias to: ’echo first %s second %s’

4.3. IPython reference 67

IPython Documentation, Release 0.11

If called with no parameters, %alias prints the table of currently defined aliases.

The %rehashx magic allows you to load your entire $PATH as ipython aliases. See its docstring for further
details.

Recursive reload

The dreload function does a recursive reload of a module: changes made to the module since you imported
will actually be available without having to exit.

Verbose and colored exception traceback printouts

IPython provides the option to see very detailed exception tracebacks, which can be especially useful when
debugging large programs. You can run any Python file with the %run function to benefit from these detailed
tracebacks. Furthermore, both normal and verbose tracebacks can be colored (if your terminal supports it)
which makes them much easier to parse visually.

See the magic xmode and colors functions for details (just type %magic).

These features are basically a terminal version of Ka-Ping Yee’s cgitb module, now part of the standard
Python library.

Input caching system

IPython offers numbered prompts (In/Out) with input and output caching (also referred to as ‘input history’).
All input is saved and can be retrieved as variables (besides the usual arrow key recall), in addition to the
%rep magic command that brings a history entry up for editing on the next command line.

The following GLOBAL variables always exist (so don’t overwrite them!):

• _i, _ii, _iii: store previous, next previous and next-next previous inputs.

• In, _ih : a list of all inputs; _ih[n] is the input from line n. If you overwrite In with a variable of your
own, you can remake the assignment to the internal list with a simple In=_ih.

Additionally, global variables named _i<n> are dynamically created (<n> being the prompt counter), so
_i<n> == _ih[<n>] == In[<n>].

For example, what you typed at prompt 14 is available as _i14, _ih[14] and In[14].

This allows you to easily cut and paste multi line interactive prompts by printing them out: they print like
a clean string, without prompt characters. You can also manipulate them like regular variables (they are
strings), modify or exec them (typing exec _i9 will re-execute the contents of input prompt 9.

You can also re-execute multiple lines of input easily by using the magic %macro function (which automates
the process and allows re-execution without having to type ‘exec’ every time). The macro system also allows
you to re-execute previous lines which include magic function calls (which require special processing). Type
%macro? for more details on the macro system.

A history function %hist allows you to see any part of your input history by printing a range of the _i
variables.

68 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

You can also search (‘grep’) through your history by typing %hist -g somestring. This is handy for
searching for URLs, IP addresses, etc. You can bring history entries listed by ‘%hist -g’ up for editing with
the %recall command, or run them immediately with %rerun.

Output caching system

For output that is returned from actions, a system similar to the input cache exists but using _ instead of
_i. Only actions that produce a result (NOT assignments, for example) are cached. If you are familiar with
Mathematica, IPython’s _ variables behave exactly like Mathematica’s % variables.

The following GLOBAL variables always exist (so don’t overwrite them!):

• [_] (a single underscore) : stores previous output, like Python’s default interpreter.

• [__] (two underscores): next previous.

• [___] (three underscores): next-next previous.

Additionally, global variables named _<n> are dynamically created (<n> being the prompt counter), such
that the result of output <n> is always available as _<n> (don’t use the angle brackets, just the number, e.g.
_21).

These global variables are all stored in a global dictionary (not a list, since it only has entries for lines which
returned a result) available under the names _oh and Out (similar to _ih and In). So the output from line 12
can be obtained as _12, Out[12] or _oh[12]. If you accidentally overwrite the Out variable you can recover
it by typing ‘Out=_oh’ at the prompt.

This system obviously can potentially put heavy memory demands on your system, since it prevents Python’s
garbage collector from removing any previously computed results. You can control how many results are
kept in memory with the option (at the command line or in your ipythonrc file) cache_size. If you set it to
0, the whole system is completely disabled and the prompts revert to the classic ‘>>>’ of normal Python.

Directory history

Your history of visited directories is kept in the global list _dh, and the magic %cd command can be used
to go to any entry in that list. The %dhist command allows you to view this history. Do cd -<TAB> to
conveniently view the directory history.

Automatic parentheses and quotes

These features were adapted from Nathan Gray’s LazyPython. They are meant to allow less typing for
common situations.

Automatic parentheses

Callable objects (i.e. functions, methods, etc) can be invoked like this (notice the commas between the
arguments):

4.3. IPython reference 69

IPython Documentation, Release 0.11

>>> callable_ob arg1, arg2, arg3

and the input will be translated to this:

-> callable_ob(arg1, arg2, arg3)

You can force automatic parentheses by using ‘/’ as the first character of a line. For example:

>>> /globals # becomes ’globals()’

Note that the ‘/’ MUST be the first character on the line! This won’t work:

>>> print /globals # syntax error

In most cases the automatic algorithm should work, so you should rarely need to explicitly invoke /. One
notable exception is if you are trying to call a function with a list of tuples as arguments (the parenthesis
will confuse IPython):

In [1]: zip (1,2,3),(4,5,6) # won’t work

but this will work:

In [2]: /zip (1,2,3),(4,5,6)
---> zip ((1,2,3),(4,5,6))
Out[2]= [(1, 4), (2, 5), (3, 6)]

IPython tells you that it has altered your command line by displaying the new command line preceded by
->. e.g.:

In [18]: callable list
----> callable (list)

Automatic quoting

You can force automatic quoting of a function’s arguments by using ‘,’ or ‘;’ as the first character of a line.
For example:

>>> ,my_function /home/me # becomes my_function("/home/me")

If you use ‘;’ instead, the whole argument is quoted as a single string (while ‘,’ splits on whitespace):

>>> ,my_function a b c # becomes my_function("a","b","c")

>>> ;my_function a b c # becomes my_function("a b c")

Note that the ‘,’ or ‘;’ MUST be the first character on the line! This won’t work:

>>> x = ,my_function /home/me # syntax error

70 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

4.3.3 IPython as your default Python environment

Python honors the environment variable PYTHONSTARTUP and will execute at startup the file referenced
by this variable. If you put at the end of this file the following two lines of code:

from IPython.frontend.terminal.ipapp import launch_new_instance
launch_new_instance()
raise SystemExit

then IPython will be your working environment anytime you start Python. The raise SystemExit is
needed to exit Python when it finishes, otherwise you’ll be back at the normal Python ‘>>>’ prompt.

This is probably useful to developers who manage multiple Python versions and don’t want to have corre-
spondingly multiple IPython versions. Note that in this mode, there is no way to pass IPython any command-
line options, as those are trapped first by Python itself.

4.3.4 Embedding IPython

It is possible to start an IPython instance inside your own Python programs. This allows you to evaluate
dynamically the state of your code, operate with your variables, analyze them, etc. Note however that any
changes you make to values while in the shell do not propagate back to the running code, so it is safe to
modify your values because you won’t break your code in bizarre ways by doing so.

This feature allows you to easily have a fully functional python environment for doing object introspection
anywhere in your code with a simple function call. In some cases a simple print statement is enough, but if
you need to do more detailed analysis of a code fragment this feature can be very valuable.

It can also be useful in scientific computing situations where it is common to need to do some automatic,
computationally intensive part and then stop to look at data, plots, etc. Opening an IPython instance will
give you full access to your data and functions, and you can resume program execution once you are done
with the interactive part (perhaps to stop again later, as many times as needed).

The following code snippet is the bare minimum you need to include in your Python programs for this to
work (detailed examples follow later):

from IPython import embed

embed() # this call anywhere in your program will start IPython

You can run embedded instances even in code which is itself being run at the IPython interactive prompt
with ‘%run <filename>’. Since it’s easy to get lost as to where you are (in your top-level IPython or in
your embedded one), it’s a good idea in such cases to set the in/out prompts to something different for the
embedded instances. The code examples below illustrate this.

You can also have multiple IPython instances in your program and open them separately, for example with
different options for data presentation. If you close and open the same instance multiple times, its prompt
counters simply continue from each execution to the next.

Please look at the docstrings in the embed module for more details on the use of this system.

The following sample file illustrating how to use the embedding functionality is provided in the examples
directory as example-embed.py. It should be fairly self-explanatory:

4.3. IPython reference 71

IPython Documentation, Release 0.11

#!/usr/bin/env python

"""An example of how to embed an IPython shell into a running program.

Please see the documentation in the IPython.Shell module for more details.

The accompanying file example-embed-short.py has quick code fragments for
embedding which you can cut and paste in your code once you understand how
things work.

The code in this file is deliberately extra-verbose, meant for learning."""

The basics to get you going:

IPython sets the __IPYTHON__ variable so you can know if you have nested
copies running.

Try running this code both at the command line and from inside IPython (with
%run example-embed.py)
from IPython.config.loader import Config
try:

get_ipython
except NameError:

nested = 0
cfg = Config()
shell_config = cfg.InteractiveShellEmbed
shell_config.prompt_in1 = ’In <\\#>: ’
shell_config.prompt_in2 = ’ .\\D.: ’
shell_config.prompt_out = ’Out<\\#>: ’

else:
print "Running nested copies of IPython."
print "The prompts for the nested copy have been modified"
cfg = Config()
nested = 1

First import the embeddable shell class
from IPython.frontend.terminal.embed import InteractiveShellEmbed

Now create an instance of the embeddable shell. The first argument is a
string with options exactly as you would type them if you were starting
IPython at the system command line. Any parameters you want to define for
configuration can thus be specified here.
ipshell = InteractiveShellEmbed(config=cfg,

banner1 = ’Dropping into IPython’,
exit_msg = ’Leaving Interpreter, back to program.’)

Make a second instance, you can have as many as you want.
cfg2 = cfg.copy()
shell_config = cfg2.InteractiveShellEmbed
shell_config.prompt_in1 = ’In2<\\#>: ’
if not nested:

shell_config.prompt_in1 = ’In2<\\#>: ’
shell_config.prompt_in2 = ’ .\\D.: ’

72 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

shell_config.prompt_out = ’Out<\\#>: ’
ipshell2 = InteractiveShellEmbed(config=cfg,

banner1 = ’Second IPython instance.’)

print ’\nHello. This is printed from the main controller program.\n’

You can then call ipshell() anywhere you need it (with an optional
message):
ipshell(’***Called from top level. ’

’Hit Ctrl-D to exit interpreter and continue program.\n’
’Note that if you use %kill_embedded, you can fully deactivate\n’
’This embedded instance so it will never turn on again’)

print ’\nBack in caller program, moving along...\n’

#---
More details:

InteractiveShellEmbed instances don’t print the standard system banner and
messages. The IPython banner (which actually may contain initialization
messages) is available as get_ipython().banner in case you want it.

InteractiveShellEmbed instances print the following information everytime they
start:

- A global startup banner.

- A call-specific header string, which you can use to indicate where in the
execution flow the shell is starting.

They also print an exit message every time they exit.

Both the startup banner and the exit message default to None, and can be set
either at the instance constructor or at any other time with the
by setting the banner and exit_msg attributes.

The shell instance can be also put in ’dummy’ mode globally or on a per-call
basis. This gives you fine control for debugging without having to change
code all over the place.

The code below illustrates all this.

This is how the global banner and exit_msg can be reset at any point
ipshell.banner = ’Entering interpreter - New Banner’
ipshell.exit_msg = ’Leaving interpreter - New exit_msg’

def foo(m):
s = ’spam’
ipshell(’***In foo(). Try %whos, or print s or m:’)
print ’foo says m = ’,m

def bar(n):

4.3. IPython reference 73

IPython Documentation, Release 0.11

s = ’eggs’
ipshell(’***In bar(). Try %whos, or print s or n:’)
print ’bar says n = ’,n

Some calls to the above functions which will trigger IPython:
print ’Main program calling foo("eggs")\n’
foo(’eggs’)

The shell can be put in ’dummy’ mode where calls to it silently return. This
allows you, for example, to globally turn off debugging for a program with a
single call.
ipshell.dummy_mode = True
print ’\nTrying to call IPython which is now "dummy":’
ipshell()
print ’Nothing happened...’
The global ’dummy’ mode can still be overridden for a single call
print ’\nOverriding dummy mode manually:’
ipshell(dummy=False)

Reactivate the IPython shell
ipshell.dummy_mode = False

print ’You can even have multiple embedded instances:’
ipshell2()

print ’\nMain program calling bar("spam")\n’
bar(’spam’)

print ’Main program finished. Bye!’

#********************** End of file <example-embed.py> ***********************

Once you understand how the system functions, you can use the following code fragments in your programs
which are ready for cut and paste:

"""Quick code snippets for embedding IPython into other programs.

See example-embed.py for full details, this file has the bare minimum code for
cut and paste use once you understand how to use the system."""

#---
This code loads IPython but modifies a few things if it detects it’s running
embedded in another IPython session (helps avoid confusion)

try:
get_ipython

except NameError:
banner=exit_msg=’’

else:
banner = ’*** Nested interpreter ***’
exit_msg = ’*** Back in main IPython ***’

First import the embed function

74 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

from IPython.frontend.terminal.embed import InteractiveShellEmbed
Now create the IPython shell instance. Put ipshell() anywhere in your code
where you want it to open.
ipshell = InteractiveShellEmbed(banner1=banner, exit_msg=exit_msg)

#---
This code will load an embeddable IPython shell always with no changes for
nested embededings.

from IPython import embed
Now embed() will open IPython anywhere in the code.

#---
This code loads an embeddable shell only if NOT running inside
IPython. Inside IPython, the embeddable shell variable ipshell is just a
dummy function.

try:
get_ipython

except NameError:
from IPython.frontend.terminal.embed import InteractiveShellEmbed
ipshell = InteractiveShellEmbed()
Now ipshell() will open IPython anywhere in the code

else:
Define a dummy ipshell() so the same code doesn’t crash inside an
interactive IPython
def ipshell(): pass

#******************* End of file <example-embed-short.py> ********************

4.3.5 Using the Python debugger (pdb)

Running entire programs via pdb

pdb, the Python debugger, is a powerful interactive debugger which allows you to step through code, set
breakpoints, watch variables, etc. IPython makes it very easy to start any script under the control of pdb,
regardless of whether you have wrapped it into a ‘main()’ function or not. For this, simply type ‘%run -d
myscript’ at an IPython prompt. See the %run command’s documentation (via ‘%run?’ or in Sec. magic for
more details, including how to control where pdb will stop execution first.

For more information on the use of the pdb debugger, read the included pdb.doc file (part of the standard
Python distribution). On a stock Linux system it is located at /usr/lib/python2.3/pdb.doc, but the easiest way
to read it is by using the help() function of the pdb module as follows (in an IPython prompt):

In [1]: import pdb
In [2]: pdb.help()

This will load the pdb.doc document in a file viewer for you automatically.

4.3. IPython reference 75

IPython Documentation, Release 0.11

Automatic invocation of pdb on exceptions

IPython, if started with the -pdb option (or if the option is set in your rc file) can call the Python pdb debugger
every time your code triggers an uncaught exception. This feature can also be toggled at any time with the
%pdb magic command. This can be extremely useful in order to find the origin of subtle bugs, because pdb
opens up at the point in your code which triggered the exception, and while your program is at this point
‘dead’, all the data is still available and you can walk up and down the stack frame and understand the origin
of the problem.

Furthermore, you can use these debugging facilities both with the embedded IPython mode and without
IPython at all. For an embedded shell (see sec. Embedding), simply call the constructor with ‘–pdb’ in the
argument string and automatically pdb will be called if an uncaught exception is triggered by your code.

For stand-alone use of the feature in your programs which do not use IPython at all, put the following lines
toward the top of your ‘main’ routine:

import sys
from IPython.core import ultratb
sys.excepthook = ultratb.FormattedTB(mode=’Verbose’,
color_scheme=’Linux’, call_pdb=1)

The mode keyword can be either ‘Verbose’ or ‘Plain’, giving either very detailed or normal tracebacks
respectively. The color_scheme keyword can be one of ‘NoColor’, ‘Linux’ (default) or ‘LightBG’. These
are the same options which can be set in IPython with -colors and -xmode.

This will give any of your programs detailed, colored tracebacks with automatic invocation of pdb.

4.3.6 Extensions for syntax processing

This isn’t for the faint of heart, because the potential for breaking things is quite high. But it can be a very
powerful and useful feature. In a nutshell, you can redefine the way IPython processes the user input line to
accept new, special extensions to the syntax without needing to change any of IPython’s own code.

In the IPython/extensions directory you will find some examples supplied, which we will briefly describe
now. These can be used ‘as is’ (and both provide very useful functionality), or you can use them as a starting
point for writing your own extensions.

Pasting of code starting with Python or IPython prompts

IPython is smart enough to filter out input prompts, be they plain Python ones (>>> and ...) or IPython
ones (In [N]: and ‘‘ ...:‘‘). You can therefore copy and paste from existing interactive sessions without
worry.

The following is a ‘screenshot’ of how things work, copying an example from the standard Python tutorial:

In [1]: >>> # Fibonacci series:

In [2]: ... # the sum of two elements defines the next

In [3]: ... a, b = 0, 1

76 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

In [4]: >>> while b < 10:
...: ... print b
...: ... a, b = b, a+b
...:

1
1
2
3
5
8

And pasting from IPython sessions works equally well:

In [1]: In [5]: def f(x):
...: ...: "A simple function"
...: ...: return x**2
...: ...:

In [2]: f(3)
Out[2]: 9

4.3.7 GUI event loop support

New in version 0.11: The %gui magic and IPython.lib.inputhook.

Warning: All GUI support with the %gui magic, described in this section, applies only to the plain
terminal IPython, not to the Qt console. The Qt console currently only supports GUI interaction via the
--pylab flag, as explained in the matplotlib section.
We intend to correct this limitation as soon as possible, you can track our progress at issue #643_.

IPython has excellent support for working interactively with Graphical User Interface (GUI) toolkits, such
as wxPython, PyQt4, PyGTK and Tk. This is implemented using Python’s builtin PyOSInputHook hook.
This implementation is extremely robust compared to our previous thread-based version. The advantages of
this are:

• GUIs can be enabled and disabled dynamically at runtime.

• The active GUI can be switched dynamically at runtime.

• In some cases, multiple GUIs can run simultaneously with no problems.

• There is a developer API in IPython.lib.inputhook for customizing all of these things.

For users, enabling GUI event loop integration is simple. You simple use the %gui magic as follows:

%gui [GUINAME]

With no arguments, %gui removes all GUI support. Valid GUINAME arguments are wx, qt4, gtk and tk.

Thus, to use wxPython interactively and create a running wx.App object, do:

%gui wx

4.3. IPython reference 77

IPython Documentation, Release 0.11

For information on IPython’s Matplotlib integration (and the pylab mode) see this section.

For developers that want to use IPython’s GUI event loop integration in the form of a library, these capabili-
ties are exposed in library form in the IPython.lib.inputhook and IPython.lib.guisupport
modules. Interested developers should see the module docstrings for more information, but there are a few
points that should be mentioned here.

First, the PyOSInputHook approach only works in command line settings where readline is activated. As
indicated in the warning above, we plan on improving the integration of GUI event loops with the standalone
kernel used by the Qt console and other frontends (issue 643).

Second, when using the PyOSInputHook approach, a GUI application should not start its event loop.
Instead all of this is handled by the PyOSInputHook. This means that applications that are meant to be
used both in IPython and as standalone apps need to have special code to detects how the application is being
run. We highly recommend using IPython’s support for this. Since the details vary slightly between toolkits,
we point you to the various examples in our source directory docs/examples/lib that demonstrate
these capabilities.

Warning: The WX version of this is currently broken. While --pylab=wx works fine, standalone
WX apps do not. See https://github.com/ipython/ipython/issues/645 for details of our progress on this
issue.

Third, unlike previous versions of IPython, we no longer “hijack” (replace them with no-ops) the event
loops. This is done to allow applications that actually need to run the real event loops to do so. This is often
needed to process pending events at critical points.

Finally, we also have a number of examples in our source directory docs/examples/lib that demon-
strate these capabilities.

PyQt and PySide

When you use --gui=qt or --pylab=qt, IPython can work with either PyQt4 or PySide. There are
three options for configuration here, because PyQt4 has two APIs for QString and QVariant - v1, which is
the default on Python 2, and the more natural v2, which is the only API supported by PySide. v2 is also the
default for PyQt4 on Python 3. IPython’s code for the QtConsole uses v2, but you can still use any interface
in your code, since the Qt frontend is in a different process.

The default will be to import PyQt4 without configuration of the APIs, thus matching what most applications
would expect. It will fall back of PySide if PyQt4 is unavailable.

If specified, IPython will respect the environment variable QT_API used by ETS. ETS 4.0 also works with
both PyQt4 and PySide, but it requires PyQt4 to use its v2 API. So if QT_API=pyside PySide will be
used, and if QT_API=pyqt then PyQt4 will be used with the v2 API for QString and QVariant, so ETS
codes like MayaVi will also work with IPython.

If you launch IPython in pylab mode with ipython --pylab=qt, then IPython will ask matplotlib
which Qt library to use (only if QT_API is not set), via the ‘backend.qt4’ rcParam. If matplotlib is version
1.0.1 or older, then IPython will always use PyQt4 without setting the v2 APIs, since neither v2 PyQt nor
PySide work.

78 Chapter 4. Using IPython for interactive work

https://github.com/ipython/ipython/issues/643
https://github.com/ipython/ipython/issues/645

IPython Documentation, Release 0.11

Warning: Note that this means for ETS 4 to work with PyQt4, QT_API must be set to work with
IPython’s qt integration, because otherwise PyQt4 will be loaded in an incompatible mode.
It also means that you must not have QT_API set if you want to use --gui=qt with code that requires
PyQt4 API v1.

4.3.8 Plotting with matplotlib

Matplotlib provides high quality 2D and 3D plotting for Python. Matplotlib can produce plots on screen
using a variety of GUI toolkits, including Tk, PyGTK, PyQt4 and wxPython. It also provides a number
of commands useful for scientific computing, all with a syntax compatible with that of the popular Matlab
program.

To start IPython with matplotlib support, use the --pylab switch. If no arguments are given, IPython
will automatically detect your choice of matplotlib backend. You can also request a specific backend with
--pylab=backend, where backend must be one of: ‘tk’, ‘qt’, ‘wx’, ‘gtk’, ‘osx’.

4.3.9 Interactive demos with IPython

IPython ships with a basic system for running scripts interactively in sections, useful when presenting code
to audiences. A few tags embedded in comments (so that the script remains valid Python code) divide a
file into separate blocks, and the demo can be run one block at a time, with IPython printing (with syntax
highlighting) the block before executing it, and returning to the interactive prompt after each block. The
interactive namespace is updated after each block is run with the contents of the demo’s namespace.

This allows you to show a piece of code, run it and then execute interactively commands based on the
variables just created. Once you want to continue, you simply execute the next block of the demo. The
following listing shows the markup necessary for dividing a script into sections for execution as a demo:

"""A simple interactive demo to illustrate the use of IPython’s Demo class.

Any python script can be run as a demo, but that does little more than showing
it on-screen, syntax-highlighted in one shot. If you add a little simple
markup, you can stop at specified intervals and return to the ipython prompt,
resuming execution later.
"""

print ’Hello, welcome to an interactive IPython demo.’
print ’Executing this block should require confirmation before proceeding,’
print ’unless auto_all has been set to true in the demo object’

The mark below defines a block boundary, which is a point where IPython will
stop execution and return to the interactive prompt.
Note that in actual interactive execution,
<demo> --- stop ---

x = 1
y = 2

<demo> --- stop ---

4.3. IPython reference 79

http://matplotlib.sourceforge.net

IPython Documentation, Release 0.11

the mark below makes this block as silent
<demo> silent

print ’This is a silent block, which gets executed but not printed.’

<demo> --- stop ---
<demo> auto
print ’This is an automatic block.’
print ’It is executed without asking for confirmation, but printed.’
z = x+y

print ’z=’,x

<demo> --- stop ---
This is just another normal block.
print ’z is now:’, z

print ’bye!’

In order to run a file as a demo, you must first make a Demo object out of it. If the file is named myscript.py,
the following code will make a demo:

from IPython.lib.demo import Demo

mydemo = Demo(’myscript.py’)

This creates the mydemo object, whose blocks you run one at a time by simply calling the object with no
arguments. If you have autocall active in IPython (the default), all you need to do is type:

mydemo

and IPython will call it, executing each block. Demo objects can be restarted, you can move forward or
back skipping blocks, re-execute the last block, etc. Simply use the Tab key on a demo object to see its
methods, and call ‘?’ on them to see their docstrings for more usage details. In addition, the demo module
itself contains a comprehensive docstring, which you can access via:

from IPython.lib import demo

demo?

Limitations: It is important to note that these demos are limited to fairly simple uses. In particular, you
can not put division marks in indented code (loops, if statements, function definitions, etc.) Supporting
something like this would basically require tracking the internal execution state of the Python interpreter, so
only top-level divisions are allowed. If you want to be able to open an IPython instance at an arbitrary point
in a program, you can use IPython’s embedding facilities, see IPython.embed() for details.

80 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

4.4 IPython as a system shell

Warning: As of the 0.11 version of IPython, most of the APIs used by the shell profile have been
changed, so the profile currently does very little beyond changing the IPython prompt. To help restore
the shell profile to past functionality described here, the old code is found in IPython/deathrow,
which needs to be updated to use the APIs in 0.11.

4.4.1 Overview

The ‘sh’ profile optimizes IPython for system shell usage. Apart from certain job control functionality that
is present in unix (ctrl+z does “suspend”), the sh profile should provide you with most of the functionality
you use daily in system shell, and more. Invoke IPython in ‘sh’ profile by doing ‘ipython -p sh’, or (in
win32) by launching the “pysh” shortcut in start menu.

If you want to use the features of sh profile as your defaults (which might be a good idea if you use other
profiles a lot of the time but still want the convenience of sh profile), add import ipy_profile_sh to
your $IPYTHON_DIR/ipy_user_conf.py.

The ‘sh’ profile is different from the default profile in that:

• Prompt shows the current directory

• Spacing between prompts and input is more compact (no padding with empty lines). The startup
banner is more compact as well.

• System commands are directly available (in alias table) without requesting %rehashx - however, if
you install new programs along your PATH, you might want to run %rehashx to update the persistent
alias table

• Macros are stored in raw format by default. That is, instead of ‘_ip.system(“cat foo”), the macro will
contain text ‘cat foo’)

• Autocall is in full mode

• Calling “up” does “cd ..”

The ‘sh’ profile is different from the now-obsolete (and unavailable) ‘pysh’ profile in that:

• ‘$$var = command’ and ‘$var = command’ syntax is not supported

• anymore. Use ‘var = !command’ instead (incidentally, this is

• available in all IPython profiles). Note that !!command will

• work.

4.4.2 Aliases

All of your $PATH has been loaded as IPython aliases, so you should be able to type any normal system
command and have it executed. See %alias? and %unalias? for details on the alias facilities. See also
%rehashx? for details on the mechanism used to load $PATH.

4.4. IPython as a system shell 81

IPython Documentation, Release 0.11

4.4.3 Directory management

Since each command passed by ipython to the underlying system is executed in a subshell which exits
immediately, you can NOT use !cd to navigate the filesystem.

IPython provides its own builtin ‘%cd’ magic command to move in the filesystem (the % is not required
with automagic on). It also maintains a list of visited directories (use %dhist to see it) and allows direct
switching to any of them. Type ‘cd?’ for more details.

%pushd, %popd and %dirs are provided for directory stack handling.

4.4.4 Enabled extensions

Some extensions, listed below, are enabled as default in this profile.

envpersist

%env can be used to “remember” environment variable manipulations. Examples:

%env - Show all environment variables
%env VISUAL=jed - set VISUAL to jed
%env PATH+=;/foo - append ;foo to PATH
%env PATH+=;/bar - also append ;bar to PATH
%env PATH-=/wbin; - prepend /wbin; to PATH
%env -d VISUAL - forget VISUAL persistent val
%env -p - print all persistent env modifications

ipy_which

%which magic command. Like ‘which’ in unix, but knows about ipython aliases.

Example:

[C:/ipython]|14> %which st
st -> start .
[C:/ipython]|15> %which d
d -> dir /w /og /on
[C:/ipython]|16> %which cp
cp -> cp

== c:\bin\cp.exe
c:\bin\cp.exe

ipy_app_completers

Custom tab completers for some apps like svn, hg, bzr, apt-get. Try ‘apt-get install <TAB>’ in de-
bian/ubuntu.

82 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

ipy_rehashdir

Allows you to add system command aliases for commands that are not along your path. Let’s say that you
just installed Putty and want to be able to invoke it without adding it to path, you can create the alias for it
with rehashdir:

[~]|22> cd c:/opt/PuTTY/
[c:opt/PuTTY]|23> rehashdir .

<23> [’pageant’, ’plink’, ’pscp’, ’psftp’, ’putty’, ’puttygen’, ’unins000’]

Now, you can execute any of those commams directly:

[c:opt/PuTTY]|24> cd
[~]|25> putty

(the putty window opens).

If you want to store the alias so that it will always be available, do ‘%store putty’. If you want to %store all
these aliases persistently, just do it in a for loop:

[~]|27> for a in _23:
|..> %store $a
|..>
|..>

Alias stored: pageant (0, ’c:\\opt\\PuTTY\\pageant.exe’)
Alias stored: plink (0, ’c:\\opt\\PuTTY\\plink.exe’)
Alias stored: pscp (0, ’c:\\opt\\PuTTY\\pscp.exe’)
Alias stored: psftp (0, ’c:\\opt\\PuTTY\\psftp.exe’)
...

mglob

Provide the magic function %mglob, which makes it easier (than the ‘find’ command) to collect (possibly
recursive) file lists. Examples:

[c:/ipython]|9> mglob *.py
[c:/ipython]|10> mglob *.py rec:*.txt
[c:/ipython]|19> workfiles = %mglob !.svn/ !.hg/ !*_Data/ !*.bak rec:.

Note that the first 2 calls will put the file list in result history (_, _9, _10), and the last one will assign it to
‘workfiles’.

4.4.5 Prompt customization

The sh profile uses the following prompt configurations:

o.prompt_in1= r’\C_LightBlue[\C_LightCyan\Y2\C_LightBlue]\C_Green|\#>’
o.prompt_in2= r’\C_Green|\C_LightGreen\D\C_Green>’

You can change the prompt configuration to your liking by editing ipy_user_conf.py.

4.4. IPython as a system shell 83

IPython Documentation, Release 0.11

4.4.6 String lists

String lists (IPython.utils.text.SList) are handy way to process output from system commands. They are
produced by var = !cmd syntax.

First, we acquire the output of ‘ls -l’:

[Q:doc/examples]|2> lines = !ls -l
==

[’total 23’,
’-rw-rw-rw- 1 ville None 1163 Sep 30 2006 example-demo.py’,
’-rw-rw-rw- 1 ville None 1927 Sep 30 2006 example-embed-short.py’,
’-rwxrwxrwx 1 ville None 4606 Sep 1 17:15 example-embed.py’,
’-rwxrwxrwx 1 ville None 1017 Sep 30 2006 example-gnuplot.py’,
’-rwxrwxrwx 1 ville None 339 Jun 11 18:01 extension.py’,
’-rwxrwxrwx 1 ville None 113 Dec 20 2006 seteditor.py’,
’-rwxrwxrwx 1 ville None 245 Dec 12 2006 seteditor.pyc’]

Now, let’s take a look at the contents of ‘lines’ (the first number is the list element number):

[Q:doc/examples]|3> lines
<3> SList (.p, .n, .l, .s, .grep(), .fields() available). Value:

0: total 23
1: -rw-rw-rw- 1 ville None 1163 Sep 30 2006 example-demo.py
2: -rw-rw-rw- 1 ville None 1927 Sep 30 2006 example-embed-short.py
3: -rwxrwxrwx 1 ville None 4606 Sep 1 17:15 example-embed.py
4: -rwxrwxrwx 1 ville None 1017 Sep 30 2006 example-gnuplot.py
5: -rwxrwxrwx 1 ville None 339 Jun 11 18:01 extension.py
6: -rwxrwxrwx 1 ville None 113 Dec 20 2006 seteditor.py
7: -rwxrwxrwx 1 ville None 245 Dec 12 2006 seteditor.pyc

Now, let’s filter out the ‘embed’ lines:

[Q:doc/examples]|4> l2 = lines.grep(’embed’,prune=1)
[Q:doc/examples]|5> l2

<5> SList (.p, .n, .l, .s, .grep(), .fields() available). Value:

0: total 23
1: -rw-rw-rw- 1 ville None 1163 Sep 30 2006 example-demo.py
2: -rwxrwxrwx 1 ville None 1017 Sep 30 2006 example-gnuplot.py
3: -rwxrwxrwx 1 ville None 339 Jun 11 18:01 extension.py
4: -rwxrwxrwx 1 ville None 113 Dec 20 2006 seteditor.py
5: -rwxrwxrwx 1 ville None 245 Dec 12 2006 seteditor.pyc

Now, we want strings having just file names and permissions:

[Q:doc/examples]|6> l2.fields(8,0)
<6> SList (.p, .n, .l, .s, .grep(), .fields() available). Value:

0: total
1: example-demo.py -rw-rw-rw-
2: example-gnuplot.py -rwxrwxrwx
3: extension.py -rwxrwxrwx

84 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

4: seteditor.py -rwxrwxrwx
5: seteditor.pyc -rwxrwxrwx

Note how the line with ‘total’ does not raise IndexError.

If you want to split these (yielding lists), call fields() without arguments:

[Q:doc/examples]|7> _.fields()
<7>

[[’total’],
[’example-demo.py’, ’-rw-rw-rw-’],
[’example-gnuplot.py’, ’-rwxrwxrwx’],
[’extension.py’, ’-rwxrwxrwx’],
[’seteditor.py’, ’-rwxrwxrwx’],
[’seteditor.pyc’, ’-rwxrwxrwx’]]

If you want to pass these separated with spaces to a command (typical for lists if files), use the .s property:

[Q:doc/examples]|13> files = l2.fields(8).s
[Q:doc/examples]|14> files

<14> ’example-demo.py example-gnuplot.py extension.py seteditor.py seteditor.pyc’
[Q:doc/examples]|15> ls $files
example-demo.py example-gnuplot.py extension.py seteditor.py seteditor.pyc

SLists are inherited from normal python lists, so every list method is available:

[Q:doc/examples]|21> lines.append(’hey’)

4.4.7 Real world example: remove all files outside version control

First, capture output of “hg status”:

[Q:/ipython]|28> out = !hg status
==

[’M IPython\\extensions\\ipy_kitcfg.py’,
’M IPython\\extensions\\ipy_rehashdir.py’,

...
’? build\\lib\\IPython\\Debugger.py’,
’? build\\lib\\IPython\\extensions\\InterpreterExec.py’,
’? build\\lib\\IPython\\extensions\\InterpreterPasteInput.py’,

...

(lines starting with ? are not under version control).

[Q:/ipython]|35> junk = out.grep(r’^\?’).fields(1)
[Q:/ipython]|36> junk

<36> SList (.p, .n, .l, .s, .grep(), .fields() availab
...
10: build\bdist.win32\winexe\temp_ctypes.py
11: build\bdist.win32\winexe\temp_hashlib.py
12: build\bdist.win32\winexe\temp_socket.py

Now we can just remove these files by doing ‘rm $junk.s’.

4.4. IPython as a system shell 85

IPython Documentation, Release 0.11

4.4.8 The .s, .n, .p properties

The ‘.s’ property returns one string where lines are separated by single space (for convenient passing to
system commands). The ‘.n’ property return one string where the lines are separated by ‘n’ (i.e. the original
output of the function). If the items in string list are file names, ‘.p’ can be used to get a list of “path” objects
for convenient file manipulation.

4.5 A Qt Console for IPython

We now have a version of IPython, using the new two-process ZeroMQ Kernel, running in a PyQt GUI.
This is a very lightweight widget that largely feels like a terminal, but provides a number of enhancements
only possible in a GUI, such as inline figures, proper multiline editing with syntax highlighting, graphical
calltips, and much more.

To get acquainted with the Qt console, type %guiref to see a quick introduction of its main features.

The Qt frontend has hand-coded emacs-style bindings for text navigation. This is not yet configurable.

Tip: Since the Qt console tries hard to behave like a terminal, by default it immediately executes single
lines of input that are complete. If you want to force multiline input, hit :key:‘Ctrl-Enter‘ at the end of the
first line instead of :key:‘Enter‘, and it will open a new line for input. At any point in a multiline block,
you can force its execution (without having to go to the bottom) with :key:‘Shift-Enter‘.

4.5.1 %loadpy

The new %loadpy magic takes any python script (must end in ‘.py’), and pastes its contents as your next
input, so you can edit it before executing. The script may be on your machine, but you can also specify a
url, and it will download the script from the web. This is particularly useful for playing with examples from
documentation, such as matplotlib.

In [6]: %loadpy http://matplotlib.sourceforge.net/plot_directive/mpl_examples/mplot3d/contour3d_demo.py

In [7]: from mpl_toolkits.mplot3d import axes3d
...: import matplotlib.pyplot as plt
...:
...: fig = plt.figure()
...: ax = fig.add_subplot(111, projection=’3d’)
...: X, Y, Z = axes3d.get_test_data(0.05)
...: cset = ax.contour(X, Y, Z)
...: ax.clabel(cset, fontsize=9, inline=1)
...:
...: plt.show()

86 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

Figure 4.1: The Qt console for IPython, using inline matplotlib plots.

4.5. A Qt Console for IPython 87

IPython Documentation, Release 0.11

4.5.2 Pylab

One of the most exciting features of the new console is embedded matplotlib figures. You can use any
standard matplotlib GUI backend (Except native MacOSX) to draw the figures, and since there is now a
two-process model, there is no longer a conflict between user input and the drawing eventloop.

display()

An additional function, display(), will be added to the global namespace if you specify the --pylab
option at the command line. The IPython display system provides a mechanism for specifying PNG or SVG
(and more) representations of objects for GUI frontends. By default, IPython registers convenient PNG and
SVG renderers for matplotlib figures, so you can embed them in your document by calling display() on
one or more of them. This is especially useful for saving your work.

88 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

In [5]: plot(range(5)) # plots in the matplotlib window

In [6]: display(gcf()) # embeds the current figure in the qtconsole

In [7]: display(*getfigs()) # embeds all active figures in the qtconsole

If you have a reference to a matplotlib figure object, you can always display that specific figure:

In [1]: f = figure()

In [2]: plot(rand(100))
Out[2]: [<matplotlib.lines.Line2D at 0x7fc6ac03dd90>]

In [3]: display(f)

Plot is shown here
In [4]: title(’A title’)
Out[4]: <matplotlib.text.Text at 0x7fc6ac023450>

In [5]: display(f)

--pylab=inline

If you want to have all of your figures embedded in your session, instead of calling display(), you can
specify --pylab=inline when you start the console, and each time you make a plot, it will show up in
your document, as if you had called display(fig)().

4.5.3 Saving and Printing

IPythonQt has the ability to save your current session, as either HTML or XHTML. If you have been
using display() or inline pylab, your figures will be PNG in HTML, or inlined as SVG in XHTML.
PNG images have the option to be either in an external folder, as in many browsers’ “Webpage, Complete”
option, or inlined as well, for a larger, but more portable file.

The widget also exposes the ability to print directly, via the default print shortcut or context menu.

Note: Saving is only available to richtext Qt widgets, which are used by default, but if you pass the
--plain flag, saving will not be available to you.

See these examples of png/html and svg/xhtml output. Note that syntax highlighting does not survive
export. This is a known issue, and is being investigated.

4.5.4 Colors and Highlighting

Terminal IPython has always had some coloring, but never syntax highlighting. There are a few simple color
choices, specified by the colors flag or %colors magic:

4.5. A Qt Console for IPython 89

IPython Documentation, Release 0.11

• LightBG for light backgrounds

• Linux for dark backgrounds

• NoColor for a simple colorless terminal

The Qt widget has full support for the colors flag used in the terminal shell.

The Qt widget, however, has full syntax highlighting as you type, handled by the pygments library. The
style argument exposes access to any style by name that can be found by pygments, and there are sev-
eral already installed. The colors argument, if unspecified, will be guessed based on the chosen style.
Similarly, there are default styles associated with each colors option.

Screenshot of ipython qtconsole --colors=linux, which uses the ‘monokai’ theme by default:

Note: Calling ipython qtconsole -h will show all the style names that pygments can find on your
system.

You can also pass the filename of a custom CSS stylesheet, if you want to do your own coloring, via the
stylesheet argument. The default LightBG stylesheet:

90 Chapter 4. Using IPython for interactive work

IPython Documentation, Release 0.11

QPlainTextEdit, QTextEdit { background-color: white;
color: black ;
selection-background-color: #ccc}

.error { color: red; }

.in-prompt { color: navy; }

.in-prompt-number { font-weight: bold; }

.out-prompt { color: darkred; }

.out-prompt-number { font-weight: bold; }

4.5.5 Fonts

The QtConsole has configurable via the ConsoleWidget. To change these, set the font_family or
font_size traits of the ConsoleWidget. For instance, to use 9pt Anonymous Pro:

$> ipython qtconsole --ConsoleWidget.font_family="Anonymous Pro" --ConsoleWidget.font_size=9

4.5.6 Process Management

With the two-process ZMQ model, the frontend does not block input during execution. This means that
actions can be taken by the frontend while the Kernel is executing, or even after it crashes. The most
basic such command is via ‘Ctrl-.’, which restarts the kernel. This can be done in the middle of a blocking
execution. The frontend can also know, via a heartbeat mechanism, that the kernel has died. This means that
the frontend can safely restart the kernel.

Multiple Consoles

Since the Kernel listens on the network, multiple frontends can connect to it. These do not have to all be qt
frontends - any IPython frontend can connect and run code. When you start ipython qtconsole, there will be
an output line, like:

[IPKernelApp] To connect another client to this kernel, use:
[IPKernelApp] --existing --shell=60690 --iopub=44045 --stdin=38323 --hb=41797

Other frontends can connect to your kernel, and share in the execution. This is great for collaboration. The
-e flag is for ‘external’. Starting other consoles with that flag will not try to start their own, but rather connect
to yours. Ultimately, you will not have to specify each port individually, but for now this copy-paste method
is best.

By default (for security reasons), the kernel only listens on localhost, so you can only connect multiple
frontends to the kernel from your local machine. You can specify to listen on an external interface by
specifying the ip argument:

$> ipython qtconsole --ip=192.168.1.123

If you specify the ip as 0.0.0.0, that refers to all interfaces, so any computer that can see yours can connect
to the kernel.

4.5. A Qt Console for IPython 91

IPython Documentation, Release 0.11

Warning: Since the ZMQ code currently has no security, listening on an external-facing IP is dangerous.
You are giving any computer that can see you on the network the ability to issue arbitrary shell commands
as you on your machine. Be very careful with this.

Stopping Kernels and Consoles

Since there can be many consoles per kernel, the shutdown mechanism and dialog are probably more com-
plicated than you are used to. Since you don’t always want to shutdown a kernel when you close a window,
you are given the option to just close the console window or also close the Kernel and all other windows.
Note that this only refers to all other local windows, as remote Consoles are not allowed to shutdown the
kernel, and shutdowns do not close Remote consoles (to allow for saving, etc.).

Rules:

• Restarting the kernel automatically clears all local Consoles, and prompts remote Consoles about the
reset.

• Shutdown closes all local Consoles, and notifies remotes that the Kernel has been shutdown.

• Remote Consoles may not restart or shutdown the kernel.

4.5.7 Qt and the QtConsole

An important part of working with the QtConsole when you are writing your own Qt code is to remember
that user code (in the kernel) is not in the same process as the frontend. This means that there is not neces-
sarily any Qt code running in the kernel, and under most normal circumstances there isn’t. If, however, you
specify --pylab=qt at the command-line, then there will be a QCoreApplication instance running
in the kernel process along with user-code. To get a reference to this application, do:

from PyQt4 import QtCore
app = QtCore.QCoreApplication.instance()
app will be None if there is no such instance

A common problem listed in the PyQt4 Gotchas is the fact that Python’s garbage collection will destroy Qt
objects (Windows, etc.) once there is no longer a Python reference to them, so you have to hold on to them.
For instance, in:

def make_window():
win = QtGui.QMainWindow()

def make_and_return_window():
win = QtGui.QMainWindow()
return win

make_window() will never draw a window, because garbage collection will destroy it before it is drawn,
whereas make_and_return_window() lets the caller decide when the window object should be de-
stroyed. If, as a developer, you know that you always want your objects to last as long as the process, you
can attach them to the QApplication instance itself:

92 Chapter 4. Using IPython for interactive work

http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/html/gotchas.html#garbage-collection

IPython Documentation, Release 0.11

do this just once:
app = QtCore.QCoreApplication.instance()
app.references = set()
then when you create Windows, add them to the set
def make_window():

win = QtGui.QMainWindow()
app.references.add(win)

Now the QApplication itself holds a reference to win, so it will never be garbage collected until the appli-
cation itself is destroyed.

4.5.8 Regressions

There are some features, where the qt console lags behind the Terminal frontend:

• !cmd input: Due to our use of pexpect, we cannot pass input to subprocesses launched using the
‘!’ escape, so you should never call a command that requires interactive input. For such cases,
use the terminal IPython. This will not be fixed, as abandoning pexpect would significantly
degrade the console experience.

• Use of \b and \r characters in the console: these are control characters that allow the cursor to move
backwards on a line, and are used to display things like in-place progress bars in a terminal. We
currently do not support this, but it is being tracked as issue 629.

4.5. A Qt Console for IPython 93

https://github.com/ipython/ipython/issues/629

IPython Documentation, Release 0.11

94 Chapter 4. Using IPython for interactive work

CHAPTER

FIVE

USING IPYTHON FOR PARALLEL
COMPUTING

5.1 Overview and getting started

5.1.1 Introduction

This section gives an overview of IPython’s sophisticated and powerful architecture for parallel and dis-
tributed computing. This architecture abstracts out parallelism in a very general way, which enables IPython
to support many different styles of parallelism including:

• Single program, multiple data (SPMD) parallelism.

• Multiple program, multiple data (MPMD) parallelism.

• Message passing using MPI.

• Task farming.

• Data parallel.

• Combinations of these approaches.

• Custom user defined approaches.

Most importantly, IPython enables all types of parallel applications to be developed, executed, debugged
and monitored interactively. Hence, the I in IPython. The following are some example usage cases for
IPython:

• Quickly parallelize algorithms that are embarrassingly parallel using a number of simple approaches.
Many simple things can be parallelized interactively in one or two lines of code.

• Steer traditional MPI applications on a supercomputer from an IPython session on your laptop.

• Analyze and visualize large datasets (that could be remote and/or distributed) interactively using
IPython and tools like matplotlib/TVTK.

• Develop, test and debug new parallel algorithms (that may use MPI) interactively.

• Tie together multiple MPI jobs running on different systems into one giant distributed and parallel
system.

95

IPython Documentation, Release 0.11

• Start a parallel job on your cluster and then have a remote collaborator connect to it and pull back data
into their local IPython session for plotting and analysis.

• Run a set of tasks on a set of CPUs using dynamic load balancing.

Tip: At the SciPy 2011 conference in Austin, Min Ragan-Kelley presented a complete 4-hour tutorial on
the use of these features, and all the materials for the tutorial are now available online. That tutorial provides
an excellent, hands-on oriented complement to the reference documentation presented here.

5.1.2 Architecture overview

The IPython architecture consists of four components:

• The IPython engine.

• The IPython hub.

• The IPython schedulers.

• The controller client.

These components live in the IPython.parallel package and are installed with IPython. They do,
however, have additional dependencies that must be installed. For more information, see our installation
documentation.

IPython engine

The IPython engine is a Python instance that takes Python commands over a network connection. Eventually,
the IPython engine will be a full IPython interpreter, but for now, it is a regular Python interpreter. The engine
can also handle incoming and outgoing Python objects sent over a network connection. When multiple
engines are started, parallel and distributed computing becomes possible. An important feature of an IPython
engine is that it blocks while user code is being executed. Read on for how the IPython controller solves
this problem to expose a clean asynchronous API to the user.

IPython controller

The IPython controller processes provide an interface for working with a set of engines. At a general level,
the controller is a collection of processes to which IPython engines and clients can connect. The controller
is composed of a Hub and a collection of Schedulers. These Schedulers are typically run in separate
processes but on the same machine as the Hub, but can be run anywhere from local threads or on remote
machines.

The controller also provides a single point of contact for users who wish to utilize the engines connected
to the controller. There are different ways of working with a controller. In IPython, all of these models
are implemented via the client’s View.apply() method, with various arguments, or constructing View
objects to represent subsets of engines. The two primary models for interacting with engines are:

• A Direct interface, where engines are addressed explicitly.

96 Chapter 5. Using IPython for parallel computing

http://minrk.github.com/scipy-tutorial-2011

IPython Documentation, Release 0.11

• A LoadBalanced interface, where the Scheduler is trusted with assigning work to appropriate en-
gines.

Advanced users can readily extend the View models to enable other styles of parallelism.

Note: A single controller and set of engines can be used with multiple models simultaneously. This opens
the door for lots of interesting things.

The Hub

The center of an IPython cluster is the Hub. This is the process that keeps track of engine connections,
schedulers, clients, as well as all task requests and results. The primary role of the Hub is to facilitate queries
of the cluster state, and minimize the necessary information required to establish the many connections
involved in connecting new clients and engines.

Schedulers

All actions that can be performed on the engine go through a Scheduler. While the engines themselves block
when user code is run, the schedulers hide that from the user to provide a fully asynchronous interface to a
set of engines.

IPython client and views

There is one primary object, the Client, for connecting to a cluster. For each execution model, there is a
corresponding View. These views allow users to interact with a set of engines through the interface. Here
are the two default views:

• The DirectView class for explicit addressing.

• The LoadBalancedView class for destination-agnostic scheduling.

Security

IPython uses ZeroMQ for networking, which has provided many advantages, but one of the setbacks is its
utter lack of security [ZeroMQ]. By default, no IPython connections are encrypted, but open ports only
listen on localhost. The only source of security for IPython is via ssh-tunnel. IPython supports both shell
(openssh) and paramiko based tunnels for connections. There is a key necessary to submit requests, but due
to the lack of encryption, it does not provide significant security if loopback traffic is compromised.

In our architecture, the controller is the only process that listens on network ports, and is thus the main
point of vulnerability. The standard model for secure connections is to designate that the controller listen on
localhost, and use ssh-tunnels to connect clients and/or engines.

To connect and authenticate to the controller an engine or client needs some information that the controller
has stored in a JSON file. Thus, the JSON files need to be copied to a location where the clients and engines
can find them. Typically, this is the ~/.ipython/profile_default/security directory on the

5.1. Overview and getting started 97

IPython Documentation, Release 0.11

host where the client/engine is running (which could be a different host than the controller). Once the JSON
files are copied over, everything should work fine.

Currently, there are two JSON files that the controller creates:

ipcontroller-engine.json This JSON file has the information necessary for an engine to connect to a con-
troller.

ipcontroller-client.json The client’s connection information. This may not differ from the engine’s, but
since the controller may listen on different ports for clients and engines, it is stored separately.

More details of how these JSON files are used are given below.

A detailed description of the security model and its implementation in IPython can be found here.

Warning: Even at its most secure, the Controller listens on ports on localhost, and every time you make
a tunnel, you open a localhost port on the connecting machine that points to the Controller. If localhost
on the Controller’s machine, or the machine of any client or engine, is untrusted, then your Controller is
insecure. There is no way around this with ZeroMQ.

5.1.3 Getting Started

To use IPython for parallel computing, you need to start one instance of the controller and one or more
instances of the engine. Initially, it is best to simply start a controller and engines on a single host using the
ipcluster command. To start a controller and 4 engines on your localhost, just do:

$ ipcluster start --n=4

More details about starting the IPython controller and engines can be found here

Once you have started the IPython controller and one or more engines, you are ready to use the engines to
do something useful. To make sure everything is working correctly, try the following commands:

In [1]: from IPython.parallel import Client

In [2]: c = Client()

In [4]: c.ids
Out[4]: set([0, 1, 2, 3])

In [5]: c[:].apply_sync(lambda : "Hello, World")
Out[5]: [’Hello, World’, ’Hello, World’, ’Hello, World’, ’Hello, World’]

When a client is created with no arguments, the client tries to find the corresponding JSON file in the local
~/.ipython/profile_default/security directory. Or if you specified a profile, you can use that with the Client.
This should cover most cases:

In [2]: c = Client(profile=’myprofile’)

If you have put the JSON file in a different location or it has a different name, create the client like this:

98 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

In [2]: c = Client(’/path/to/my/ipcontroller-client.json’)

Remember, a client needs to be able to see the Hub’s ports to connect. So if they are on a different machine,
you may need to use an ssh server to tunnel access to that machine, then you would connect to it with:

In [2]: c = Client(sshserver=’myhub.example.com’)

Where ‘myhub.example.com’ is the url or IP address of the machine on which the Hub process is running
(or another machine that has direct access to the Hub’s ports).

The SSH server may already be specified in ipcontroller-client.json, if the controller was instructed at its
launch time.

You are now ready to learn more about the Direct and LoadBalanced interfaces to the controller.

5.2 Starting the IPython controller and engines

To use IPython for parallel computing, you need to start one instance of the controller and one or more
instances of the engine. The controller and each engine can run on different machines or on the same
machine. Because of this, there are many different possibilities.

Broadly speaking, there are two ways of going about starting a controller and engines:

• In an automated manner using the ipcluster command.

• In a more manual way using the ipcontroller and ipengine commands.

This document describes both of these methods. We recommend that new users start with the ipcluster
command as it simplifies many common usage cases.

5.2.1 General considerations

Before delving into the details about how you can start a controller and engines using the various methods,
we outline some of the general issues that come up when starting the controller and engines. These things
come up no matter which method you use to start your IPython cluster.

If you are running engines on multiple machines, you will likely need to instruct the controller to listen for
connections on an external interface. This can be done by specifying the ip argument on the command-line,
or the HubFactory.ip configurable in ipcontroller_config.py.

If your machines are on a trusted network, you can safely instruct the controller to listen on all public
interfaces with:

$> ipcontroller --ip=*

Or you can set the same behavior as the default by adding the following line to your
ipcontroller_config.py:

c.HubFactory.ip = ’*’

5.2. Starting the IPython controller and engines 99

IPython Documentation, Release 0.11

Note: Due to the lack of security in ZeroMQ, the controller will only listen for connections on localhost
by default. If you see Timeout errors on engines or clients, then the first thing you should check is the ip
address the controller is listening on, and make sure that it is visible from the timing out machine.

See Also:

Our notes on security in the new parallel computing code.

Let’s say that you want to start the controller on host0 and engines on hosts host1-hostn. The following
steps are then required:

1. Start the controller on host0 by running ipcontroller on host0. The controller must be in-
structed to listen on an interface visible to the engine machines, via the ip command-line argument
or HubFactory.ip in ipcontroller_config.py.

2. Move the JSON file (ipcontroller-engine.json) created by the controller from host0 to
hosts host1-hostn.

3. Start the engines on hosts host1-hostn by running ipengine. This command has to be told where
the JSON file (ipcontroller-engine.json) is located.

At this point, the controller and engines will be connected. By default, the JSON files created by the con-
troller are put into the ~/.ipython/profile_default/security directory. If the engines share a
filesystem with the controller, step 2 can be skipped as the engines will automatically look at that location.

The final step required to actually use the running controller from a client is to move the JSON file
ipcontroller-client.json from host0 to any host where clients will be run. If these file are
put into the ~/.ipython/profile_default/security directory of the client’s host, they will be
found automatically. Otherwise, the full path to them has to be passed to the client’s constructor.

5.2.2 Using ipcluster

The ipcluster command provides a simple way of starting a controller and engines in the following situa-
tions:

1. When the controller and engines are all run on localhost. This is useful for testing or running on a
multicore computer.

2. When engines are started using the mpiexec command that comes with most MPI [MPI] implemen-
tations

3. When engines are started using the PBS [PBS] batch system (or other qsub systems, such as SGE).

4. When the controller is started on localhost and the engines are started on remote nodes using ssh.

5. When engines are started using the Windows HPC Server batch system.

Note: Currently ipcluster requires that the ~/.ipython/profile_<name>/security directory
live on a shared filesystem that is seen by both the controller and engines. If you don’t have a shared file
system you will need to use ipcontroller and ipengine directly.

100 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

Under the hood, ipcluster just uses ipcontroller and ipengine to perform the steps described above.

The simplest way to use ipcluster requires no configuration, and will launch a controller and a number of
engines on the local machine. For instance, to start one controller and 4 engines on localhost, just do:

$ ipcluster start --n=4

To see other command line options, do:

$ ipcluster -h

5.2.3 Configuring an IPython cluster

Cluster configurations are stored as profiles. You can create a new profile with:

$ ipython profile create --parallel --profile=myprofile

This will create the directory IPYTHONDIR/profile_myprofile, and populate it with the default
configuration files for the three IPython cluster commands. Once you edit those files, you can continue to call
ipcluster/ipcontroller/ipengine with no arguments beyond profile=myprofile, and any configuration
will be maintained.

There is no limit to the number of profiles you can have, so you can maintain a profile for each of your
common use cases. The default profile will be used whenever the profile argument is not specified, so edit
IPYTHONDIR/profile_default/*_config.py to represent your most common use case.

The configuration files are loaded with commented-out settings and explanations, which should cover most
of the available possibilities.

Using various batch systems with ipcluster

ipcluster has a notion of Launchers that can start controllers and engines with various remote execution
schemes. Currently supported models include ssh, mpiexec, PBS-style (Torque, SGE), and Windows HPC
Server.

Note: The Launchers and configuration are designed in such a way that advanced users can subclass and
configure them to fit their own system that we have not yet supported (such as Condor)

Using ipcluster in mpiexec/mpirun mode

The mpiexec/mpirun mode is useful if you:

1. Have MPI installed.

2. Your systems are configured to use the mpiexec or mpirun commands to start MPI processes.

If these are satisfied, you can create a new profile:

5.2. Starting the IPython controller and engines 101

IPython Documentation, Release 0.11

$ ipython profile create --parallel --profile=mpi

and edit the file IPYTHONDIR/profile_mpi/ipcluster_config.py.

There, instruct ipcluster to use the MPIExec launchers by adding the lines:

c.IPClusterEngines.engine_launcher = ’IPython.parallel.apps.launcher.MPIExecEngineSetLauncher’

If the default MPI configuration is correct, then you can now start your cluster, with:

$ ipcluster start --n=4 --profile=mpi

This does the following:

1. Starts the IPython controller on current host.

2. Uses mpiexec to start 4 engines.

If you have a reason to also start the Controller with mpi, you can specify:

c.IPClusterStart.controller_launcher = ’IPython.parallel.apps.launcher.MPIExecControllerLauncher’

Note: The Controller will not be in the same MPI universe as the engines, so there is not much reason to
do this unless sysadmins demand it.

On newer MPI implementations (such as OpenMPI), this will work even if you don’t make any calls to
MPI or call MPI_Init(). However, older MPI implementations actually require each process to call
MPI_Init() upon starting. The easiest way of having this done is to install the mpi4py [mpi4py] package
and then specify the c.MPI.use option in ipengine_config.py:

c.MPI.use = ’mpi4py’

Unfortunately, even this won’t work for some MPI implementations. If you are having problems with this,
you will likely have to use a custom Python executable that itself calls MPI_Init() at the appropriate
time. Fortunately, mpi4py comes with such a custom Python executable that is easy to install and use.
However, this custom Python executable approach will not work with ipcluster currently.

More details on using MPI with IPython can be found here.

Using ipcluster in PBS mode

The PBS mode uses the Portable Batch System (PBS) to start the engines.

As usual, we will start by creating a fresh profile:

$ ipython profile create --parallel --profile=pbs

And in ipcluster_config.py, we will select the PBS launchers for the controller and engines:

c.IPClusterStart.controller_launcher = \
’IPython.parallel.apps.launcher.PBSControllerLauncher’

c.IPClusterEngines.engine_launcher = \
’IPython.parallel.apps.launcher.PBSEngineSetLauncher’

102 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

Note: Note that the configurable is IPClusterEngines for the engine launcher, and IPClusterStart for the
controller launcher. This is because the start command is a subclass of the engine command, adding a
controller launcher. Since it is a subclass, any configuration made in IPClusterEngines is inherited by
IPClusterStart unless it is overridden.

IPython does provide simple default batch templates for PBS and SGE, but you may need to specify your
own. Here is a sample PBS script template:

#PBS -N ipython
#PBS -j oe
#PBS -l walltime=00:10:00
#PBS -l nodes={n/4}:ppn=4
#PBS -q {queue}

cd $PBS_O_WORKDIR
export PATH=$HOME/usr/local/bin
export PYTHONPATH=$HOME/usr/local/lib/python2.7/site-packages
/usr/local/bin/mpiexec -n {n} ipengine --profile-dir={profile_dir}

There are a few important points about this template:

1. This template will be rendered at runtime using IPython’s EvalFormatter. This is simply a sub-
class of string.Formatter that allows simple expressions on keys.

2. Instead of putting in the actual number of engines, use the notation {n} to indicate the number of
engines to be started. You can also use expressions like {n/4} in the template to indicate the number
of nodes. There will always be {n} and {profile_dir} variables passed to the formatter. These
allow the batch system to know how many engines, and where the configuration files reside. The same
is true for the batch queue, with the template variable {queue}.

3. Any options to ipengine can be given in the batch script template, or in ipengine_config.py.

4. Depending on the configuration of you system, you may have to set environment variables in the script
template.

The controller template should be similar, but simpler:

#PBS -N ipython
#PBS -j oe
#PBS -l walltime=00:10:00
#PBS -l nodes=1:ppn=4
#PBS -q {queue}

cd $PBS_O_WORKDIR
export PATH=$HOME/usr/local/bin
export PYTHONPATH=$HOME/usr/local/lib/python2.7/site-packages
ipcontroller --profile-dir={profile_dir}

Once you have created these scripts, save them with names like pbs.engine.template. Now you can
load them into the ipcluster_config with:

5.2. Starting the IPython controller and engines 103

IPython Documentation, Release 0.11

c.PBSEngineSetLauncher.batch_template_file = "pbs.engine.template"

c.PBSControllerLauncher.batch_template_file = "pbs.controller.template"

Alternately, you can just define the templates as strings inside ipcluster_config.

Whether you are using your own templates or our defaults, the extra configurables available are the number
of engines to launch ({n}, and the batch system queue to which the jobs are to be submitted ({queue})).
These are configurables, and can be specified in ipcluster_config:

c.PBSLauncher.queue = ’veryshort.q’
c.IPClusterEngines.n = 64

Note that assuming you are running PBS on a multi-node cluster, the Controller’s default behavior of lis-
tening only on localhost is likely too restrictive. In this case, also assuming the nodes are safely behind a
firewall, you can simply instruct the Controller to listen for connections on all its interfaces, by adding in
ipcontroller_config:

c.HubFactory.ip = ’*’

You can now run the cluster with:

$ ipcluster start --profile=pbs --n=128

Additional configuration options can be found in the PBS section of ipcluster_config.

Note: Due to the flexibility of configuration, the PBS launchers work with simple changes to the template
for other qsub-using systems, such as Sun Grid Engine, and with further configuration in similar batch
systems like Condor.

Using ipcluster in SSH mode

The SSH mode uses ssh to execute ipengine on remote nodes and ipcontroller can be run remotely as well,
or on localhost.

Note: When using this mode it highly recommended that you have set up SSH keys and are using ssh-agent
[SSH] for password-less logins.

As usual, we start by creating a clean profile:

$ ipython profile create --parallel --profile=ssh

To use this mode, select the SSH launchers in ipcluster_config.py:

c.IPClusterEngines.engine_launcher = \
’IPython.parallel.apps.launcher.SSHEngineSetLauncher’

and if the Controller is also to be remote:
c.IPClusterStart.controller_launcher = \

’IPython.parallel.apps.launcher.SSHControllerLauncher’

104 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

The controller’s remote location and configuration can be specified:

Set the user and hostname for the controller
c.SSHControllerLauncher.hostname = ’controller.example.com’
c.SSHControllerLauncher.user = os.environ.get(’USER’,’username’)

Set the arguments to be passed to ipcontroller
note that remotely launched ipcontroller will not get the contents of
the local ipcontroller_config.py unless it resides on the *remote host*
in the location specified by the ‘profile-dir‘ argument.
c.SSHControllerLauncher.program_args = [’--reuse’, ’--ip=*’, ’--profile-dir=/path/to/cd’]

Note: SSH mode does not do any file movement, so you will need to distribute configuration files manually.
To aid in this, the reuse_files flag defaults to True for ssh-launched Controllers, so you will only need to do
this once, unless you override this flag back to False.

Engines are specified in a dictionary, by hostname and the number of engines to be run on that host.

c.SSHEngineSetLauncher.engines = { ’host1.example.com’ : 2,
’host2.example.com’ : 5,
’host3.example.com’ : (1, [’--profile-dir=/home/different/location’]),
’host4.example.com’ : 8 }

• The engines dict, where the keys are the host we want to run engines on and the value is the number
of engines to run on that host.

• on host3, the value is a tuple, where the number of engines is first, and the arguments to be passed to
ipengine are the second element.

For engines without explicitly specified arguments, the default arguments are set in a single location:

c.SSHEngineSetLauncher.engine_args = [’--profile-dir=/path/to/profile_ssh’]

Current limitations of the SSH mode of ipcluster are:

• Untested on Windows. Would require a working ssh on Windows. Also, we are using shell scripts to
setup and execute commands on remote hosts.

• No file movement - This is a regression from 0.10, which moved connection files around with scp.
This will be improved, but not before 0.11 release.

5.2.4 Using the ipcontroller and ipengine commands

It is also possible to use the ipcontroller and ipengine commands to start your controller and engines. This
approach gives you full control over all aspects of the startup process.

Starting the controller and engine on your local machine

To use ipcontroller and ipengine to start things on your local machine, do the following.

First start the controller:

5.2. Starting the IPython controller and engines 105

IPython Documentation, Release 0.11

$ ipcontroller

Next, start however many instances of the engine you want using (repeatedly) the command:

$ ipengine

The engines should start and automatically connect to the controller using the JSON files in
~/.ipython/profile_default/security. You are now ready to use the controller and engines
from IPython.

Warning: The order of the above operations may be important. You must start the controller before the
engines, unless you are reusing connection information (via --reuse), in which case ordering is not
important.

Note: On some platforms (OS X), to put the controller and engine into the background you may need to
give these commands in the form (ipcontroller &) and (ipengine &) (with the parentheses) for
them to work properly.

Starting the controller and engines on different hosts

When the controller and engines are running on different hosts, things are slightly more complicated, but
the underlying ideas are the same:

1. Start the controller on a host using ipcontroller. The controller must be instructed to listen on an
interface visible to the engine machines, via the ip command-line argument or HubFactory.ip in
ipcontroller_config.py.

2. Copy ipcontroller-engine.json from ~/.ipython/profile_<name>/security
on the controller’s host to the host where the engines will run.

3. Use ipengine on the engine’s hosts to start the engines.

The only thing you have to be careful of is to tell ipengine where the ipcontroller-engine.json
file is located. There are two ways you can do this:

• Put ipcontroller-engine.json in the ~/.ipython/profile_<name>/security di-
rectory on the engine’s host, where it will be found automatically.

• Call ipengine with the --file=full_path_to_the_file flag.

The file flag works like this:

$ ipengine --file=/path/to/my/ipcontroller-engine.json

Note: If the controller’s and engine’s hosts all have a shared file system
(~/.ipython/profile_<name>/security is the same on all of them), then things will just
work!

106 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

Make JSON files persistent

At fist glance it may seem that that managing the JSON files is a bit annoying. Going back to the house and
key analogy, copying the JSON around each time you start the controller is like having to make a new key
every time you want to unlock the door and enter your house. As with your house, you want to be able to
create the key (or JSON file) once, and then simply use it at any point in the future.

To do this, the only thing you have to do is specify the –reuse flag, so that the connection information in the
JSON files remains accurate:

$ ipcontroller --reuse

Then, just copy the JSON files over the first time and you are set. You can start and stop the controller and
engines any many times as you want in the future, just make sure to tell the controller to reuse the file.

Note: You may ask the question: what ports does the controller listen on if you don’t tell is to use specific
ones? The default is to use high random port numbers. We do this for two reasons: i) to increase security
through obscurity and ii) to multiple controllers on a given host to start and automatically use different ports.

Log files

All of the components of IPython have log files associated with them. These log files can
be extremely useful in debugging problems with IPython and can be found in the directory
~/.ipython/profile_<name>/log. Sending the log files to us will often help us to debug any
problems.

Configuring ipcontroller

The IPython Controller takes its configuration from the file ipcontroller_config.py in the active
profile directory.

Ports and addresses

In many cases, you will want to configure the Controller’s network identity. By default, the Controller listens
only on loopback, which is the most secure but often impractical. To instruct the controller to listen on a
specific interface, you can set the HubFactory.ip trait. To listen on all interfaces, simply specify:

c.HubFactory.ip = ’*’

When connecting to a Controller that is listening on loopback or behind a firewall, it may be necessary to
specify an SSH server to use for tunnels, and the external IP of the Controller. If you specified that the
HubFactory listen on loopback, or all interfaces, then IPython will try to guess the external IP. If you are on
a system with VM network devices, or many interfaces, this guess may be incorrect. In these cases, you will
want to specify the ‘location’ of the Controller. This is the IP of the machine the Controller is on, as seen by
the clients, engines, or the SSH server used to tunnel connections.

5.2. Starting the IPython controller and engines 107

IPython Documentation, Release 0.11

For example, to set up a cluster with a Controller on a work node, using ssh tunnels through the login node,
an example ipcontroller_config.py might contain:

allow connections on all interfaces from engines
engines on the same node will use loopback, while engines
from other nodes will use an external IP
c.HubFactory.ip = ’*’

you typically only need to specify the location when there are extra
interfaces that may not be visible to peer nodes (e.g. VM interfaces)
c.HubFactory.location = ’10.0.1.5’
or to get an automatic value, try this:
import socket
ex_ip = socket.gethostbyname_ex(socket.gethostname())[-1][0]
c.HubFactory.location = ex_ip

now instruct clients to use the login node for SSH tunnels:
c.HubFactory.ssh_server = ’login.mycluster.net’

After doing this, your ipcontroller-client.json file will look something like this:

{
"url":"tcp:\/\/*:43447",
"exec_key":"9c7779e4-d08a-4c3b-ba8e-db1f80b562c1",
"ssh":"login.mycluster.net",
"location":"10.0.1.5"

}

Then this file will be all you need for a client to connect to the controller, tunneling SSH connections through
login.mycluster.net.

Database Backend

The Hub stores all messages and results passed between Clients and Engines. For large and/or long-running
clusters, it would be unreasonable to keep all of this information in memory. For this reason, we have two
database backends: [MongoDB] via PyMongo, and SQLite with the stdlib sqlite.

MongoDB is our design target, and the dict-like model it uses has driven our design. As far as we are
concerned, BSON can be considered essentially the same as JSON, adding support for binary data and
datetime objects, and any new database backend must support the same data types.

See Also:

MongoDB BSON doc

To use one of these backends, you must set the HubFactory.db_class trait:

for a simple dict-based in-memory implementation, use dictdb
This is the default and the fastest, since it doesn’t involve the filesystem
c.HubFactory.db_class = ’IPython.parallel.controller.dictdb.DictDB’

To use MongoDB:
c.HubFactory.db_class = ’IPython.parallel.controller.mongodb.MongoDB’

108 Chapter 5. Using IPython for parallel computing

http://api.mongodb.org/python/1.9/
http://www.mongodb.org/display/DOCS/BSON

IPython Documentation, Release 0.11

and SQLite:
c.HubFactory.db_class = ’IPython.parallel.controller.sqlitedb.SQLiteDB’

When using the proper databases, you can actually allow for tasks to persist from one session to the next by
specifying the MongoDB database or SQLite table in which tasks are to be stored. The default is to use a
table named for the Hub’s Session, which is a UUID, and thus different every time.

To keep persistant task history in MongoDB:
c.MongoDB.database = ’tasks’

and in SQLite:
c.SQLiteDB.table = ’tasks’

Since MongoDB servers can be running remotely or configured to listen on a particular port, you can specify
any arguments you may need to the PyMongo Connection:

positional args to pymongo.Connection
c.MongoDB.connection_args = []

keyword args to pymongo.Connection
c.MongoDB.connection_kwargs = {}

Configuring ipengine

The IPython Engine takes its configuration from the file ipengine_config.py

The Engine itself also has some amount of configuration. Most of this has to do with initializing MPI or
connecting to the controller.

To instruct the Engine to initialize with an MPI environment set up by mpi4py, add:

c.MPI.use = ’mpi4py’

In this case, the Engine will use our default mpi4py init script to set up the MPI environment prior to
exection. We have default init scripts for mpi4py and pytrilinos. If you want to specify your own code to be
run at the beginning, specify c.MPI.init_script.

You can also specify a file or python command to be run at startup of the Engine:

c.IPEngineApp.startup_script = u’/path/to/my/startup.py’

c.IPEngineApp.startup_command = ’import numpy, scipy, mpi4py’

These commands/files will be run again, after each

It’s also useful on systems with shared filesystems to run the engines in some scratch directory. This can be
set with:

c.IPEngineApp.work_dir = u’/path/to/scratch/’

5.2. Starting the IPython controller and engines 109

http://api.mongodb.org/python/1.9/api/pymongo/connection.html#pymongo.connection.Connection

IPython Documentation, Release 0.11

5.3 IPython’s Direct interface

The direct, or multiengine, interface represents one possible way of working with a set of IPython engines.
The basic idea behind the multiengine interface is that the capabilities of each engine are directly and ex-
plicitly exposed to the user. Thus, in the multiengine interface, each engine is given an id that is used to
identify the engine and give it work to do. This interface is very intuitive and is designed with interactive
usage in mind, and is the best place for new users of IPython to begin.

5.3.1 Starting the IPython controller and engines

To follow along with this tutorial, you will need to start the IPython controller and four IPython engines.
The simplest way of doing this is to use the ipcluster command:

$ ipcluster start --n=4

For more detailed information about starting the controller and engines, see our introduction to using IPython
for parallel computing.

5.3.2 Creating a Client instance

The first step is to import the IPython IPython.parallel module and then create a Client instance:

In [1]: from IPython.parallel import Client

In [2]: rc = Client()

This form assumes that the default connection information (stored in ipcontroller-client.json
found in IPYTHON_DIR/profile_default/security) is accurate. If the controller was started on
a remote machine, you must copy that connection file to the client machine, or enter its contents as arguments
to the Client constructor:

If you have copied the json connector file from the controller:
In [2]: rc = Client(’/path/to/ipcontroller-client.json’)
or to connect with a specific profile you have set up:
In [3]: rc = Client(profile=’mpi’)

To make sure there are engines connected to the controller, users can get a list of engine ids:

In [3]: rc.ids
Out[3]: [0, 1, 2, 3]

Here we see that there are four engines ready to do work for us.

For direct execution, we will make use of a DirectView object, which can be constructed via list-access
to the client:

In [4]: dview = rc[:] # use all engines

See Also:

For more information, see the in-depth explanation of Views.

110 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

5.3.3 Quick and easy parallelism

In many cases, you simply want to apply a Python function to a sequence of objects, but in parallel. The
client interface provides a simple way of accomplishing this: using the DirectView’s map() method.

Parallel map

Python’s builtin map() functions allows a function to be applied to a sequence element-by-element. This
type of code is typically trivial to parallelize. In fact, since IPython’s interface is all about functions anyway,
you can just use the builtin map() with a RemoteFunction, or a DirectView’s map() method:

In [62]: serial_result = map(lambda x:x**10, range(32))

In [63]: parallel_result = dview.map_sync(lambda x: x**10, range(32))

In [67]: serial_result==parallel_result
Out[67]: True

Note: The DirectView‘s version of map() does not do dynamic load balancing. For a load balanced
version, use a LoadBalancedView.

See Also:

map() is implemented via ParallelFunction.

Remote function decorators

Remote functions are just like normal functions, but when they are called, they execute on one or more
engines, rather than locally. IPython provides two decorators:

In [10]: @dview.remote(block=True)
...: def getpid():
...: import os
...: return os.getpid()
...:

In [11]: getpid()
Out[11]: [12345, 12346, 12347, 12348]

The @parallel decorator creates parallel functions, that break up an element-wise operations and dis-
tribute them, reconstructing the result.

In [12]: import numpy as np

In [13]: A = np.random.random((64,48))

In [14]: @dview.parallel(block=True)
...: def pmul(A,B):
...: return A*B

5.3. IPython’s Direct interface 111

IPython Documentation, Release 0.11

In [15]: C_local = A*A

In [16]: C_remote = pmul(A,A)

In [17]: (C_local == C_remote).all()
Out[17]: True

See Also:

See the docstrings for the parallel() and remote() decorators for options.

5.3.4 Calling Python functions

The most basic type of operation that can be performed on the engines is to execute Python code or call
Python functions. Executing Python code can be done in blocking or non-blocking mode (non-blocking is
default) using the View.execute() method, and calling functions can be done via the View.apply()
method.

apply

The main method for doing remote execution (in fact, all methods that communicate with the engines are
built on top of it), is View.apply().

We strive to provide the cleanest interface we can, so apply has the following signature:

view.apply(f, *args, **kwargs)

There are various ways to call functions with IPython, and these flags are set as attributes of the View. The
DirectView has just two of these flags:

dv.block [bool] whether to wait for the result, or return an AsyncResult object immediately

dv.track [bool] whether to instruct pyzmq to track when This is primarily useful for non-copying sends of
numpy arrays that you plan to edit in-place. You need to know when it becomes safe to edit the buffer
without corrupting the message.

Creating a view is simple: index-access on a client creates a DirectView.

In [4]: view = rc[1:3]
Out[4]: <DirectView [1, 2]>

In [5]: view.apply<tab>
view.apply view.apply_async view.apply_sync

For convenience, you can set block temporarily for a single call with the extra sync/async methods.

Blocking execution

In blocking mode, the DirectView object (called dview in these examples) submits the command to the
controller, which places the command in the engines’ queues for execution. The apply() call then blocks

112 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

until the engines are done executing the command:

In [2]: dview = rc[:] # A DirectView of all engines
In [3]: dview.block=True
In [4]: dview[’a’] = 5

In [5]: dview[’b’] = 10

In [6]: dview.apply(lambda x: a+b+x, 27)
Out[6]: [42, 42, 42, 42]

You can also select blocking execution on a call-by-call basis with the apply_sync() method:

In [7]: dview.block=False

In [8]: dview.apply_sync(lambda x: a+b+x, 27) Out[8]: [42, 42, 42, 42]

Python commands can be executed as strings on specific engines by using a View’s execute method:

In [6]: rc[::2].execute(’c=a+b’)

In [7]: rc[1::2].execute(’c=a-b’)

In [8]: dview[’c’] # shorthand for dview.pull(’c’, block=True)
Out[8]: [15, -5, 15, -5]

Non-blocking execution

In non-blocking mode, apply() submits the command to be executed and then returns a AsyncResult
object immediately. The AsyncResult object gives you a way of getting a result at a later time through
its get() method.

Note: The AsyncResult object provides a superset of the interface in
multiprocessing.pool.AsyncResult. See the official Python documentation for more.

This allows you to quickly submit long running commands without blocking your local Python/IPython
session:

define our function
In [6]: def wait(t):

...: import time

...: tic = time.time()

...: time.sleep(t)

...: return time.time()-tic

In non-blocking mode
In [7]: ar = dview.apply_async(wait, 2)

Now block for the result
In [8]: ar.get()
Out[8]: [2.0006198883056641, 1.9997570514678955, 1.9996809959411621, 2.0003249645233154]

5.3. IPython’s Direct interface 113

http://docs.python.org/library/multiprocessing#multiprocessing.pool.AsyncResult

IPython Documentation, Release 0.11

Again in non-blocking mode
In [9]: ar = dview.apply_async(wait, 10)

Poll to see if the result is ready
In [10]: ar.ready()
Out[10]: False

ask for the result, but wait a maximum of 1 second:
In [45]: ar.get(1)

TimeoutError Traceback (most recent call last)
/home/you/<ipython-input-45-7cd858bbb8e0> in <module>()
----> 1 ar.get(1)

/path/to/site-packages/IPython/parallel/asyncresult.pyc in get(self, timeout)
62 raise self._exception
63 else:

---> 64 raise error.TimeoutError("Result not ready.")
65
66 def ready(self):

TimeoutError: Result not ready.

Note: Note the import inside the function. This is a common model, to ensure that the appropriate modules
are imported where the task is run. You can also manually import modules into the engine(s) namespace(s)
via view.execute(’import numpy’)().

Often, it is desirable to wait until a set of AsyncResult objects are done. For this, there is a the method
wait(). This method takes a tuple of AsyncResult objects (or msg_ids or indices to the client’s His-
tory), and blocks until all of the associated results are ready:

In [72]: dview.block=False

A trivial list of AsyncResults objects
In [73]: pr_list = [dview.apply_async(wait, 3) for i in range(10)]

Wait until all of them are done
In [74]: dview.wait(pr_list)

Then, their results are ready using get() or the ‘.r‘ attribute
In [75]: pr_list[0].get()
Out[75]: [2.9982571601867676, 2.9982588291168213, 2.9987530708312988, 2.9990990161895752]

The block and targets keyword arguments and attributes

Most DirectView methods (excluding apply() and map()) accept block and targets as keyword
arguments. As we have seen above, these keyword arguments control the blocking mode and which engines
the command is applied to. The View class also has block and targets attributes that control the default
behavior when the keyword arguments are not provided. Thus the following logic is used for block and
targets:

114 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

• If no keyword argument is provided, the instance attributes are used.

• Keyword argument, if provided override the instance attributes for the duration of a single call.

The following examples demonstrate how to use the instance attributes:

In [16]: dview.targets = [0,2]

In [17]: dview.block = False

In [18]: ar = dview.apply(lambda : 10)

In [19]: ar.get()
Out[19]: [10, 10]

In [16]: dview.targets = v.client.ids # all engines (4)

In [21]: dview.block = True

In [22]: dview.apply(lambda : 42)
Out[22]: [42, 42, 42, 42]

The block and targets instance attributes of the DirectView also determine the behavior of the
parallel magic commands.

Parallel magic commands

Warning: The magics have not been changed to work with the zeromq system. The magics do work,
but do not print stdin/out like they used to in IPython.kernel.

We provide a few IPython magic commands (%px, %autopx and %result) that make it more pleasant
to execute Python commands on the engines interactively. These are simply shortcuts to execute() and
get_result() of the DirectView. The %px magic executes a single Python command on the engines
specified by the targets attribute of the DirectView instance:

load the parallel magic extension:
In [21]: %load_ext parallelmagic

Create a DirectView for all targets
In [22]: dv = rc[:]

Make this DirectView active for parallel magic commands
In [23]: dv.activate()

In [24]: dv.block=True

In [25]: import numpy

In [26]: %px import numpy
Parallel execution on engines: [0, 1, 2, 3]

In [27]: %px a = numpy.random.rand(2,2)

5.3. IPython’s Direct interface 115

IPython Documentation, Release 0.11

Parallel execution on engines: [0, 1, 2, 3]

In [28]: %px ev = numpy.linalg.eigvals(a)
Parallel execution on engines: [0, 1, 2, 3]

In [28]: dv[’ev’]
Out[28]: [array([1.09522024, -0.09645227]),

array([1.21435496, -0.35546712]),
array([0.72180653, 0.07133042]),
array([1.46384341e+00, 1.04353244e-04])

]

The %result magic gets the most recent result, or takes an argument specifying the index of the result to
be requested. It is simply a shortcut to the get_result() method:

In [29]: dv.apply_async(lambda : ev)

In [30]: %result
Out[30]: [[1.28167017 0.14197338],

[-0.14093616 1.27877273],
[-0.37023573 1.06779409],
[0.83664764 -0.25602658]]

The %autopx magic switches to a mode where everything you type is executed on the engines given by
the targets attribute:

In [30]: dv.block=False

In [31]: %autopx
Auto Parallel Enabled
Type %autopx to disable

In [32]: max_evals = []
<IPython.parallel.AsyncResult object at 0x17b8a70>

In [33]: for i in range(100):
....: a = numpy.random.rand(10,10)
....: a = a+a.transpose()
....: evals = numpy.linalg.eigvals(a)
....: max_evals.append(evals[0].real)
....:
....:

<IPython.parallel.AsyncResult object at 0x17af8f0>

In [34]: %autopx
Auto Parallel Disabled

In [35]: dv.block=True

In [36]: px ans= "Average max eigenvalue is: %f"%(sum(max_evals)/len(max_evals))
Parallel execution on engines: [0, 1, 2, 3]

In [37]: dv[’ans’]
Out[37]: [’Average max eigenvalue is: 10.1387247332’,

116 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

’Average max eigenvalue is: 10.2076902286’,
’Average max eigenvalue is: 10.1891484655’,
’Average max eigenvalue is: 10.1158837784’,]

5.3.5 Moving Python objects around

In addition to calling functions and executing code on engines, you can transfer Python objects to and from
your IPython session and the engines. In IPython, these operations are called push() (sending an object
to the engines) and pull() (getting an object from the engines).

Basic push and pull

Here are some examples of how you use push() and pull():

In [38]: dview.push(dict(a=1.03234,b=3453))
Out[38]: [None,None,None,None]

In [39]: dview.pull(’a’)
Out[39]: [1.03234, 1.03234, 1.03234, 1.03234]

In [40]: dview.pull(’b’, targets=0)
Out[40]: 3453

In [41]: dview.pull((’a’,’b’))
Out[41]: [[1.03234, 3453], [1.03234, 3453], [1.03234, 3453], [1.03234, 3453]]

In [43]: dview.push(dict(c=’speed’))
Out[43]: [None,None,None,None]

In non-blocking mode push() and pull() also return AsyncResult objects:

In [48]: ar = dview.pull(’a’, block=False)

In [49]: ar.get()
Out[49]: [1.03234, 1.03234, 1.03234, 1.03234]

Dictionary interface

Since a Python namespace is just a dict, DirectView objects provide dictionary-style access by key
and methods such as get() and update() for convenience. This make the remote namespaces of the
engines appear as a local dictionary. Underneath, these methods call apply():

In [51]: dview[’a’]=[’foo’,’bar’]

In [52]: dview[’a’]
Out[52]: [[’foo’, ’bar’], [’foo’, ’bar’], [’foo’, ’bar’], [’foo’, ’bar’]]

5.3. IPython’s Direct interface 117

IPython Documentation, Release 0.11

Scatter and gather

Sometimes it is useful to partition a sequence and push the partitions to different engines. In MPI lan-
guage, this is know as scatter/gather and we follow that terminology. However, it is important to remember
that in IPython’s Client class, scatter() is from the interactive IPython session to the engines and
gather() is from the engines back to the interactive IPython session. For scatter/gather operations be-
tween engines, MPI should be used:

In [58]: dview.scatter(’a’,range(16))
Out[58]: [None,None,None,None]

In [59]: dview[’a’]
Out[59]: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

In [60]: dview.gather(’a’)
Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

5.3.6 Other things to look at

How to do parallel list comprehensions

In many cases list comprehensions are nicer than using the map function. While we don’t have fully parallel
list comprehensions, it is simple to get the basic effect using scatter() and gather():

In [66]: dview.scatter(’x’,range(64))

In [67]: %px y = [i**10 for i in x]
Parallel execution on engines: [0, 1, 2, 3]
Out[67]:

In [68]: y = dview.gather(’y’)

In [69]: print y
[0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824,...]

Remote imports

Sometimes you will want to import packages both in your interactive session and on your remote engines.
This can be done with the ContextManager created by a DirectView’s sync_imports() method:

In [69]: with dview.sync_imports():
...: import numpy

importing numpy on engine(s)

Any imports made inside the block will also be performed on the view’s engines. sync_imports also takes a
local boolean flag that defaults to True, which specifies whether the local imports should also be performed.
However, support for local=False has not been implemented, so only packages that can be imported locally
will work this way.

118 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

You can also specify imports via the @require decorator. This is a decorator designed for use in Depen-
dencies, but can be used to handle remote imports as well. Modules or module names passed to @require
will be imported before the decorated function is called. If they cannot be imported, the decorated function
will never execution, and will fail with an UnmetDependencyError.

In [69]: from IPython.parallel import require

In [70]: @require(’re’):
...: def findall(pat, x):
...: # re is guaranteed to be available
...: return re.findall(pat, x)

you can also pass modules themselves, that you already have locally:
In [71]: @require(time):

...: def wait(t):

...: time.sleep(t)

...: return t

Parallel exceptions

In the multiengine interface, parallel commands can raise Python exceptions, just like serial commands. But,
it is a little subtle, because a single parallel command can actually raise multiple exceptions (one for each
engine the command was run on). To express this idea, we have a CompositeError exception class that
will be raised in most cases. The CompositeError class is a special type of exception that wraps one or
more other types of exceptions. Here is how it works:

In [76]: dview.block=True

In [77]: dview.execute(’1/0’)

CompositeError Traceback (most recent call last)
/home/user/<ipython-input-10-5d56b303a66c> in <module>()
----> 1 dview.execute(’1/0’)

/path/to/site-packages/IPython/parallel/client/view.pyc in execute(self, code, targets, block)
591 default: self.block
592 """

--> 593 return self._really_apply(util._execute, args=(code,), block=block, targets=targets)
594
595 def run(self, filename, targets=None, block=None):

/home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track)

/path/to/site-packages/IPython/parallel/client/view.pyc in sync_results(f, self, *args, **kwargs)
55 def sync_results(f, self, *args, **kwargs):
56 """sync relevant results from self.client to our results attribute."""

---> 57 ret = f(self, *args, **kwargs)
58 delta = self.outstanding.difference(self.client.outstanding)
59 completed = self.outstanding.intersection(delta)

/home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track)

5.3. IPython’s Direct interface 119

IPython Documentation, Release 0.11

/path/to/site-packages/IPython/parallel/client/view.pyc in save_ids(f, self, *args, **kwargs)
44 n_previous = len(self.client.history)
45 try:

---> 46 ret = f(self, *args, **kwargs)
47 finally:
48 nmsgs = len(self.client.history) - n_previous

/path/to/site-packages/IPython/parallel/client/view.pyc in _really_apply(self, f, args, kwargs, targets, block, track)
529 if block:
530 try:

--> 531 return ar.get()
532 except KeyboardInterrupt:
533 pass

/path/to/site-packages/IPython/parallel/client/asyncresult.pyc in get(self, timeout)
101 return self._result
102 else:

--> 103 raise self._exception
104 else:
105 raise error.TimeoutError("Result not ready.")

CompositeError: one or more exceptions from call to method: _execute
[0:apply]: ZeroDivisionError: integer division or modulo by zero
[1:apply]: ZeroDivisionError: integer division or modulo by zero
[2:apply]: ZeroDivisionError: integer division or modulo by zero
[3:apply]: ZeroDivisionError: integer division or modulo by zero

Notice how the error message printed when CompositeError is raised has information about the indi-
vidual exceptions that were raised on each engine. If you want, you can even raise one of these original
exceptions:

In [80]: try:
....: dview.execute(’1/0’)
....: except parallel.error.CompositeError, e:
....: e.raise_exception()
....:
....:

RemoteError Traceback (most recent call last)
/home/user/<ipython-input-17-8597e7e39858> in <module>()

2 dview.execute(’1/0’)
3 except CompositeError as e:

----> 4 e.raise_exception()

/path/to/site-packages/IPython/parallel/error.pyc in raise_exception(self, excid)
266 raise IndexError("an exception with index %i does not exist"%excid)
267 else:

--> 268 raise RemoteError(en, ev, etb, ei)
269
270

RemoteError: ZeroDivisionError(integer division or modulo by zero)
Traceback (most recent call last):

120 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
exec code in working,working

File "<string>", line 1, in <module>
File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute

exec code in globals()
File "<string>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

If you are working in IPython, you can simple type %debug after one of these CompositeError excep-
tions is raised, and inspect the exception instance:

In [81]: dview.execute(’1/0’)

CompositeError Traceback (most recent call last)
/home/user/<ipython-input-10-5d56b303a66c> in <module>()
----> 1 dview.execute(’1/0’)

/path/to/site-packages/IPython/parallel/client/view.pyc in execute(self, code, targets, block)
591 default: self.block
592 """

--> 593 return self._really_apply(util._execute, args=(code,), block=block, targets=targets)
594
595 def run(self, filename, targets=None, block=None):

/home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track)

/path/to/site-packages/IPython/parallel/client/view.pyc in sync_results(f, self, *args, **kwargs)
55 def sync_results(f, self, *args, **kwargs):
56 """sync relevant results from self.client to our results attribute."""

---> 57 ret = f(self, *args, **kwargs)
58 delta = self.outstanding.difference(self.client.outstanding)
59 completed = self.outstanding.intersection(delta)

/home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track)

/path/to/site-packages/IPython/parallel/client/view.pyc in save_ids(f, self, *args, **kwargs)
44 n_previous = len(self.client.history)
45 try:

---> 46 ret = f(self, *args, **kwargs)
47 finally:
48 nmsgs = len(self.client.history) - n_previous

/path/to/site-packages/IPython/parallel/client/view.pyc in _really_apply(self, f, args, kwargs, targets, block, track)
529 if block:
530 try:

--> 531 return ar.get()
532 except KeyboardInterrupt:
533 pass

/path/to/site-packages/IPython/parallel/client/asyncresult.pyc in get(self, timeout)
101 return self._result
102 else:

--> 103 raise self._exception

5.3. IPython’s Direct interface 121

IPython Documentation, Release 0.11

104 else:
105 raise error.TimeoutError("Result not ready.")

CompositeError: one or more exceptions from call to method: _execute
[0:apply]: ZeroDivisionError: integer division or modulo by zero
[1:apply]: ZeroDivisionError: integer division or modulo by zero
[2:apply]: ZeroDivisionError: integer division or modulo by zero
[3:apply]: ZeroDivisionError: integer division or modulo by zero

In [82]: %debug
> /path/to/site-packages/IPython/parallel/client/asyncresult.py(103)get()

102 else:
--> 103 raise self._exception

104 else:

ipdb> self._exception.<tab>
e.__class__ e.__getitem__ e.__new__ e.__setstate__ e.args
e.__delattr__ e.__getslice__ e.__reduce__ e.__str__ e.elist
e.__dict__ e.__hash__ e.__reduce_ex__ e.__weakref__ e.message
e.__doc__ e.__init__ e.__repr__ e._get_engine_str e.print_tracebacks
e.__getattribute__ e.__module__ e.__setattr__ e._get_traceback e.raise_exception
ipdb> self._exception.print_tracebacks()
[0:apply]:
Traceback (most recent call last):

File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
exec code in working,working

File "<string>", line 1, in <module>
File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute

exec code in globals()
File "<string>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

[1:apply]:
Traceback (most recent call last):

File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
exec code in working,working

File "<string>", line 1, in <module>
File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute

exec code in globals()
File "<string>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

[2:apply]:
Traceback (most recent call last):

File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
exec code in working,working

File "<string>", line 1, in <module>
File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute

exec code in globals()
File "<string>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

122 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

[3:apply]:
Traceback (most recent call last):

File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
exec code in working,working

File "<string>", line 1, in <module>
File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute

exec code in globals()
File "<string>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

All of this same error handling magic even works in non-blocking mode:

In [83]: dview.block=False

In [84]: ar = dview.execute(’1/0’)

In [85]: ar.get()

CompositeError Traceback (most recent call last)
/home/user/<ipython-input-21-8531eb3d26fb> in <module>()
----> 1 ar.get()

/path/to/site-packages/IPython/parallel/client/asyncresult.pyc in get(self, timeout)
101 return self._result
102 else:

--> 103 raise self._exception
104 else:
105 raise error.TimeoutError("Result not ready.")

CompositeError: one or more exceptions from call to method: _execute
[0:apply]: ZeroDivisionError: integer division or modulo by zero
[1:apply]: ZeroDivisionError: integer division or modulo by zero
[2:apply]: ZeroDivisionError: integer division or modulo by zero
[3:apply]: ZeroDivisionError: integer division or modulo by zero

5.4 The IPython task interface

The task interface to the cluster presents the engines as a fault tolerant, dynamic load-balanced system of
workers. Unlike the multiengine interface, in the task interface the user have no direct access to individual
engines. By allowing the IPython scheduler to assign work, this interface is simultaneously simpler and
more powerful.

Best of all, the user can use both of these interfaces running at the same time to take advantage of their
respective strengths. When the user can break up the user’s work into segments that do not depend on
previous execution, the task interface is ideal. But it also has more power and flexibility, allowing the user
to guide the distribution of jobs, without having to assign tasks to engines explicitly.

5.4. The IPython task interface 123

IPython Documentation, Release 0.11

5.4.1 Starting the IPython controller and engines

To follow along with this tutorial, you will need to start the IPython controller and four IPython engines.
The simplest way of doing this is to use the ipcluster command:

$ ipcluster start --n=4

For more detailed information about starting the controller and engines, see our introduction to using IPython
for parallel computing.

5.4.2 Creating a Client instance

The first step is to import the IPython IPython.parallel module and then create a Client instance,
and we will also be using a LoadBalancedView, here called lview:

In [1]: from IPython.parallel import Client

In [2]: rc = Client()

This form assumes that the controller was started on localhost with default configuration. If not, the location
of the controller must be given as an argument to the constructor:

for a visible LAN controller listening on an external port:
In [2]: rc = Client(’tcp://192.168.1.16:10101’)
or to connect with a specific profile you have set up:
In [3]: rc = Client(profile=’mpi’)

For load-balanced execution, we will make use of a LoadBalancedView object, which can be con-
structed via the client’s load_balanced_view() method:

In [4]: lview = rc.load_balanced_view() # default load-balanced view

See Also:

For more information, see the in-depth explanation of Views.

5.4.3 Quick and easy parallelism

In many cases, you simply want to apply a Python function to a sequence of objects, but in parallel. Like
the multiengine interface, these can be implemented via the task interface. The exact same tools can per-
form these actions in load-balanced ways as well as multiplexed ways: a parallel version of map() and
@parallel() function decorator. If one specifies the argument balanced=True, then they are dynami-
cally load balanced. Thus, if the execution time per item varies significantly, you should use the versions in
the task interface.

Parallel map

To load-balance map(),simply use a LoadBalancedView:

124 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

In [62]: lview.block = True

In [63]: serial_result = map(lambda x:x**10, range(32))

In [64]: parallel_result = lview.map(lambda x:x**10, range(32))

In [65]: serial_result==parallel_result
Out[65]: True

Parallel function decorator

Parallel functions are just like normal function, but they can be called on sequences and in parallel. The
multiengine interface provides a decorator that turns any Python function into a parallel function:

In [10]: @lview.parallel()
....: def f(x):
....: return 10.0*x**4
....:

In [11]: f.map(range(32)) # this is done in parallel
Out[11]: [0.0,10.0,160.0,...]

5.4.4 Dependencies

Often, pure atomic load-balancing is too primitive for your work. In these cases, you may want to associate
some kind of Dependency that describes when, where, or whether a task can be run. In IPython, we provide
two types of dependencies: Functional Dependencies and Graph Dependencies

Note: It is important to note that the pure ZeroMQ scheduler does not support dependencies, and you will
see errors or warnings if you try to use dependencies with the pure scheduler.

Functional Dependencies

Functional dependencies are used to determine whether a given engine is capable of running a par-
ticular task. This is implemented via a special Exception class, UnmetDependency, found in
IPython.parallel.error. Its use is very simple: if a task fails with an UnmetDependency exception, then
the scheduler, instead of relaying the error up to the client like any other error, catches the error, and submits
the task to a different engine. This will repeat indefinitely, and a task will never be submitted to a given
engine a second time.

You can manually raise the UnmetDependency yourself, but IPython has provided some decorators for
facilitating this behavior.

There are two decorators and a class used for functional dependencies:

In [9]: from IPython.parallel import depend, require, dependent

5.4. The IPython task interface 125

IPython Documentation, Release 0.11

@require

The simplest sort of dependency is requiring that a Python module is available. The @require decorator
lets you define a function that will only run on engines where names you specify are importable:

In [10]: @require(’numpy’, ’zmq’)
...: def myfunc():
...: return dostuff()

Now, any time you apply myfunc(), the task will only run on a machine that has numpy and pyzmq
available, and when myfunc() is called, numpy and zmq will be imported.

@depend

The @depend decorator lets you decorate any function with any other function to evaluate the dependency.
The dependency function will be called at the start of the task, and if it returns False, then the dependency
will be considered unmet, and the task will be assigned to another engine. If the dependency returns anything
other than ‘‘False‘‘, the rest of the task will continue.

In [10]: def platform_specific(plat):
...: import sys
...: return sys.platform == plat

In [11]: @depend(platform_specific, ’darwin’)
...: def mactask():
...: do_mac_stuff()

In [12]: @depend(platform_specific, ’nt’)
...: def wintask():
...: do_windows_stuff()

In this case, any time you apply mytask, it will only run on an OSX machine. @depend is just like
apply, in that it has a @depend(f,*args,**kwargs) signature.

dependents

You don’t have to use the decorators on your tasks, if for instance you may want to run tasks with a single
function but varying dependencies, you can directly construct the dependent object that the decorators
use:

Graph Dependencies

Sometimes you want to restrict the time and/or location to run a given task as a function of the time and/or
location of other tasks. This is implemented via a subclass of set, called a Dependency. A Depen-
dency is just a set of msg_ids corresponding to tasks, and a few attributes to guide how to decide when the
Dependency has been met.

The switches we provide for interpreting whether a given dependency set has been met:

126 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

any|all Whether the dependency is considered met if any of the dependencies are done, or only after all of
them have finished. This is set by a Dependency’s all boolean attribute, which defaults to True.

success [default: True] Whether to consider tasks that succeeded as fulfilling dependencies.

failure [default [False]] Whether to consider tasks that failed as fulfilling dependencies. using fail-
ure=True,success=False is useful for setting up cleanup tasks, to be run only when tasks have failed.

Sometimes you want to run a task after another, but only if that task succeeded. In this case, success
should be True and failure should be False. However sometimes you may not care whether the task
succeeds, and always want the second task to run, in which case you should use success=failure=True. The
default behavior is to only use successes.

There are other switches for interpretation that are made at the task level. These are specified via keyword
arguments to the client’s apply() method.

after,follow You may want to run a task after a given set of dependencies have been run and/or run it where
another set of dependencies are met. To support this, every task has an after dependency to restrict
time, and a follow dependency to restrict destination.

timeout You may also want to set a time-limit for how long the scheduler should wait before a task’s
dependencies are met. This is done via a timeout, which defaults to 0, which indicates that the task
should never timeout. If the timeout is reached, and the scheduler still hasn’t been able to assign the
task to an engine, the task will fail with a DependencyTimeout.

Note: Dependencies only work within the task scheduler. You cannot instruct a load-balanced task to run
after a job submitted via the MUX interface.

The simplest form of Dependencies is with all=True,success=True,failure=False. In these cases, you can
skip using Dependency objects, and just pass msg_ids or AsyncResult objects as the follow and after key-
words to client.apply():

In [14]: client.block=False

In [15]: ar = lview.apply(f, args, kwargs)

In [16]: ar2 = lview.apply(f2)

In [17]: ar3 = lview.apply_with_flags(f3, after=[ar,ar2])

In [17]: ar4 = lview.apply_with_flags(f3, follow=[ar], timeout=2.5)

See Also:

Some parallel workloads can be described as a Directed Acyclic Graph, or DAG. See DAG Dependencies
for an example demonstrating how to use map a NetworkX DAG onto task dependencies.

Impossible Dependencies

The schedulers do perform some analysis on graph dependencies to determine whether they are not possible
to be met. If the scheduler does discover that a dependency cannot be met, then the task will fail with an

5.4. The IPython task interface 127

http://en.wikipedia.org/wiki/Directed_acyclic_graph

IPython Documentation, Release 0.11

ImpossibleDependency error. This way, if the scheduler realized that a task can never be run, it won’t
sit indefinitely in the scheduler clogging the pipeline.

The basic cases that are checked:

• depending on nonexistent messages

• follow dependencies were run on more than one machine and all=True

• any dependencies failed and all=True,success=True,failures=False

• all dependencies failed and all=False,success=True,failure=False

Warning: This analysis has not been proven to be rigorous, so it is likely possible for tasks to become
impossible to run in obscure situations, so a timeout may be a good choice.

5.4.5 Retries and Resubmit

Retries

Another flag for tasks is retries. This is an integer, specifying how many times a task should be resubmitted
after failure. This is useful for tasks that should still run if their engine was shutdown, or may have some
statistical chance of failing. The default is to not retry tasks.

Resubmit

Sometimes you may want to re-run a task. This could be because it failed for some reason, and you have
fixed the error, or because you want to restore the cluster to an interrupted state. For this, the Client has
a rc.resubmit() method. This simply takes one or more msg_ids, and returns an AsyncHubResult
for the result(s). You cannot resubmit a task that is pending - only those that have finished, either successful
or unsuccessful.

5.4.6 Schedulers

There are a variety of valid ways to determine where jobs should be assigned in a load-balancing situation.
In IPython, we support several standard schemes, and even make it easy to define your own. The scheme
can be selected via the scheme argument to ipcontroller, or in the TaskScheduler.schemename
attribute of a controller config object.

The built-in routing schemes:

To select one of these schemes, simply do:

$ ipcontroller --scheme=<schemename>
for instance:
$ ipcontroller --scheme=lru

lru: Least Recently Used

128 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

Always assign work to the least-recently-used engine. A close relative of round-robin, it will
be fair with respect to the number of tasks, agnostic with respect to runtime of each task.

plainrandom: Plain Random

Randomly picks an engine on which to run.

twobin: Two-Bin Random

Requires numpy

Pick two engines at random, and use the LRU of the two. This is known to be better than plain
random in many cases, but requires a small amount of computation.

leastload: Least Load

This is the default scheme

Always assign tasks to the engine with the fewest outstanding tasks (LRU breaks tie).

weighted: Weighted Two-Bin Random

Requires numpy

Pick two engines at random using the number of outstanding tasks as inverse weights, and use
the one with the lower load.

Pure ZMQ Scheduler

For maximum throughput, the ‘pure’ scheme is not Python at all, but a C-level MonitoredQueue from
PyZMQ, which uses a ZeroMQ XREQ socket to perform all load-balancing. This scheduler does not support
any of the advanced features of the Python Scheduler.

Disabled features when using the ZMQ Scheduler:

• Engine unregistration Task farming will be disabled if an engine unregisters. Further, if an engine
is unregistered during computation, the scheduler may not recover.

• Dependencies Since there is no Python logic inside the Scheduler, routing decisions cannot be made
based on message content.

• Early destination notification The Python schedulers know which engine gets which task, and no-
tify the Hub. This allows graceful handling of Engines coming and going. There is no way to
know where ZeroMQ messages have gone, so there is no way to know what tasks are on which
engine until they finish. This makes recovery from engine shutdown very difficult.

Note: TODO: performance comparisons

5.4.7 More details

The LoadBalancedView has many more powerful features that allow quite a bit of flexibility in how
tasks are defined and run. The next places to look are in the following classes:

5.4. The IPython task interface 129

IPython Documentation, Release 0.11

• LoadBalancedView

• AsyncResult

• apply()

• dependency

The following is an overview of how to use these classes together:

1. Create a Client and LoadBalancedView

2. Define some functions to be run as tasks

3. Submit your tasks to using the apply() method of your LoadBalancedView instance.

4. Use Client.get_result() to get the results of the tasks, or use the AsyncResult.get()
method of the results to wait for and then receive the results.

See Also:

A demo of DAG Dependencies with NetworkX and IPython.

5.5 Using MPI with IPython

Often, a parallel algorithm will require moving data between the engines. One way of accomplishing this is
by doing a pull and then a push using the multiengine client. However, this will be slow as all the data has
to go through the controller to the client and then back through the controller, to its final destination.

A much better way of moving data between engines is to use a message passing library, such as the Message
Passing Interface (MPI) [MPI]. IPython’s parallel computing architecture has been designed from the ground
up to integrate with MPI. This document describes how to use MPI with IPython.

5.5.1 Additional installation requirements

If you want to use MPI with IPython, you will need to install:

• A standard MPI implementation such as OpenMPI [OpenMPI] or MPICH.

• The mpi4py [mpi4py] package.

Note: The mpi4py package is not a strict requirement. However, you need to have some way of calling
MPI from Python. You also need some way of making sure that MPI_Init() is called when the IPython
engines start up. There are a number of ways of doing this and a good number of associated subtleties. We
highly recommend just using mpi4py as it takes care of most of these problems. If you want to do something
different, let us know and we can help you get started.

5.5.2 Starting the engines with MPI enabled

To use code that calls MPI, there are typically two things that MPI requires.

130 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

1. The process that wants to call MPI must be started using mpiexec or a batch system (like PBS) that
has MPI support.

2. Once the process starts, it must call MPI_Init().

There are a couple of ways that you can start the IPython engines and get these things to happen.

Automatic starting using mpiexec and ipcluster

The easiest approach is to use the MPIExec Launchers in ipcluster, which will first start a controller and
then a set of engines using mpiexec:

$ ipcluster start --n=4 --elauncher=MPIExecEngineSetLauncher

This approach is best as interrupting ipcluster will automatically stop and clean up the controller and en-
gines.

Manual starting using mpiexec

If you want to start the IPython engines using the mpiexec, just do:

$ mpiexec n=4 ipengine --mpi=mpi4py

This requires that you already have a controller running and that the FURL files for the engines are in place.
We also have built in support for PyTrilinos [PyTrilinos], which can be used (assuming is installed) by
starting the engines with:

$ mpiexec n=4 ipengine --mpi=pytrilinos

Automatic starting using PBS and ipcluster

The ipcluster command also has built-in integration with PBS. For more information on this approach, see
our documentation on ipcluster.

5.5.3 Actually using MPI

Once the engines are running with MPI enabled, you are ready to go. You can now call any code that uses
MPI in the IPython engines. And, all of this can be done interactively. Here we show a simple example that
uses mpi4py [mpi4py] version 1.1.0 or later.

First, lets define a simply function that uses MPI to calculate the sum of a distributed array. Save the
following text in a file called psum.py:

from mpi4py import MPI
import numpy as np

def psum(a):
s = np.sum(a)
rcvBuf = np.array(0.0,’d’)

5.5. Using MPI with IPython 131

IPython Documentation, Release 0.11

MPI.COMM_WORLD.Allreduce([s, MPI.DOUBLE],
[rcvBuf, MPI.DOUBLE],
op=MPI.SUM)

return rcvBuf

Now, start an IPython cluster:

$ ipcluster start --profile=mpi --n=4

Note: It is assumed here that the mpi profile has been set up, as described here.

Finally, connect to the cluster and use this function interactively. In this case, we create a random array on
each engine and sum up all the random arrays using our psum() function:

In [1]: from IPython.parallel import Client

In [2]: %load_ext parallel_magic

In [3]: c = Client(profile=’mpi’)

In [4]: view = c[:]

In [5]: view.activate()

run the contents of the file on each engine:
In [6]: view.run(’psum.py’)

In [6]: px a = np.random.rand(100)
Parallel execution on engines: [0,1,2,3]

In [8]: px s = psum(a)
Parallel execution on engines: [0,1,2,3]

In [9]: view[’s’]
Out[9]: [187.451545803,187.451545803,187.451545803,187.451545803]

Any Python code that makes calls to MPI can be used in this manner, including compiled C, C++ and Fortran
libraries that have been exposed to Python.

5.6 IPython’s Task Database

The IPython Hub stores all task requests and results in a database. Currently supported backends are:
MongoDB, SQLite (the default), and an in-memory DictDB. The most common use case for this is clients
requesting results for tasks they did not submit, via:

In [1]: rc.get_result(task_id)

However, since we have this DB backend, we provide a direct query method in the client for users who
want deeper introspection into their task history. The db_query() method of the Client is modeled after
MongoDB queries, so if you have used MongoDB it should look familiar. In fact, when the MongoDB

132 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

backend is in use, the query is relayed directly. However, when using other backends, the interface is
emulated and only a subset of queries is possible.

See Also:

MongoDB query docs: http://www.mongodb.org/display/DOCS/Querying

Client.db_query() takes a dictionary query object, with keys from the TaskRecord key list, and val-
ues of either exact values to test, or MongoDB queries, which are dicts of The form: {’operator’ :
’argument(s)’}. There is also an optional keys argument, that specifies which subset of keys should be
retrieved. The default is to retrieve all keys excluding the request and result buffers. db_query() returns
a list of TaskRecord dicts. Also like MongoDB, the msg_id key will always be included, whether requested
or not.

TaskRecord keys:

Key Type Description
msg_id uuid(bytes) The msg ID
header dict The request header
content dict The request content (likely empty)
buffers list(bytes) buffers containing serialized request objects
submitted datetime timestamp for time of submission (set by client)
client_uuid uuid(bytes) IDENT of client’s socket
engine_uuid uuid(bytes) IDENT of engine’s socket
started datetime time task began execution on engine
completed datetime time task finished execution (success or failure) on engine
resubmitted datetime time of resubmission (if applicable)
result_header dict header for result
result_content dict content for result
result_buffers list(bytes) buffers containing serialized request objects
queue bytes The name of the queue for the task (‘mux’ or ‘task’)
pyin <unused> Python input (unused)
pyout <unused> Python output (unused)
pyerr <unused> Python traceback (unused)
stdout str Stream of stdout data
stderr str Stream of stderr data

MongoDB operators we emulate on all backends:

Operator Python equivalent
‘$in’ in
‘$nin’ not in
‘$eq’ ==
‘$ne’ !=
‘$ge’ >
‘$gte’ >=
‘$le’ <
‘$lte’ <=

The DB Query is useful for two primary cases:

5.6. IPython’s Task Database 133

http://www.mongodb.org/display/DOCS/Querying

IPython Documentation, Release 0.11

1. deep polling of task status or metadata

2. selecting a subset of tasks, on which to perform a later operation (e.g. wait on result, purge records,
resubmit,...)

5.6.1 Example Queries

To get all msg_ids that are not completed, only retrieving their ID and start time:

In [1]: incomplete = rc.db_query({’complete’ : None}, keys=[’msg_id’, ’started’])

All jobs started in the last hour by me:

In [1]: from datetime import datetime, timedelta

In [2]: hourago = datetime.now() - timedelta(1./24)

In [3]: recent = rc.db_query({’started’ : {’$gte’ : hourago },
’client_uuid’ : rc.session.session})

All jobs started more than an hour ago, by clients other than me:

In [3]: recent = rc.db_query({’started’ : {’$le’ : hourago },
’client_uuid’ : {’$ne’ : rc.session.session}})

Result headers for all jobs on engine 3 or 4:

In [1]: uuids = map(rc._engines.get, (3,4))

In [2]: hist34 = rc.db_query({’engine_uuid’ : {’$in’ : uuids }, keys=’result_header’)

5.7 Security details of IPython

Note: This section is not thorough, and IPython.zmq needs a thorough security audit.

IPython’s IPython.zmq package exposes the full power of the Python interpreter over a TCP/IP network
for the purposes of parallel computing. This feature brings up the important question of IPython’s security
model. This document gives details about this model and how it is implemented in IPython’s architecture.

5.7.1 Process and network topology

To enable parallel computing, IPython has a number of different processes that run. These processes are
discussed at length in the IPython documentation and are summarized here:

• The IPython engine. This process is a full blown Python interpreter in which user code is executed.
Multiple engines are started to make parallel computing possible.

134 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

• The IPython hub. This process monitors a set of engines and schedulers, and keeps track of the state of
the processes. It listens for registration connections from engines and clients, and monitor connections
from schedulers.

• The IPython schedulers. This is a set of processes that relay commands and results between clients
and engines. They are typically on the same machine as the controller, and listen for connections from
engines and clients, but connect to the Hub.

• The IPython client. This process is typically an interactive Python process that is used to coordinate
the engines to get a parallel computation done.

Collectively, these processes are called the IPython cluster, and the hub and schedulers together are referred
to as the controller.

These processes communicate over any transport supported by ZeroMQ (tcp,pgm,infiniband,ipc) with a well
defined topology. The IPython hub and schedulers listen on sockets. Upon starting, an engine connects to
a hub and registers itself, which then informs the engine of the connection information for the schedulers,
and the engine then connects to the schedulers. These engine/hub and engine/scheduler connections persist
for the lifetime of each engine.

The IPython client also connects to the controller processes using a number of socket connections. As of
writing, this is one socket per scheduler (4), and 3 connections to the hub for a total of 7. These connections
persist for the lifetime of the client only.

A given IPython controller and set of engines engines typically has a relatively short lifetime. Typically this
lifetime corresponds to the duration of a single parallel simulation performed by a single user. Finally, the
hub, schedulers, engines, and client processes typically execute with the permissions of that same user. More
specifically, the controller and engines are not executed as root or with any other superuser permissions.

5.7.2 Application logic

When running the IPython kernel to perform a parallel computation, a user utilizes the IPython client to send
Python commands and data through the IPython schedulers to the IPython engines, where those commands
are executed and the data processed. The design of IPython ensures that the client is the only access point
for the capabilities of the engines. That is, the only way of addressing the engines is through a client.

A user can utilize the client to instruct the IPython engines to execute arbitrary Python commands. These
Python commands can include calls to the system shell, access the filesystem, etc., as required by the user’s
application code. From this perspective, when a user runs an IPython engine on a host, that engine has the
same capabilities and permissions as the user themselves (as if they were logged onto the engine’s host with
a terminal).

5.7.3 Secure network connections

Overview

ZeroMQ provides exactly no security. For this reason, users of IPython must be very careful in managing
connections, because an open TCP/IP socket presents access to arbitrary execution as the user on the engine
machines. As a result, the default behavior of controller processes is to only listen for clients on the loopback
interface, and the client must establish SSH tunnels to connect to the controller processes.

5.7. Security details of IPython 135

IPython Documentation, Release 0.11

Warning: If the controller’s loopback interface is untrusted, then IPython should be considered vulner-
able, and this extends to the loopback of all connected clients, which have opened a loopback port that is
redirected to the controller’s loopback port.

SSH

Since ZeroMQ provides no security, SSH tunnels are the primary source of secure connections. A connec-
tor file, such as ipcontroller-client.json, will contain information for connecting to the controller, possibly
including the address of an ssh-server through with the client is to tunnel. The Client object then creates tun-
nels using either [OpenSSH] or [Paramiko], depending on the platform. If users do not wish to use OpenSSH
or Paramiko, or the tunneling utilities are insufficient, then they may construct the tunnels themselves, and
simply connect clients and engines as if the controller were on loopback on the connecting machine.

Note: There is not currently tunneling available for engines.

Authentication

To protect users of shared machines, [HMAC] digests are used to sign messages, using a shared key.

The Session object that handles the message protocol uses a unique key to verify valid messages. This can
be any value specified by the user, but the default behavior is a pseudo-random 128-bit number, as generated
by uuid.uuid4(). This key is used to initialize an HMAC object, which digests all messages, and includes
that digest as a signature and part of the message. Every message that is unpacked (on Controller, Engine,
and Client) will also be digested by the receiver, ensuring that the sender’s key is the same as the receiver’s.
No messages that do not contain this key are acted upon in any way. The key itself is never sent over the
network.

There is exactly one shared key per cluster - it must be the same everywhere. Typically, the controller
creates this key, and stores it in the private connection files ipython-{engine|client}.json. These files are
typically stored in the ~/.ipython/profile_<name>/security directory, and are maintained as readable only by
the owner, just as is common practice with a user’s keys in their .ssh directory.

Warning: It is important to note that the key authentication, as emphasized by the use of a uuid rather
than generating a key with a cryptographic library, provides a defense against accidental messages more
than it does against malicious attacks. If loopback is compromised, it would be trivial for an attacker to
intercept messages and deduce the key, as there is no encryption.

5.7.4 Specific security vulnerabilities

There are a number of potential security vulnerabilities present in IPython’s architecture. In this section we
discuss those vulnerabilities and detail how the security architecture described above prevents them from
being exploited.

136 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

Unauthorized clients

The IPython client can instruct the IPython engines to execute arbitrary Python code with the permissions
of the user who started the engines. If an attacker were able to connect their own hostile IPython client to
the IPython controller, they could instruct the engines to execute code.

On the first level, this attack is prevented by requiring access to the controller’s ports, which are recom-
mended to only be open on loopback if the controller is on an untrusted local network. If the attacker does
have access to the Controller’s ports, then the attack is prevented by the capabilities based client authentica-
tion of the execution key. The relevant authentication information is encoded into the JSON file that clients
must present to gain access to the IPython controller. By limiting the distribution of those keys, a user can
grant access to only authorized persons, just as with SSH keys.

It is highly unlikely that an execution key could be guessed by an attacker in a brute force guessing attack.
A given instance of the IPython controller only runs for a relatively short amount of time (on the order of
hours). Thus an attacker would have only a limited amount of time to test a search space of size 2**128.
For added security, users can have arbitrarily long keys.

Warning: If the attacker has gained enough access to intercept loopback connections on either the
controller or client, then a duplicate message can be sent. To protect against this, recipients only allow
each signature once, and consider duplicates invalid. However, the duplicate message could be sent to
another recipient using the same key, and it would be considered valid.

Unauthorized engines

If an attacker were able to connect a hostile engine to a user’s controller, the user might unknowingly send
sensitive code or data to the hostile engine. This attacker’s engine would then have full access to that code
and data.

This type of attack is prevented in the same way as the unauthorized client attack, through the usage of the
capabilities based authentication scheme.

Unauthorized controllers

It is also possible that an attacker could try to convince a user’s IPython client or engine to connect to a
hostile IPython controller. That controller would then have full access to the code and data sent between the
IPython client and the IPython engines.

Again, this attack is prevented through the capabilities in a connection file, which ensure that a client or
engine connects to the correct controller. It is also important to note that the connection files also encode
the IP address and port that the controller is listening on, so there is little chance of mistakenly connecting
to a controller running on a different IP address and port.

When starting an engine or client, a user must specify the key to use for that connection. Thus, in order to
introduce a hostile controller, the attacker must convince the user to use the key associated with the hostile
controller. As long as a user is diligent in only using keys from trusted sources, this attack is not possible.

Note: I may be wrong, the unauthorized controller may be easier to fake than this.

5.7. Security details of IPython 137

IPython Documentation, Release 0.11

5.7.5 Other security measures

A number of other measures are taken to further limit the security risks involved in running the IPython
kernel.

First, by default, the IPython controller listens on random port numbers. While this can be overridden by
the user, in the default configuration, an attacker would have to do a port scan to even find a controller to
attack. When coupled with the relatively short running time of a typical controller (on the order of hours),
an attacker would have to work extremely hard and extremely fast to even find a running controller to attack.

Second, much of the time, especially when run on supercomputers or clusters, the controller is running
behind a firewall. Thus, for engines or client to connect to the controller:

• The different processes have to all be behind the firewall.

or:

• The user has to use SSH port forwarding to tunnel the connections through the firewall.

In either case, an attacker is presented with additional barriers that prevent attacking or even probing the
system.

5.7.6 Summary

IPython’s architecture has been carefully designed with security in mind. The capabilities based authentica-
tion model, in conjunction with SSH tunneled TCP/IP channels, address the core potential vulnerabilities in
the system, while still enabling user’s to use the system in open networks.

5.8 Getting started with Windows HPC Server 2008

Note: Not adapted to zmq yet

5.8.1 Introduction

The Python programming language is an increasingly popular language for numerical computing. This
is due to a unique combination of factors. First, Python is a high-level and interactive language that is
well matched to interactive numerical work. Second, it is easy (often times trivial) to integrate legacy
C/C++/Fortran code into Python. Third, a large number of high-quality open source projects provide all the
needed building blocks for numerical computing: numerical arrays (NumPy), algorithms (SciPy), 2D/3D
Visualization (Matplotlib, Mayavi, Chaco), Symbolic Mathematics (Sage, Sympy) and others.

The IPython project is a core part of this open-source toolchain and is focused on creating a comprehensive
environment for interactive and exploratory computing in the Python programming language. It enables all
of the above tools to be used interactively and consists of two main components:

138 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

• An enhanced interactive Python shell with support for interactive plotting and visualization.

• An architecture for interactive parallel computing.

With these components, it is possible to perform all aspects of a parallel computation interactively. This
type of workflow is particularly relevant in scientific and numerical computing where algorithms, code and
data are continually evolving as the user/developer explores a problem. The broad treads in computing
(commodity clusters, multicore, cloud computing, etc.) make these capabilities of IPython particularly
relevant.

While IPython is a cross platform tool, it has particularly strong support for Windows based compute clusters
running Windows HPC Server 2008. This document describes how to get started with IPython on Windows
HPC Server 2008. The content and emphasis here is practical: installing IPython, configuring IPython to
use the Windows job scheduler and running example parallel programs interactively. A more complete
description of IPython’s parallel computing capabilities can be found in IPython’s online documentation
(http://ipython.org/documentation.html).

5.8.2 Setting up your Windows cluster

This document assumes that you already have a cluster running Windows HPC Server 2008. Here is a broad
overview of what is involved with setting up such a cluster:

1. Install Windows Server 2008 on the head and compute nodes in the cluster.

2. Setup the network configuration on each host. Each host should have a static IP address.

3. On the head node, activate the “Active Directory Domain Services” role and make the head node the
domain controller.

4. Join the compute nodes to the newly created Active Directory (AD) domain.

5. Setup user accounts in the domain with shared home directories.

6. Install the HPC Pack 2008 on the head node to create a cluster.

7. Install the HPC Pack 2008 on the compute nodes.

More details about installing and configuring Windows HPC Server 2008 can be found on the Windows HPC
Home Page (http://www.microsoft.com/hpc). Regardless of what steps you follow to set up your cluster, the
remainder of this document will assume that:

• There are domain users that can log on to the AD domain and submit jobs to the cluster scheduler.

• These domain users have shared home directories. While shared home directories are not required to
use IPython, they make it much easier to use IPython.

5.8.3 Installation of IPython and its dependencies

IPython and all of its dependencies are freely available and open source. These packages provide a powerful
and cost-effective approach to numerical and scientific computing on Windows. The following dependencies
are needed to run IPython on Windows:

• Python 2.6 or 2.7 (http://www.python.org)

5.8. Getting started with Windows HPC Server 2008 139

http://ipython.org/documentation.html
http://www.microsoft.com/hpc
http://www.python.org

IPython Documentation, Release 0.11

• pywin32 (http://sourceforge.net/projects/pywin32/)

• PyReadline (https://launchpad.net/pyreadline)

• pyzmq (http://github.com/zeromq/pyzmq/downloads)

• IPython (http://ipython.org)

In addition, the following dependencies are needed to run the demos described in this document.

• NumPy and SciPy (http://www.scipy.org)

• Matplotlib (http://matplotlib.sourceforge.net/)

The easiest way of obtaining these dependencies is through the Enthought Python Distribution (EPD)
(http://www.enthought.com/products/epd.php). EPD is produced by Enthought, Inc. and contains all of
these packages and others in a single installer and is available free for academic users. While it is also possi-
ble to download and install each package individually, this is a tedious process. Thus, we highly recommend
using EPD to install these packages on Windows.

Regardless of how you install the dependencies, here are the steps you will need to follow:

1. Install all of the packages listed above, either individually or using EPD on the head node, compute
nodes and user workstations.

2. Make sure that C:\Python27 and C:\Python27\Scripts are in the system %PATH% variable
on each node.

3. Install the latest development version of IPython. This can be done by downloading the the develop-
ment version from the IPython website (http://ipython.org) and following the installation instructions.

Further details about installing IPython or its dependencies can be found in the online IPython documenta-
tion (http://ipython.org/documentation.html) Once you are finished with the installation, you can try IPython
out by opening a Windows Command Prompt and typing ipython. This will start IPython’s interactive
shell and you should see something like the following screenshot:

140 Chapter 5. Using IPython for parallel computing

http://sourceforge.net/projects/pywin32/
https://launchpad.net/pyreadline
http://github.com/zeromq/pyzmq/downloads
http://ipython.org
http://www.scipy.org
http://matplotlib.sourceforge.net/
http://www.enthought.com/products/epd.php
http://ipython.org
http://ipython.org/documentation.html

IPython Documentation, Release 0.11

5.8.4 Starting an IPython cluster

To use IPython’s parallel computing capabilities, you will need to start an IPython cluster. An IPython
cluster consists of one controller and multiple engines:

IPython controller The IPython controller manages the engines and acts as a gateway between the engines
and the client, which runs in the user’s interactive IPython session. The controller is started using the
ipcontroller command.

IPython engine IPython engines run a user’s Python code in parallel on the compute nodes. Engines are
starting using the ipengine command.

Once these processes are started, a user can run Python code interactively and in parallel on the engines
from within the IPython shell using an appropriate client. This includes the ability to interact with, plot and
visualize data from the engines.

IPython has a command line program called ipcluster that automates all aspects of starting the controller
and engines on the compute nodes. ipcluster has full support for the Windows HPC job scheduler, meaning
that ipcluster can use this job scheduler to start the controller and engines. In our experience, the Windows
HPC job scheduler is particularly well suited for interactive applications, such as IPython. Once ipcluster is
configured properly, a user can start an IPython cluster from their local workstation almost instantly, without
having to log on to the head node (as is typically required by Unix based job schedulers). This enables a
user to move seamlessly between serial and parallel computations.

In this section we show how to use ipcluster to start an IPython cluster using the Windows HPC Server 2008
job scheduler. To make sure that ipcluster is installed and working properly, you should first try to start an

5.8. Getting started with Windows HPC Server 2008 141

IPython Documentation, Release 0.11

IPython cluster on your local host. To do this, open a Windows Command Prompt and type the following
command:

ipcluster start n=2

You should see a number of messages printed to the screen, ending with “IPython cluster: started”. The
result should look something like the following screenshot:

At this point, the controller and two engines are running on your local host. This configuration is useful for
testing and for situations where you want to take advantage of multiple cores on your local computer.

Now that we have confirmed that ipcluster is working properly, we describe how to configure and run an
IPython cluster on an actual compute cluster running Windows HPC Server 2008. Here is an outline of the
needed steps:

1. Create a cluster profile using: ipython profile create --parallel
profile=mycluster

2. Edit configuration files in the directory .ipython\cluster_mycluster

3. Start the cluster using: ipcluser start profile=mycluster n=32

Creating a cluster profile

In most cases, you will have to create a cluster profile to use IPython on a cluster. A cluster profile is a
name (like “mycluster”) that is associated with a particular cluster configuration. The profile name is used
by ipcluster when working with the cluster.

142 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

Associated with each cluster profile is a cluster directory. This cluster directory is a specially named direc-
tory (typically located in the .ipython subdirectory of your home directory) that contains the configura-
tion files for a particular cluster profile, as well as log files and security keys. The naming convention for
cluster directories is: profile_<profile name>. Thus, the cluster directory for a profile named “foo”
would be .ipython\cluster_foo.

To create a new cluster profile (named “mycluster”) and the associated cluster directory, type the following
command at the Windows Command Prompt:

ipython profile create --parallel --profile=mycluster

The output of this command is shown in the screenshot below. Notice how ipcluster prints out the location
of the newly created cluster directory.

Configuring a cluster profile

Next, you will need to configure the newly created cluster profile by editing the following configuration files
in the cluster directory:

• ipcluster_config.py

• ipcontroller_config.py

• ipengine_config.py

When ipcluster is run, these configuration files are used to determine how the engines and controller will
be started. In most cases, you will only have to set a few of the attributes in these files.

5.8. Getting started with Windows HPC Server 2008 143

IPython Documentation, Release 0.11

To configure ipcluster to use the Windows HPC job scheduler, you will need to edit the following attributes
in the file ipcluster_config.py:

Set these at the top of the file to tell ipcluster to use the
Windows HPC job scheduler.
c.IPClusterStart.controller_launcher = \

’IPython.parallel.apps.launcher.WindowsHPCControllerLauncher’
c.IPClusterEngines.engine_launcher = \

’IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher’

Set these to the host name of the scheduler (head node) of your cluster.
c.WindowsHPCControllerLauncher.scheduler = ’HEADNODE’
c.WindowsHPCEngineSetLauncher.scheduler = ’HEADNODE’

There are a number of other configuration attributes that can be set, but in most cases these will be sufficient
to get you started.

Warning: If any of your configuration attributes involve specifying the location of shared directories or
files, you must make sure that you use UNC paths like \\host\share. It is also important that you
specify these paths using raw Python strings: r’\\host\share’ to make sure that the backslashes
are properly escaped.

Starting the cluster profile

Once a cluster profile has been configured, starting an IPython cluster using the profile is simple:

ipcluster start --profile=mycluster --n=32

The -n option tells ipcluster how many engines to start (in this case 32). Stopping the cluster is as simple
as typing Control-C.

Using the HPC Job Manager

When ipcluster start is run the first time, ipcluster creates two XML job description files in the
cluster directory:

• ipcontroller_job.xml

• ipengineset_job.xml

Once these files have been created, they can be imported into the HPC Job Manager application. Then, the
controller and engines for that profile can be started using the HPC Job Manager directly, without using
ipcluster. However, anytime the cluster profile is re-configured, ipcluster start must be run again
to regenerate the XML job description files. The following screenshot shows what the HPC Job Manager
interface looks like with a running IPython cluster.

144 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

5.8.5 Performing a simple interactive parallel computation

Once you have started your IPython cluster, you can start to use it. To do this, open up a new Windows
Command Prompt and start up IPython’s interactive shell by typing:

ipython

Then you can create a MultiEngineClient instance for your profile and use the resulting instance
to do a simple interactive parallel computation. In the code and screenshot that follows, we take
a simple Python function and apply it to each element of an array of integers in parallel using the
MultiEngineClient.map() method:

In [1]: from IPython.parallel import *

In [2]: c = MultiEngineClient(profile=’mycluster’)

In [3]: mec.get_ids()
Out[3]: [0, 1, 2, 3, 4, 5, 67, 8, 9, 10, 11, 12, 13, 14]

In [4]: def f(x):
...: return x**10

In [5]: mec.map(f, range(15)) # f is applied in parallel
Out[5]:
[0,
1,

5.8. Getting started with Windows HPC Server 2008 145

IPython Documentation, Release 0.11

1024,
59049,
1048576,
9765625,
60466176,
282475249,
1073741824,
3486784401L,
10000000000L,
25937424601L,
61917364224L,
137858491849L,
289254654976L]

The map() method has the same signature as Python’s builtin map() function, but runs the calculation
in parallel. More involved examples of using MultiEngineClient are provided in the examples that
follow.

146 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

5.9 Parallel examples

Note: Performance numbers from IPython.kernel, not newparallel.

In this section we describe two more involved examples of using an IPython cluster to perform a paral-
lel computation. In these examples, we will be using IPython’s “pylab” mode, which enables interactive
plotting using the Matplotlib package. IPython can be started in this mode by typing:

ipython --pylab

at the system command line.

5.9.1 150 million digits of pi

In this example we would like to study the distribution of digits in the number pi (in base 10). While it
is not known if pi is a normal number (a number is normal in base 10 if 0-9 occur with equal likelihood)
numerical investigations suggest that it is. We will begin with a serial calculation on 10,000 digits of pi and
then perform a parallel calculation involving 150 million digits.

In both the serial and parallel calculation we will be using functions defined in the pidigits.py file,
which is available in the docs/examples/newparallel directory of the IPython source distribution.
These functions provide basic facilities for working with the digits of pi and can be loaded into IPython by
putting pidigits.py in your current working directory and then doing:

In [1]: run pidigits.py

Serial calculation

For the serial calculation, we will use SymPy to calculate 10,000 digits of pi and then look at the frequencies
of the digits 0-9. Out of 10,000 digits, we expect each digit to occur 1,000 times. While SymPy is capable
of calculating many more digits of pi, our purpose here is to set the stage for the much larger parallel
calculation.

In this example, we use two functions from pidigits.py: one_digit_freqs() (which calculates
how many times each digit occurs) and plot_one_digit_freqs() (which uses Matplotlib to plot the
result). Here is an interactive IPython session that uses these functions with SymPy:

In [7]: import sympy

In [8]: pi = sympy.pi.evalf(40)

In [9]: pi
Out[9]: 3.141592653589793238462643383279502884197

In [10]: pi = sympy.pi.evalf(10000)

In [11]: digits = (d for d in str(pi)[2:]) # create a sequence of digits

5.9. Parallel examples 147

http://www.sympy.org

IPython Documentation, Release 0.11

In [12]: run pidigits.py # load one_digit_freqs/plot_one_digit_freqs

In [13]: freqs = one_digit_freqs(digits)

In [14]: plot_one_digit_freqs(freqs)
Out[14]: [<matplotlib.lines.Line2D object at 0x18a55290>]

The resulting plot of the single digit counts shows that each digit occurs approximately 1,000 times, but that
with only 10,000 digits the statistical fluctuations are still rather large:

It is clear that to reduce the relative fluctuations in the counts, we need to look at many more digits of pi.
That brings us to the parallel calculation.

Parallel calculation

Calculating many digits of pi is a challenging computational problem in itself. Because we want to focus on
the distribution of digits in this example, we will use pre-computed digit of pi from the website of Professor
Yasumasa Kanada at the University of Tokyo (http://www.super-computing.org). These digits come in a set
of text files (ftp://pi.super-computing.org/.2/pi200m/) that each have 10 million digits of pi.

For the parallel calculation, we have copied these files to the local hard drives of the compute nodes. A total
of 15 of these files will be used, for a total of 150 million digits of pi. To make things a little more interesting

148 Chapter 5. Using IPython for parallel computing

http://www.super-computing.org
ftp://pi.super-computing.org/.2/pi200m/

IPython Documentation, Release 0.11

we will calculate the frequencies of all 2 digits sequences (00-99) and then plot the result using a 2D matrix
in Matplotlib.

The overall idea of the calculation is simple: each IPython engine will compute the two digit counts for the
digits in a single file. Then in a final step the counts from each engine will be added up. To perform this
calculation, we will need two top-level functions from pidigits.py:

def compute_two_digit_freqs(filename):
"""
Read digits of pi from a file and compute the 2 digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = two_digit_freqs(d)
return freqs

def reduce_freqs(freqlist):
"""
Add up a list of freq counts to get the total counts.
"""
allfreqs = np.zeros_like(freqlist[0])
for f in freqlist:

allfreqs += f
return allfreqs

We will also use the plot_two_digit_freqs() function to plot the results. The code to run this
calculation in parallel is contained in docs/examples/newparallel/parallelpi.py. This code
can be run in parallel using IPython by following these steps:

1. Use ipcluster to start 15 engines. We used an 8 core (2 quad core CPUs) cluster with hyperthreading
enabled which makes the 8 cores looks like 16 (1 controller + 15 engines) in the OS. However, the
maximum speedup we can observe is still only 8x.

2. With the file parallelpi.py in your current working directory, open up IPython in pylab mode
and type run parallelpi.py. This will download the pi files via ftp the first time you run it, if
they are not present in the Engines’ working directory.

When run on our 8 core cluster, we observe a speedup of 7.7x. This is slightly less than linear scaling (8x)
because the controller is also running on one of the cores.

To emphasize the interactive nature of IPython, we now show how the calculation can also be run by simply
typing the commands from parallelpi.py interactively into IPython:

In [1]: from IPython.parallel import Client

The Client allows us to use the engines interactively.
We simply pass Client the name of the cluster profile we
are using.
In [2]: c = Client(profile=’mycluster’)
In [3]: view = c.load_balanced_view()

In [3]: c.ids
Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

In [4]: run pidigits.py

5.9. Parallel examples 149

IPython Documentation, Release 0.11

In [5]: filestring = ’pi200m.ascii.%(i)02dof20’

Create the list of files to process.
In [6]: files = [filestring % {’i’:i} for i in range(1,16)]

In [7]: files
Out[7]:
[’pi200m.ascii.01of20’,
’pi200m.ascii.02of20’,
’pi200m.ascii.03of20’,
’pi200m.ascii.04of20’,
’pi200m.ascii.05of20’,
’pi200m.ascii.06of20’,
’pi200m.ascii.07of20’,
’pi200m.ascii.08of20’,
’pi200m.ascii.09of20’,
’pi200m.ascii.10of20’,
’pi200m.ascii.11of20’,
’pi200m.ascii.12of20’,
’pi200m.ascii.13of20’,
’pi200m.ascii.14of20’,
’pi200m.ascii.15of20’]

download the data files if they don’t already exist:
In [8]: v.map(fetch_pi_file, files)

This is the parallel calculation using the Client.map method
which applies compute_two_digit_freqs to each file in files in parallel.
In [9]: freqs_all = v.map(compute_two_digit_freqs, files)

Add up the frequencies from each engine.
In [10]: freqs = reduce_freqs(freqs_all)

In [11]: plot_two_digit_freqs(freqs)
Out[11]: <matplotlib.image.AxesImage object at 0x18beb110>

In [12]: plt.title(’2 digit counts of 150m digits of pi’)
Out[12]: <matplotlib.text.Text object at 0x18d1f9b0>

The resulting plot generated by Matplotlib is shown below. The colors indicate which two digit sequences
are more (red) or less (blue) likely to occur in the first 150 million digits of pi. We clearly see that the
sequence “41” is most likely and that “06” and “07” are least likely. Further analysis would show that the
relative size of the statistical fluctuations have decreased compared to the 10,000 digit calculation.

150 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

5.9.2 Parallel options pricing

An option is a financial contract that gives the buyer of the contract the right to buy (a “call”) or sell (a “put”)
a secondary asset (a stock for example) at a particular date in the future (the expiration date) for a pre-agreed
upon price (the strike price). For this right, the buyer pays the seller a premium (the option price). There are
a wide variety of flavors of options (American, European, Asian, etc.) that are useful for different purposes:
hedging against risk, speculation, etc.

Much of modern finance is driven by the need to price these contracts accurately based on what is known
about the properties (such as volatility) of the underlying asset. One method of pricing options is to use a
Monte Carlo simulation of the underlying asset price. In this example we use this approach to price both
European and Asian (path dependent) options for various strike prices and volatilities.

5.9. Parallel examples 151

IPython Documentation, Release 0.11

The code for this example can be found in the docs/examples/newparallel directory of the IPython
source. The function price_options() in mcpricer.py implements the basic Monte Carlo pricing
algorithm using the NumPy package and is shown here:

def price_options(S=100.0, K=100.0, sigma=0.25, r=0.05, days=260, paths=10000):
"""
Price European and Asian options using a Monte Carlo method.

Parameters

S : float

The initial price of the stock.
K : float

The strike price of the option.
sigma : float

The volatility of the stock.
r : float

The risk free interest rate.
days : int

The number of days until the option expires.
paths : int

The number of Monte Carlo paths used to price the option.

Returns

A tuple of (E. call, E. put, A. call, A. put) option prices.
"""
import numpy as np
from math import exp,sqrt

h = 1.0/days
const1 = exp((r-0.5*sigma**2)*h)
const2 = sigma*sqrt(h)
stock_price = S*np.ones(paths, dtype=’float64’)
stock_price_sum = np.zeros(paths, dtype=’float64’)
for j in range(days):

growth_factor = const1*np.exp(const2*np.random.standard_normal(paths))
stock_price = stock_price*growth_factor
stock_price_sum = stock_price_sum + stock_price

stock_price_avg = stock_price_sum/days
zeros = np.zeros(paths, dtype=’float64’)
r_factor = exp(-r*h*days)
euro_put = r_factor*np.mean(np.maximum(zeros, K-stock_price))
asian_put = r_factor*np.mean(np.maximum(zeros, K-stock_price_avg))
euro_call = r_factor*np.mean(np.maximum(zeros, stock_price-K))
asian_call = r_factor*np.mean(np.maximum(zeros, stock_price_avg-K))
return (euro_call, euro_put, asian_call, asian_put)

To run this code in parallel, we will use IPython’s LoadBalancedView class, which distributes work
to the engines using dynamic load balancing. This view is a wrapper of the Client class shown in
the previous example. The parallel calculation using LoadBalancedView can be found in the file
mcpricer.py. The code in this file creates a TaskClient instance and then submits a set of tasks
using TaskClient.run() that calculate the option prices for different volatilities and strike prices. The

152 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

results are then plotted as a 2D contour plot using Matplotlib.

#!/usr/bin/env python
"""Run a Monte-Carlo options pricer in parallel."""

#---
Imports
#---

import sys
import time
from IPython.parallel import Client
import numpy as np
from mcpricer import price_options
from matplotlib import pyplot as plt

#---
Setup parameters for the run
#---

def ask_question(text, the_type, default):
s = ’%s [%r]: ’ % (text, the_type(default))
result = raw_input(s)
if result:

return the_type(result)
else:

return the_type(default)

cluster_profile = ask_question("Cluster profile", str, "default")
price = ask_question("Initial price", float, 100.0)
rate = ask_question("Interest rate", float, 0.05)
days = ask_question("Days to expiration", int, 260)
paths = ask_question("Number of MC paths", int, 10000)
n_strikes = ask_question("Number of strike values", int, 5)
min_strike = ask_question("Min strike price", float, 90.0)
max_strike = ask_question("Max strike price", float, 110.0)
n_sigmas = ask_question("Number of volatility values", int, 5)
min_sigma = ask_question("Min volatility", float, 0.1)
max_sigma = ask_question("Max volatility", float, 0.4)

strike_vals = np.linspace(min_strike, max_strike, n_strikes)
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)

#---
Setup for parallel calculation
#---

The Client is used to setup the calculation and works with all
engines.
c = Client(profile=cluster_profile)

A LoadBalancedView is an interface to the engines that provides dynamic load
balancing at the expense of not knowing which engine will execute the code.
view = c.load_balanced_view()

5.9. Parallel examples 153

IPython Documentation, Release 0.11

Initialize the common code on the engines. This Python module has the
price_options function that prices the options.

#---
Perform parallel calculation
#---

print "Running parallel calculation over strike prices and volatilities..."
print "Strike prices: ", strike_vals
print "Volatilities: ", sigma_vals
sys.stdout.flush()

Submit tasks to the TaskClient for each (strike, sigma) pair as a MapTask.
t1 = time.time()
async_results = []
for strike in strike_vals:

for sigma in sigma_vals:
ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths)
async_results.append(ar)

print "Submitted tasks: ", len(async_results)
sys.stdout.flush()

Block until all tasks are completed.
c.wait(async_results)
t2 = time.time()
t = t2-t1

print "Parallel calculation completed, time = %s s" % t
print "Collecting results..."

Get the results using TaskClient.get_task_result.
results = [ar.get() for ar in async_results]

Assemble the result into a structured NumPy array.
prices = np.empty(n_strikes*n_sigmas,

dtype=[(’ecall’,float),(’eput’,float),(’acall’,float),(’aput’,float)]
)

for i, price in enumerate(results):
prices[i] = tuple(price)

prices.shape = (n_strikes, n_sigmas)
strike_mesh, sigma_mesh = np.meshgrid(strike_vals, sigma_vals)

print "Results are available: strike_mesh, sigma_mesh, prices"
print "To plot results type ’plot_options(sigma_mesh, strike_mesh, prices)’"

#---
Utilities
#---

def plot_options(sigma_mesh, strike_mesh, prices):

154 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

"""
Make a contour plot of the option price in (sigma, strike) space.
"""
plt.figure(1)

plt.subplot(221)
plt.contourf(sigma_mesh, strike_mesh, prices[’ecall’])
plt.axis(’tight’)
plt.colorbar()
plt.title(’European Call’)
plt.ylabel("Strike Price")

plt.subplot(222)
plt.contourf(sigma_mesh, strike_mesh, prices[’acall’])
plt.axis(’tight’)
plt.colorbar()
plt.title("Asian Call")

plt.subplot(223)
plt.contourf(sigma_mesh, strike_mesh, prices[’eput’])
plt.axis(’tight’)
plt.colorbar()
plt.title("European Put")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")

plt.subplot(224)
plt.contourf(sigma_mesh, strike_mesh, prices[’aput’])
plt.axis(’tight’)
plt.colorbar()
plt.title("Asian Put")
plt.xlabel("Volatility")

To use this code, start an IPython cluster using ipcluster, open IPython in the pylab mode with the file
mcdriver.py in your current working directory and then type:

In [7]: run mcdriver.py
Submitted tasks: [0, 1, 2, ...]

Once all the tasks have finished, the results can be plotted using the plot_options() function. Here we
make contour plots of the Asian call and Asian put options as function of the volatility and strike price:

In [8]: plot_options(sigma_vals, K_vals, prices[’acall’])

In [9]: plt.figure()
Out[9]: <matplotlib.figure.Figure object at 0x18c178d0>

In [10]: plot_options(sigma_vals, K_vals, prices[’aput’])

These results are shown in the two figures below. On a 8 core cluster the entire calculation (10 strike prices,
10 volatilities, 100,000 paths for each) took 30 seconds in parallel, giving a speedup of 7.7x, which is
comparable to the speedup observed in our previous example.

5.9. Parallel examples 155

IPython Documentation, Release 0.11

156 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

5.9.3 Conclusion

To conclude these examples, we summarize the key features of IPython’s parallel architecture that have been
demonstrated:

• Serial code can be parallelized often with only a few extra lines of code. We have used the
DirectView and LoadBalancedView classes for this purpose.

• The resulting parallel code can be run without ever leaving the IPython’s interactive shell.

• Any data computed in parallel can be explored interactively through visualization or further numerical
calculations.

• We have run these examples on a cluster running Windows HPC Server 2008. IPython’s built in
support for the Windows HPC job scheduler makes it easy to get started with IPython’s parallel capa-
bilities.

Note: The newparallel code has never been run on Windows HPC Server, so the last conclusion is untested.

5.9. Parallel examples 157

IPython Documentation, Release 0.11

5.10 DAG Dependencies

Often, parallel workflow is described in terms of a Directed Acyclic Graph or DAG. A popular library
for working with Graphs is NetworkX. Here, we will walk through a demo mapping a nx DAG to task
dependencies.

The full script that runs this demo can be found in docs/examples/newparallel/dagdeps.py.

5.10.1 Why are DAGs good for task dependencies?

The ‘G’ in DAG is ‘Graph’. A Graph is a collection of nodes and edges that connect the nodes. For our
purposes, each node would be a task, and each edge would be a dependency. The ‘D’ in DAG stands for
‘Directed’. This means that each edge has a direction associated with it. So we can interpret the edge (a,b)
as meaning that b depends on a, whereas the edge (b,a) would mean a depends on b. The ‘A’ is ‘Acyclic’,
meaning that there must not be any closed loops in the graph. This is important for dependencies, because if
a loop were closed, then a task could ultimately depend on itself, and never be able to run. If your workflow
can be described as a DAG, then it is impossible for your dependencies to cause a deadlock.

5.10.2 A Sample DAG

Here, we have a very simple 5-node DAG:

With NetworkX, an arrow is just a fattened bit on the edge. Here, we can see that task 0 depends on nothing,
and can run immediately. 1 and 2 depend on 0; 3 depends on 1 and 2; and 4 depends only on 1.

A possible sequence of events for this workflow:

0. Task 0 can run right away

1. 0 finishes, so 1,2 can start

2. 1 finishes, 3 is still waiting on 2, but 4 can start right away

3. 2 finishes, and 3 can finally start

Further, taking failures into account, assuming all dependencies are run with the default suc-
cess=True,failure=False, the following cases would occur for each node’s failure:

0. fails: all other tasks fail as Impossible

1. 2 can still succeed, but 3,4 are unreachable

2. 3 becomes unreachable, but 4 is unaffected

3. and 4. are terminal, and can have no effect on other nodes

The code to generate the simple DAG:

import networkx as nx

G = nx.DiGraph()

add 5 nodes, labeled 0-4:

158 Chapter 5. Using IPython for parallel computing

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://networkx.lanl.gov/

IPython Documentation, Release 0.11

0

12

3 4

5.10. DAG Dependencies 159

IPython Documentation, Release 0.11

map(G.add_node, range(5))
1,2 depend on 0:
G.add_edge(0,1)
G.add_edge(0,2)
3 depends on 1,2
G.add_edge(1,3)
G.add_edge(2,3)
4 depends on 1
G.add_edge(1,4)

now draw the graph:
pos = { 0 : (0,0), 1 : (1,1), 2 : (-1,1),

3 : (0,2), 4 : (2,2)}
nx.draw(G, pos, edge_color=’r’)

For demonstration purposes, we have a function that generates a random DAG with a given number of nodes
and edges.

def random_dag(nodes, edges):
"""Generate a random Directed Acyclic Graph (DAG) with a given number of nodes and edges."""
G = nx.DiGraph()
for i in range(nodes):

G.add_node(i)
while edges > 0:

a = randint(0,nodes-1)
b=a
while b==a:

b = randint(0,nodes-1)
G.add_edge(a,b)
if nx.is_directed_acyclic_graph(G):

edges -= 1
else:

we closed a loop!
G.remove_edge(a,b)

return G

So first, we start with a graph of 32 nodes, with 128 edges:

In [2]: G = random_dag(32,128)

Now, we need to build our dict of jobs corresponding to the nodes on the graph:

In [3]: jobs = {}

in reality, each job would presumably be different
randomwait is just a function that sleeps for a random interval
In [4]: for node in G:

...: jobs[node] = randomwait

Once we have a dict of jobs matching the nodes on the graph, we can start submitting jobs, and linking up
the dependencies. Since we don’t know a job’s msg_id until it is submitted, which is necessary for building
dependencies, it is critical that we don’t submit any jobs before other jobs it may depend on. Fortunately,
NetworkX provides a topological_sort() method which ensures exactly this. It presents an iterable,
that guarantees that when you arrive at a node, you have already visited all the nodes it on which it depends:

160 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

In [5]: rc = Client()
In [5]: view = rc.load_balanced_view()

In [6]: results = {}

In [7]: for node in G.topological_sort():
...: # get list of AsyncResult objects from nodes
...: # leading into this one as dependencies
...: deps = [results[n] for n in G.predecessors(node)]
...: # submit and store AsyncResult object
...: results[node] = view.apply_with_flags(jobs[node], after=deps, block=False)

Now that we have submitted all the jobs, we can wait for the results:

In [8]: view.wait(results.values())

Now, at least we know that all the jobs ran and did not fail (r.get() would have raised an error if a task
failed). But we don’t know that the ordering was properly respected. For this, we can use the metadata
attribute of each AsyncResult.

These objects store a variety of metadata about each task, including various timestamps. We can validate
that the dependencies were respected by checking that each task was started after all of its predecessors were
completed:

def validate_tree(G, results):
"""Validate that jobs executed after their dependencies."""
for node in G:

started = results[node].metadata.started
for parent in G.predecessors(node):

finished = results[parent].metadata.completed
assert started > finished, "%s should have happened after %s"%(node, parent)

We can also validate the graph visually. By drawing the graph with each node’s x-position as its start time,
all arrows must be pointing to the right if dependencies were respected. For spreading, the y-position will
be the runtime of the task, so long tasks will be at the top, and quick, small tasks will be at the bottom.

In [10]: from matplotlib.dates import date2num

In [11]: from matplotlib.cm import gist_rainbow

In [12]: pos = {}; colors = {}

In [12]: for node in G:
...: md = results[node].metadata
...: start = date2num(md.started)
...: runtime = date2num(md.completed) - start
...: pos[node] = (start, runtime)
...: colors[node] = md.engine_id

In [13]: nx.draw(G, pos, node_list=colors.keys(), node_color=colors.values(),
...: cmap=gist_rainbow)

5.10. DAG Dependencies 161

IPython Documentation, Release 0.11

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25
26

27

28

29

30

31

Figure 5.1: Time started on x, runtime on y, and color-coded by engine-id (in this case there were four
engines). Edges denote dependencies.

162 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

5.11 Details of Parallel Computing with IPython

Note: There are still many sections to fill out in this doc

5.11.1 Caveats

First, some caveats about the detailed workings of parallel computing with 0MQ and IPython.

Non-copying sends and numpy arrays

When numpy arrays are passed as arguments to apply or via data-movement methods, they are not copied.
This means that you must be careful if you are sending an array that you intend to work on. PyZMQ does
allow you to track when a message has been sent so you can know when it is safe to edit the buffer, but
IPython only allows for this.

It is also important to note that the non-copying receive of a message is read-only. That means that if you
intend to work in-place on an array that you have sent or received, you must copy it. This is true for both
numpy arrays sent to engines and numpy arrays retrieved as results.

The following will fail:

In [3]: A = numpy.zeros(2)

In [4]: def setter(a):
...: a[0]=1
...: return a

In [5]: rc[0].apply_sync(setter, A)

RemoteError Traceback (most recent call last)
...
RemoteError: RuntimeError(array is not writeable)
Traceback (most recent call last):

File "/path/to/site-packages/IPython/parallel/streamkernel.py", line 329, in apply_request
exec code in working, working

File "<string>", line 1, in <module>
File "<ipython-input-14-736187483856>", line 2, in setter

RuntimeError: array is not writeable

If you do need to edit the array in-place, just remember to copy the array if it’s read-only. The
ndarray.flags.writeable flag will tell you if you can write to an array.

In [3]: A = numpy.zeros(2)

In [4]: def setter(a):
...: """only copy read-only arrays"""
...: if not a.flags.writeable:
...: a=a.copy()
...: a[0]=1

5.11. Details of Parallel Computing with IPython 163

IPython Documentation, Release 0.11

...: return a

In [5]: rc[0].apply_sync(setter, A)
Out[5]: array([1., 0.])

note that results will also be read-only:
In [6]: _.flags.writeable
Out[6]: False

If you want to safely edit an array in-place after sending it, you must use the track=True flag. IPython
always performs non-copying sends of arrays, which return immediately. You must instruct IPython track
those messages at send time in order to know for sure that the send has completed. AsyncResults have a
sent property, and wait_on_send() method for checking and waiting for 0MQ to finish with a buffer.

In [5]: A = numpy.random.random((1024,1024))

In [6]: view.track=True

In [7]: ar = view.apply_async(lambda x: 2*x, A)

In [8]: ar.sent
Out[8]: False

In [9]: ar.wait_on_send() # blocks until sent is True

What is sendable?

If IPython doesn’t know what to do with an object, it will pickle it. There is a short list of objects that are
not pickled: buffers, str/bytes objects, and numpy arrays. These are handled specially by IPython
in order to prevent the copying of data. Sending bytes or numpy arrays will result in exactly zero in-memory
copies of your data (unless the data is very small).

If you have an object that provides a Python buffer interface, then you can always send that buffer without
copying - and reconstruct the object on the other side in your own code. It is possible that the object
reconstruction will become extensible, so you can add your own non-copying types, but this does not yet
exist.

Closures

Just about anything in Python is pickleable. The one notable exception is objects (generally functions) with
closures. Closures can be a complicated topic, but the basic principal is that functions that refer to variables
in their parent scope have closures.

An example of a function that uses a closure:

def f(a):
def inner():

inner will have a closure
return a

return echo

164 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

f1 = f(1)
f2 = f(2)
f1() # returns 1
f2() # returns 2

f1 and f2will have closures referring to the scope in which inner was defined, because they use the variable
‘a’. As a result, you would not be able to send f1 or f2 with IPython. Note that you would be able to send
f. This is only true for interactively defined functions (as are often used in decorators), and only when there
are variables used inside the inner function, that are defined in the outer function. If the names are not in the
outer function, then there will not be a closure, and the generated function will look in globals() for the
name:

def g(b):
note that ‘b‘ is not referenced in inner’s scope
def inner():

this inner will *not* have a closure
return a

return echo
g1 = g(1)
g2 = g(2)
g1() # raises NameError on ’a’
a=5
g2() # returns 5

g1 and g2 will be sendable with IPython, and will treat the engine’s namespace as globals(). The pull()
method is implemented based on this principal. If we did not provide pull, you could implement it yourself
with apply, by simply returning objects out of the global namespace:

In [10]: view.apply(lambda : a)

is equivalent to
In [11]: view.pull(’a’)

5.11.2 Running Code

There are two principal units of execution in Python: strings of Python code (e.g. ‘a=5’), and Python
functions. IPython is designed around the use of functions via the core Client method, called apply.

Apply

The principal method of remote execution is apply(), of View objects. The Client provides the full ex-
ecution and communication API for engines via its low-level send_apply_message() method, which
is used by all higher level methods of its Views.

f [function] The fuction to be called remotely

args [tuple/list] The positional arguments passed to f

kwargs [dict] The keyword arguments passed to f

5.11. Details of Parallel Computing with IPython 165

IPython Documentation, Release 0.11

flags for all views:

block [bool (default: view.block)] Whether to wait for the result, or return immediately. False:

returns AsyncResult

True: returns actual result(s) of f(*args, **kwargs) if multiple targets:

list of results, matching targets

track [bool [default view.track]] whether to track non-copying sends.

targets [int,list of ints, ‘all’, None [default view.targets]] Specify the destination of the job. if ‘all’ or None:

Run on all active engines

if list: Run on each specified engine

if int: Run on single engine

Note that LoadBalancedView uses targets to restrict possible destinations. LoadBalanced calls will always
execute in just one location.

flags only in LoadBalancedViews:

after [Dependency or collection of msg_ids] Only for load-balanced execution (targets=None) Specify a
list of msg_ids as a time-based dependency. This job will only be run after the dependencies have
been met.

follow [Dependency or collection of msg_ids] Only for load-balanced execution (targets=None) Specify a
list of msg_ids as a location-based dependency. This job will only be run on an engine where this
dependency is met.

timeout [float/int or None] Only for load-balanced execution (targets=None) Specify an amount of time (in
seconds) for the scheduler to wait for dependencies to be met before failing with a DependencyTime-
out.

execute and run

For executing strings of Python code, DirectView ‘s also provide an execute() and a run() method,
which rather than take functions and arguments, take simple strings. execute simply takes a string of Python
code to execute, and sends it to the Engine(s). run is the same as execute, but for a file, rather than a string.
It is simply a wrapper that does something very similar to execute(open(f).read()).

Note: TODO: Examples for execute and run

5.11.3 Views

The principal extension of the Client is the View class. The client is typically a singleton for connecting
to a cluster, and presents a low-level interface to the Hub and Engines. Most real usage will involve creating
one or more View objects for working with engines in various ways.

166 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

DirectView

The DirectView is the class for the IPython Multiplexing Interface.

Creating a DirectView

DirectViews can be created in two ways, by index access to a client, or by a client’s view() method.
Index access to a Client works in a few ways. First, you can create DirectViews to single engines simply by
accessing the client by engine id:

In [2]: rc[0]
Out[2]: <DirectView 0>

You can also create a DirectView with a list of engines:

In [2]: rc[0,1,2]
Out[2]: <DirectView [0,1,2]>

Other methods for accessing elements, such as slicing and negative indexing, work by passing the index
directly to the client’s ids list, so:

negative index
In [2]: rc[-1]
Out[2]: <DirectView 3>

or slicing:
In [3]: rc[::2]
Out[3]: <DirectView [0,2]>

are always the same as:

In [2]: rc[rc.ids[-1]]
Out[2]: <DirectView 3>

In [3]: rc[rc.ids[::2]]
Out[3]: <DirectView [0,2]>

Also note that the slice is evaluated at the time of construction of the DirectView, so the targets will not
change over time if engines are added/removed from the cluster.

Execution via DirectView

The DirectView is the simplest way to work with one or more engines directly (hence the name).

For instance, to get the process ID of all your engines:

In [5]: import os

In [6]: dview.apply_sync(os.getpid)
Out[6]: [1354, 1356, 1358, 1360]

5.11. Details of Parallel Computing with IPython 167

IPython Documentation, Release 0.11

Or to see the hostname of the machine they are on:

In [5]: import socket

In [6]: dview.apply_sync(socket.gethostname)
Out[6]: [’tesla’, ’tesla’, ’edison’, ’edison’, ’edison’]

Note: TODO: expand on direct execution

Data movement via DirectView

Since a Python namespace is just a dict, DirectView objects provide dictionary-style access by key
and methods such as get() and update() for convenience. This make the remote namespaces of the
engines appear as a local dictionary. Underneath, these methods call apply():

In [51]: dview[’a’]=[’foo’,’bar’]

In [52]: dview[’a’]
Out[52]: [[’foo’, ’bar’], [’foo’, ’bar’], [’foo’, ’bar’], [’foo’, ’bar’]]

Scatter and gather

Sometimes it is useful to partition a sequence and push the partitions to different engines. In MPI lan-
guage, this is know as scatter/gather and we follow that terminology. However, it is important to remember
that in IPython’s Client class, scatter() is from the interactive IPython session to the engines and
gather() is from the engines back to the interactive IPython session. For scatter/gather operations be-
tween engines, MPI should be used:

In [58]: dview.scatter(’a’,range(16))
Out[58]: [None,None,None,None]

In [59]: dview[’a’]
Out[59]: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

In [60]: dview.gather(’a’)
Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Push and pull

push()

pull()

Note: TODO: write this section

168 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

LoadBalancedView

The LoadBalancedView is the class for load-balanced execution via the task scheduler. These views
always run tasks on exactly one engine, but let the scheduler determine where that should be, allowing load-
balancing of tasks. The LoadBalancedView does allow you to specify restrictions on where and when tasks
can execute, for more complicated load-balanced workflows.

5.11.4 Data Movement

Since the LoadBalancedView does not know where execution will take place, explicit data movement
methods like push/pull and scatter/gather do not make sense, and are not provided.

5.11.5 Results

AsyncResults

Our primary representation of the results of remote execution is the AsyncResult object, based on the ob-
ject of the same name in the built-in multiprocessing.pool module. Our version provides a superset
of that interface.

The basic principle of the AsyncResult is the encapsulation of one or more results not yet completed. Execu-
tion methods (including data movement, such as push/pull) will all return AsyncResults when block=False.

The mp.pool.AsyncResult interface

The basic interface of the AsyncResult is exactly that of the AsyncResult in multiprocessing.pool,
and consists of four methods:

class AsyncResult
The stdlib AsyncResult spec

wait([timeout])
Wait until the result is available or until timeout seconds pass. This method always returns
None.

ready()
Return whether the call has completed.

successful()
Return whether the call completed without raising an exception. Will raise AssertionError
if the result is not ready.

get([timeout])
Return the result when it arrives. If timeout is not None and the result does not arrive within
timeout seconds then TimeoutError is raised. If the remote call raised an exception then that
exception will be reraised as a RemoteError by get().

5.11. Details of Parallel Computing with IPython 169

IPython Documentation, Release 0.11

While an AsyncResult is not done, you can check on it with its ready()method, which will return whether
the AR is done. You can also wait on an AsyncResult with its wait() method. This method blocks until
the result arrives. If you don’t want to wait forever, you can pass a timeout (in seconds) as an argument to
wait(). wait() will always return None, and should never raise an error.

ready() and wait() are insensitive to the success or failure of the call. After a result is done,
successful() will tell you whether the call completed without raising an exception.

If you actually want the result of the call, you can use get(). Initially, get() behaves just like wait(),
in that it will block until the result is ready, or until a timeout is met. However, unlike wait(), get() will
raise a TimeoutError if the timeout is reached and the result is still not ready. If the result arrives before
the timeout is reached, then get() will return the result itself if no exception was raised, and will raise an
exception if there was.

Here is where we start to expand on the multiprocessing interface. Rather than raising the original exception,
a RemoteError will be raised, encapsulating the remote exception with some metadata. If the AsyncResult
represents multiple calls (e.g. any time targets is plural), then a CompositeError, a subclass of RemoteError,
will be raised.

See Also:

For more information on remote exceptions, see the section in the Direct Interface.

Extended interface

Other extensions of the AsyncResult interface include convenience wrappers for get(). AsyncResults
have a property, result, with the short alias r, which simply call get(). Since our object is designed
for representing parallel results, it is expected that many calls (any of those submitted via DirectView) will
map results to engine IDs. We provide a get_dict(), which is also a wrapper on get(), which returns
a dictionary of the individual results, keyed by engine ID.

You can also prevent a submitted job from actually executing, via the AsyncResult’s abort() method.
This will instruct engines to not execute the job when it arrives.

The larger extension of the AsyncResult API is the metadata attribute. The metadata is a dictionary (with
attribute access) that contains, logically enough, metadata about the execution.

Metadata keys:

timestamps

submitted When the task left the Client

started When the task started execution on the engine

completed When execution finished on the engine

received When the result arrived on the Client

note that it is not known when the result arrived in 0MQ on the client, only when it arrived in Python
via Client.spin(), so in interactive use, this may not be strictly informative.

Information about the engine

engine_id The integer id

170 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

engine_uuid The UUID of the engine

output of the call

pyerr Python exception, if there was one

pyout Python output

stderr stderr stream

stdout stdout (e.g. print) stream

And some extended information

status either ‘ok’ or ‘error’

msg_id The UUID of the message

after For tasks: the time-based msg_id dependencies

follow For tasks: the location-based msg_id dependencies

While in most cases, the Clients that submitted a request will be the ones using the results, other Clients
can also request results directly from the Hub. This is done via the Client’s get_result() method. This
method will always return an AsyncResult object. If the call was not submitted by the client, then it will be
a subclass, called AsyncHubResult. These behave in the same way as an AsyncResult, but if the result
is not ready, waiting on an AsyncHubResult polls the Hub, which is much more expensive than the passive
polling used in regular AsyncResults.

The Client keeps track of all results history, results, metadata

5.11.6 Querying the Hub

The Hub sees all traffic that may pass through the schedulers between engines and clients. It does this so
that it can track state, allowing multiple clients to retrieve results of computations submitted by their peers,
as well as persisting the state to a database.

queue_status

You can check the status of the queues of the engines with this command.

result_status

check on results

purge_results

forget results (conserve resources)

5.11.7 Controlling the Engines

There are a few actions you can do with Engines that do not involve execution. These messages are sent via
the Control socket, and bypass any long queues of waiting execution jobs

abort

5.11. Details of Parallel Computing with IPython 171

IPython Documentation, Release 0.11

Sometimes you may want to prevent a job you have submitted from actually running. The
method for this is abort(). It takes a container of msg_ids, and instructs the Engines to not
run the jobs if they arrive. The jobs will then fail with an AbortedTask error.

clear

You may want to purge the Engine(s) namespace of any data you have left in it. After running
clear, there will be no names in the Engine’s namespace

shutdown

You can also instruct engines (and the Controller) to terminate from a Client. This can be useful
when a job is finished, since you can shutdown all the processes with a single command.

5.11.8 Synchronization

Since the Client is a synchronous object, events do not automatically trigger in your interactive session -
you must poll the 0MQ sockets for incoming messages. Note that this polling does not actually make any
network requests. It simply performs a select operation, to check if messages are already in local memory,
waiting to be handled.

The method that handles incoming messages is spin(). This method flushes any waiting messages on the
various incoming sockets, and updates the state of the Client.

If you need to wait for particular results to finish, you can use the wait() method, which will call spin()
until the messages are no longer outstanding. Anything that represents a collection of messages, such as a
list of msg_ids or one or more AsyncResult objects, can be passed as argument to wait. A timeout can be
specified, which will prevent the call from blocking for more than a specified time, but the default behavior
is to wait forever.

The client also has an outstanding attribute - a set of msg_ids that are awaiting replies. This is the
default if wait is called with no arguments - i.e. wait on all outstanding messages.

Note: TODO wait example

5.11.9 Map

Many parallel computing problems can be expressed as a map, or running a single program with a variety
of different inputs. Python has a built-in map(), which does exactly this, and many parallel execution tools
in Python, such as the built-in multiprocessing.Pool object provide implementations of map. All
View objects provide a map() method as well, but the load-balanced and direct implementations differ.

Views’ map methods can be called on any number of sequences, but they can also take the block and bound
keyword arguments, just like apply(), but only as keywords.

dview.map(*sequences, block=None)

• iter, map_async, reduce

172 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

5.11.10 Decorators and RemoteFunctions

Note: TODO: write this section

@parallel()

@remote()

RemoteFunction

ParallelFunction

5.11.11 Dependencies

Note: TODO: write this section

@depend()

@require()

Dependency

5.12 Transitioning from IPython.kernel to IPython.parallel

We have rewritten our parallel computing tools to use 0MQ and Tornado. The redesign has resulted in dra-
matically improved performance, as well as (we think), an improved interface for executing code remotely.
This doc is to help users of IPython.kernel transition their codes to the new code.

5.12.1 Processes

The process model for the new parallel code is very similar to that of IPython.kernel. There is still a
Controller, Engines, and Clients. However, the the Controller is now split into multiple processes, and can
even be split across multiple machines. There does remain a single ipcontroller script for starting all of the
controller processes.

Note: TODO: fill this out after config system is updated

See Also:

Detailed Parallel Process doc for configuring and launching IPython processes.

5.12. Transitioning from IPython.kernel to IPython.parallel 173

http://zeromq.org
https://github.com/facebook/tornado

IPython Documentation, Release 0.11

5.12.2 Creating a Client

Creating a client with default settings has not changed much, though the extended options have. One sig-
nificant change is that there are no longer multiple Client classes to represent the various execution models.
There is just one low-level Client object for connecting to the cluster, and View objects are created from that
Client that provide the different interfaces for execution.

To create a new client, and set up the default direct and load-balanced objects:

old
In [1]: from IPython.kernel import client as kclient

In [2]: mec = kclient.MultiEngineClient()

In [3]: tc = kclient.TaskClient()

new
In [1]: from IPython.parallel import Client

In [2]: rc = Client()

In [3]: dview = rc[:]

In [4]: lbview = rc.load_balanced_view()

5.12.3 Apply

The main change to the API is the addition of the apply() to the View objects. This is a method that takes
view.apply(f,*args,**kwargs), and calls f(*args, **kwargs) remotely on one or more engines, returning the
result. This means that the natural unit of remote execution is no longer a string of Python code, but rather
a Python function.

• non-copying sends (track)

• remote References

The flags for execution have also changed. Previously, there was only block denoting whether to wait for
results. This remains, but due to the addition of fully non-copying sends of arrays and buffers, there is also a
track flag, which instructs PyZMQ to produce a MessageTracker that will let you know when it is safe
again to edit arrays in-place.

The result of a non-blocking call to apply is now an AsyncResult_ object, described below.

5.12.4 MultiEngine to DirectView

The multiplexing interface previously provided by the MultiEngineClient is now provided by the Di-
rectView. Once you have a Client connected, you can create a DirectView with index-access to the client
(view = client[1:5]). The core methods for communicating with engines remain: execute, run,
push, pull, scatter, gather. These methods all behave in much the same way as they did on a Multi-
EngineClient.

174 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

old
In [2]: mec.execute(’a=5’, targets=[0,1,2])

new
In [2]: view.execute(’a=5’, targets=[0,1,2])
or
In [2]: rc[0,1,2].execute(’a=5’)

This extends to any method that communicates with the engines.

Requests of the Hub (queue status, etc.) are no-longer asynchronous, and do not take a block argument.

• get_ids() is now the property ids, which is passively updated by the Hub (no need for network
requests for an up-to-date list).

• barrier() has been renamed to wait(), and now takes an optional timeout. flush() is re-
moved, as it is redundant with wait()

• zip_pull() has been removed

• keys() has been removed, but is easily implemented as:

dview.apply(lambda : globals().keys())

• push_function() and push_serialized() are removed, as push() handles functions
without issue.

See Also:

Our Direct Interface doc for a simple tutorial with the DirectView.

The other major difference is the use of apply(). When remote work is simply functions, the natural
return value is the actual Python objects. It is no longer the recommended pattern to use stdout as your
results, due to stream decoupling and the asynchronous nature of how the stdout streams are handled in the
new system.

5.12.5 Task to LoadBalancedView

Load-Balancing has changed more than Multiplexing. This is because there is no longer a notion of a
StringTask or a MapTask, there are simply Python functions to call. Tasks are now simpler, because they are
no longer composites of push/execute/pull/clear calls, they are a single function that takes arguments, and
returns objects.

The load-balanced interface is provided by the LoadBalancedView class, created by the client:

In [10]: lbview = rc.load_balanced_view()

load-balancing can also be restricted to a subset of engines:
In [10]: lbview = rc.load_balanced_view([1,2,3])

A simple task would consist of sending some data, calling a function on that data, plus some data that
was resident on the engine already, and then pulling back some results. This can all be done with a single
function.

5.12. Transitioning from IPython.kernel to IPython.parallel 175

IPython Documentation, Release 0.11

Let’s say you want to compute the dot product of two matrices, one of which resides on the engine, and
another resides on the client. You might construct a task that looks like this:

In [10]: st = kclient.StringTask("""
import numpy
C=numpy.dot(A,B)
""",
push=dict(B=B),
pull=’C’
)

In [11]: tid = tc.run(st)

In [12]: tr = tc.get_task_result(tid)

In [13]: C = tc[’C’]

In the new code, this is simpler:

In [10]: import numpy

In [11]: from IPython.parallel import Reference

In [12]: ar = lbview.apply(numpy.dot, Reference(’A’), B)

In [13]: C = ar.get()

Note the use of Reference This is a convenient representation of an object that exists in the engine’s
namespace, so you can pass remote objects as arguments to your task functions.

Also note that in the kernel model, after the task is run, ‘A’, ‘B’, and ‘C’ are all defined on the engine. In
order to deal with this, there is also a clear_after flag for Tasks to prevent pollution of the namespace, and
bloating of engine memory. This is not necessary with the new code, because only those objects explicitly
pushed (or set via globals()) will be resident on the engine beyond the duration of the task.

See Also:

Dependencies also work very differently than in IPython.kernel. See our doc on Dependencies for details.

See Also:

Our Task Interface doc for a simple tutorial with the LoadBalancedView.

PendingResults to AsyncResults

With the departure from Twisted, we no longer have the Deferred class for representing unfinished
results. For this, we have an AsyncResult object, based on the object of the same name in the built-in
multiprocessing.pool module. Our version provides a superset of that interface.

However, unlike in IPython.kernel, we do not have PendingDeferred, PendingResult, or TaskResult objects.
Simply this one object, the AsyncResult. Every asynchronous (block=False) call returns one.

The basic methods of an AsyncResult are:

176 Chapter 5. Using IPython for parallel computing

IPython Documentation, Release 0.11

AsyncResult.wait([timeout]): # wait for the result to arrive
AsyncResult.get([timeout]): # wait for the result to arrive, and then return it
AsyncResult.metadata: # dict of extra information about execution.

There are still some things that behave the same as IPython.kernel:

old
In [5]: pr = mec.pull(’a’, targets=[0,1], block=False)
In [6]: pr.r
Out[6]: [5, 5]

new
In [5]: ar = dview.pull(’a’, targets=[0,1], block=False)
In [6]: ar.r
Out[6]: [5, 5]

The .r or .result property simply calls get(), waiting for and returning the result.

See Also:

AsyncResult details

5.12. Transitioning from IPython.kernel to IPython.parallel 177

IPython Documentation, Release 0.11

178 Chapter 5. Using IPython for parallel computing

CHAPTER

SIX

CONFIGURATION AND
CUSTOMIZATION

6.1 Overview of the IPython configuration system

This section describes the IPython configuration system. Starting with version 0.11, IPython
has a completely new configuration system that is quite different from the older ipythonrc or
ipy_user_conf.py approaches. The new configuration system was designed from scratch to address
the particular configuration needs of IPython. While there are many other excellent configuration systems
out there, we found that none of them met our requirements.

Warning: If you are upgrading to version 0.11 of IPython, you will need to migrate your old
ipythonrc or ipy_user_conf.py configuration files to the new system. Read on for informa-
tion on how to do this.

The discussion that follows is focused on teaching users how to configure IPython to their liking. Developers
who want to know more about how they can enable their objects to take advantage of the configuration
system should consult our developer guide

6.1.1 The main concepts

There are a number of abstractions that the IPython configuration system uses. Each of these abstractions is
represented by a Python class.

Configuration object: Config A configuration object is a simple dictionary-like class that holds config-
uration attributes and sub-configuration objects. These classes support dotted attribute style access
(Foo.bar) in addition to the regular dictionary style access (Foo[’bar’]). Configuration objects
are smart. They know how to merge themselves with other configuration objects and they automati-
cally create sub-configuration objects.

Application: Application An application is a process that does a specific job. The most obvious ap-
plication is the ipython command line program. Each application reads one or more configuration
files and a single set of command line options and then produces a master configuration object for the
application. This configuration object is then passed to the configurable objects that the application

179

IPython Documentation, Release 0.11

creates. These configurable objects implement the actual logic of the application and know how to
configure themselves given the configuration object.

Applications always have a log attribute that is a configured Logger. This allows centralized logging
configuration per-application.

Configurable: Configurable A configurable is a regular Python class that serves as a base class for
all main classes in an application. The Configurable base class is lightweight and only does one
things.

This Configurable is a subclass of HasTraits that knows how to configure itself. Class level
traits with the metadata config=True become values that can be configured from the command
line and configuration files.

Developers create Configurable subclasses that implement all of the logic in the application. Each
of these subclasses has its own configuration information that controls how instances are created.

Singletons: SingletonConfigurable Any object for which there is a single canonical instance.
These are just like Configurables, except they have a class method instance(), that returns
the current active instance (or creates one if it does not exist). Examples of singletons include
InteractiveShell. This lets objects easily connect to the current running Application with-
out passing objects around everywhere. For instance, to get the current running Application instance,
simply do: app = Application.instance().

Note: Singletons are not strictly enforced - you can have many instances of a given singleton class, but the
instance() method will always return the same one.

Having described these main concepts, we can now state the main idea in our configuration system: “con-
figuration” allows the default values of class attributes to be controlled on a class by class basis. Thus
all instances of a given class are configured in the same way. Furthermore, if two instances need to be
configured differently, they need to be instances of two different classes. While this model may seem a bit
restrictive, we have found that it expresses most things that need to be configured extremely well. How-
ever, it is possible to create two instances of the same class that have different trait values. This is done by
overriding the configuration.

Now, we show what our configuration objects and files look like.

6.1.2 Configuration objects and files

A configuration file is simply a pure Python file that sets the attributes of a global, pre-created configuration
object. This configuration object is a Config instance. While in a configuration file, to get a reference to
this object, simply call the get_config() function. We inject this function into the global namespace
that the configuration file is executed in.

Here is an example of a super simple configuration file that does nothing:

c = get_config()

Once you get a reference to the configuration object, you simply set attributes on it. All you have to know
is:

180 Chapter 6. Configuration and customization

IPython Documentation, Release 0.11

• The name of each attribute.

• The type of each attribute.

The answers to these two questions are provided by the various Configurable subclasses that an appli-
cation uses. Let’s look at how this would work for a simple configurable subclass:

Sample configurable:
from IPython.config.configurable import Configurable
from IPython.utils.traitlets import Int, Float, Unicode, Bool

class MyClass(Configurable):
name = Unicode(u’defaultname’, config=True)
ranking = Int(0, config=True)
value = Float(99.0)
The rest of the class implementation would go here..

In this example, we see that MyClass has three attributes, two of whom (name, ranking) can be con-
figured. All of the attributes are given types and default values. If a MyClass is instantiated, but not
configured, these default values will be used. But let’s see how to configure this class in a configuration file:

Sample config file
c = get_config()

c.MyClass.name = ’coolname’
c.MyClass.ranking = 10

After this configuration file is loaded, the values set in it will override the class defaults anytime a MyClass
is created. Furthermore, these attributes will be type checked and validated anytime they are set. This type
checking is handled by the IPython.utils.traitlets module, which provides the Unicode, Int
and Float types. In addition to these traitlets, the IPython.utils.traitlets provides traitlets for
a number of other types.

Note: Underneath the hood, the Configurable base class is a subclass of
IPython.utils.traitlets.HasTraits. The IPython.utils.traitlets module is a
lightweight version of enthought.traits. Our implementation is a pure Python subset (mostly API
compatible) of enthought.traits that does not have any of the automatic GUI generation capabilities.
Our plan is to achieve 100% API compatibility to enable the actual enthought.traits to eventually be
used instead. Currently, we cannot use enthought.traits as we are committed to the core of IPython
being pure Python.

It should be very clear at this point what the naming convention is for configuration attributes:

c.ClassName.attribute_name = attribute_value

Here, ClassName is the name of the class whose configuration attribute you want to set,
attribute_name is the name of the attribute you want to set and attribute_value the the value
you want it to have. The ClassName attribute of c is not the actual class, but instead is another Config
instance.

Note: The careful reader may wonder how the ClassName (MyClass in the above example) attribute of

6.1. Overview of the IPython configuration system 181

IPython Documentation, Release 0.11

the configuration object c gets created. These attributes are created on the fly by the Config instance, using
a simple naming convention. Any attribute of a Config instance whose name begins with an uppercase
character is assumed to be a sub-configuration and a new empty Config instance is dynamically created
for that attribute. This allows deeply hierarchical information created easily (c.Foo.Bar.value) on the
fly.

6.1.3 Configuration files inheritance

Let’s say you want to have different configuration files for various purposes. Our configuration sys-
tem makes it easy for one configuration file to inherit the information in another configuration file. The
load_subconfig() command can be used in a configuration file for this purpose. Here is a simple
example that loads all of the values from the file base_config.py:

base_config.py
c = get_config()
c.MyClass.name = ’coolname’
c.MyClass.ranking = 100

into the configuration file main_config.py:

main_config.py
c = get_config()

Load everything from base_config.py
load_subconfig(’base_config.py’)

Now override one of the values
c.MyClass.name = ’bettername’

In a situation like this the load_subconfig() makes sure that the search path for sub-configuration files
is inherited from that of the parent. Thus, you can typically put the two in the same directory and everything
will just work.

You can also load configuration files by profile, for instance:

load_subconfig(’ipython_config.py’, profile=’default’)

to inherit your default configuration as a starting point.

6.1.4 Class based configuration inheritance

There is another aspect of configuration where inheritance comes into play. Sometimes, your classes will
have an inheritance hierarchy that you want to be reflected in the configuration system. Here is a simple
example:

from IPython.config.configurable import Configurable
from IPython.utils.traitlets import Int, Float, Unicode, Bool

class Foo(Configurable):
name = Unicode(u’fooname’, config=True)

182 Chapter 6. Configuration and customization

IPython Documentation, Release 0.11

value = Float(100.0, config=True)

class Bar(Foo):
name = Unicode(u’barname’, config=True)
othervalue = Int(0, config=True)

Now, we can create a configuration file to configure instances of Foo and Bar:

config file
c = get_config()

c.Foo.name = u’bestname’
c.Bar.othervalue = 10

This class hierarchy and configuration file accomplishes the following:

• The default value for Foo.name and Bar.namewill be ‘bestname’. Because Bar is a Foo subclass
it also picks up the configuration information for Foo.

• The default value for Foo.value and Bar.value will be 100.0, which is the value specified as
the class default.

• The default value for Bar.othervalue will be 10 as set in the configuration file. Because Foo is
the parent of Bar it doesn’t know anything about the othervalue attribute.

6.1.5 Configuration file location

So where should you put your configuration files? IPython uses “profiles” for configuration, and by default,
all profiles will be stored in the so called “IPython directory”. The location of this directory is determined
by the following algorithm:

• If the ipython_dir command line flag is given, its value is used.

• If not, the value returned by IPython.utils.path.get_ipython_dir() is used. This func-
tion will first look at the IPYTHON_DIR environment variable and then default to a platform-specific
default.

On posix systems (Linux, Unix, etc.), IPython respects the $XDG_CONFIG_HOME part of the XDG
Base Directory specification. If $XDG_CONFIG_HOME is defined and exists (XDG_CONFIG_HOME
has a default interpretation of $HOME/.config), then IPython’s config directory will be located in
$XDG_CONFIG_HOME/ipython. If users still have an IPython directory in $HOME/.ipython, then
that will be used. in preference to the system default.

For most users, the default value will simply be something like $HOME/.config/ipython on Linux, or
$HOME/.ipython elsewhere.

Once the location of the IPython directory has been determined, you need to know which profile you
are using. For users with a single configuration, this will simply be ‘default’, and will be located in
<IPYTHON_DIR>/profile_default.

The next thing you need to know is what to call your configuration file. The basic idea is that each application
has its own default configuration filename. The default named used by the ipython command line program
is ipython_config.py, and all IPython applications will use this file. Other applications, such as the

6.1. Overview of the IPython configuration system 183

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

IPython Documentation, Release 0.11

parallel ipcluster scripts or the QtConsole will load their own config files after ipython_config.py. To
load a particular configuration file instead of the default, the name can be overridden by the config_file
command line flag.

To generate the default configuration files, do:

$> ipython profile create

and you will have a default ipython_config.py in your IPython directory under
profile_default. If you want the default config files for the IPython.parallel applica-
tions, add --parallel to the end of the command-line args.

6.1.6 Profiles

A profile is a directory containing configuration and runtime files, such as logs, connection info for the
parallel apps, and your IPython command history.

The idea is that users often want to maintain a set of configuration files for different purposes: one for
doing numerical computing with NumPy and SciPy and another for doing symbolic computing with SymPy.
Profiles make it easy to keep a separate configuration files, logs, and histories for each of these purposes.

Let’s start by showing how a profile is used:

$ ipython --profile=sympy

This tells the ipython command line program to get its configuration from the “sympy” profile. The
file names for various profiles do not change. The only difference is that profiles are named in a
special way. In the case above, the “sympy” profile means looking for ipython_config.py in
<IPYTHON_DIR>/profile_sympy.

The general pattern is this: simply create a new profile with:

ipython profile create <name>

which adds a directory called profile_<name> to your IPython directory. Then you can load this profile
by adding --profile=<name> to your command line options. Profiles are supported by all IPython
applications.

IPython ships with some sample profiles in IPython/config/profile. If you create profiles with
the name of one of our shipped profiles, these config files will be copied over instead of starting with the
automatically generated config files.

6.1.7 Command-line arguments

IPython exposes all configurable options on the command-line. The command-line arguments are generated
from the Configurable traits of the classes associated with a given Application. Configuring IPython from
the command-line may look very similar to an IPython config file

IPython applications use a parser called KeyValueLoader to load values into a Config object. Values are
assigned in much the same way as in a config file:

184 Chapter 6. Configuration and customization

IPython Documentation, Release 0.11

$> ipython --InteractiveShell.use_readline=False --BaseIPythonApplication.profile=’myprofile’

Is the same as adding:

c.InteractiveShell.use_readline=False
c.BaseIPythonApplication.profile=’myprofile’

to your config file. Key/Value arguments always take a value, separated by ‘=’ and no spaces.

Aliases

For convenience, applications have a mapping of commonly used traits, so you don’t have to specify the
whole class name. For these aliases, the class need not be specified:

$> ipython --profile=’myprofile’
is equivalent to
$> ipython --BaseIPythonApplication.profile=’myprofile’

Flags

Applications can also be passed flags. Flags are options that take no arguments, and are always prefixed
with --. They are simply wrappers for setting one or more configurables with predefined values, often
True/False.

For instance:

$> ipcontroller --debug
is equivalent to
$> ipcontroller --Application.log_level=DEBUG
and
$> ipython --pylab
is equivalent to
$> ipython --pylab=auto

Subcommands

Some IPython applications have subcommands. Subcommands are modeled after git, and are called with
the form command subcommand [...args]. Currently, the QtConsole is a subcommand of terminal IPython:

$> ipython qtconsole --profile=myprofile

and ipcluster is simply a wrapper for its various subcommands (start, stop, engines).

$> ipcluster start --profile=myprofile --n=4

To see a list of the available aliases, flags, and subcommands for an IPython application, simply pass -h or
--help. And to see the full list of configurable options (very long), pass --help-all.

6.1. Overview of the IPython configuration system 185

IPython Documentation, Release 0.11

6.1.8 Design requirements

Here are the main requirements we wanted our configuration system to have:

• Support for hierarchical configuration information.

• Full integration with command line option parsers. Often, you want to read a configuration file, but
then override some of the values with command line options. Our configuration system automates this
process and allows each command line option to be linked to a particular attribute in the configuration
hierarchy that it will override.

• Configuration files that are themselves valid Python code. This accomplishes many things. First, it
becomes possible to put logic in your configuration files that sets attributes based on your operating
system, network setup, Python version, etc. Second, Python has a super simple syntax for accessing
hierarchical data structures, namely regular attribute access (Foo.Bar.Bam.name). Third, using
Python makes it easy for users to import configuration attributes from one configuration file to another.
Fourth, even though Python is dynamically typed, it does have types that can be checked at runtime.
Thus, a 1 in a config file is the integer ‘1’, while a ’1’ is a string.

• A fully automated method for getting the configuration information to the classes that need it at
runtime. Writing code that walks a configuration hierarchy to extract a particular attribute is painful.
When you have complex configuration information with hundreds of attributes, this makes you want
to cry.

• Type checking and validation that doesn’t require the entire configuration hierarchy to be specified
statically before runtime. Python is a very dynamic language and you don’t always know everything
that needs to be configured when a program starts.

6.2 IPython extensions

Configuration files are just the first level of customization that IPython supports. The next level is that of
extensions. An IPython extension is an importable Python module that has a a few special function. By
defining these functions, users can customize IPython by accessing the actual runtime objects of IPython.
Here is a sample extension:

myextension.py

def load_ipython_extension(ipython):
The ‘‘ipython‘‘ argument is the currently active
:class:‘InteractiveShell‘ instance that can be used in any way.
This allows you do to things like register new magics, plugins or
aliases.

def unload_ipython_extension(ipython):
If you want your extension to be unloadable, put that logic here.

This load_ipython_extension() function is called after your extension is imported and the currently
active InteractiveShell instance is passed as the only argument. You can do anything you want with
IPython at that point.

186 Chapter 6. Configuration and customization

IPython Documentation, Release 0.11

The load_ipython_extension() will be called again is you load or reload the extension again. It is
up to the extension author to add code to manage that.

You can put your extension modules anywhere you want, as long as they can be imported by Python’s
standard import mechanism. However, to make it easy to write extensions, you can also put your extensions
in os.path.join(self.ipython_dir, ’extensions’). This directory is added to sys.path
automatically.

6.2.1 Using extensions

There are two ways you can tell IPython to use your extension:

1. Listing it in a configuration file.

2. Using the %load_ext magic function.

To load an extension called myextension.py add the following logic to your configuration file:

c.InteractiveShellApp.extensions = [
’myextension’

]

To load that same extension at runtime, use the %load_ext magic:

In [1]: %load_ext myextension

To summarize, in conjunction with configuration files and profiles, IPython extensions give you complete
and flexible control over your IPython setup.

6.3 IPython plugins

IPython has a plugin mechanism that allows users to create new and custom runtime components for
IPython. Plugins are different from extensions:

• Extensions are used to load plugins.

• Extensions are a more advanced configuration system that gives you access to the running IPython
instance.

• Plugins add entirely new capabilities to IPython.

• Plugins are traited and configurable.

At this point, our plugin system is brand new and the documentation is minimal. If you are interested in
creating a new plugin, see the following files:

• IPython/extensions/parallemagic.py

• IPython/extensions/pretty.

As well as our documentation on the configuration system and extensions.

6.3. IPython plugins 187

IPython Documentation, Release 0.11

6.4 Configuring the ipython command line application

This section contains information about how to configure the ipython command line application. See the
configuration overview for a more general description of the configuration system and configuration file
format.

The default configuration file for the ipython command line application is ipython_config.py.
By setting the attributes in this file, you can configure the application. A sample is provided in
IPython.config.default.ipython_config. Simply copy this file to your IPython directory
to start using it.

Most configuration attributes that this file accepts are associated with classes that are subclasses of
Configurable.

Applications themselves are Configurable as well, so we will start with some application-level config.

6.4.1 Application-level configuration

Assuming that your configuration file has the following at the top:

c = get_config()

the following attributes are set application-wide:

terminal IPython-only flags:

c.TerminalIPythonApp.display_banner A boolean that determined if the banner is printer
when ipython is started.

c.TerminalIPythonApp.classic A boolean that determines if IPython starts in “classic” mode. In
this mode, the prompts and everything mimic that of the normal python shell

c.TerminalIPythonApp.nosep A boolean that determines if there should be no blank lines between
prompts.

c.Application.log_level An integer that sets the detail of the logging level during the startup of
ipython. The default is 30 and the possible values are (0, 10, 20, 30, 40, 50). Higher is quieter
and lower is more verbose. This can also be set by the name of the logging level, e.g. INFO=20,
WARN=30.

Some options, such as extensions and startup code, can be set for any application that starts an
InteractiveShell. These apps are subclasses of InteractiveShellApp. Since subclasses in-
herit configuration, setting a trait of c.InteractiveShellApp will affect all IPython applications,
but if you want terminal IPython and the QtConsole to have different values, you can set them via
c.TerminalIPythonApp and c.IPKernelApp respectively.

c.InteractiveShellApp.extensions A list of strings, each of which is an importable
IPython extension. An IPython extension is a regular Python module or package that has a
load_ipython_extension(ip)() method. This method gets called when the extension
is loaded with the currently running InteractiveShell as its only argument. You can put
your extensions anywhere they can be imported but we add the extensions subdirectory of
the ipython directory to sys.path during extension loading, so you can put them there as well.

188 Chapter 6. Configuration and customization

IPython Documentation, Release 0.11

Extensions are not executed in the user’s interactive namespace and they must be pure Python
code. Extensions are the recommended way of customizing ipython. Extensions can provide an
unload_ipython_extension() that will be called when the extension is unloaded.

c.InteractiveShellApp.exec_lines A list of strings, each of which is Python code that is run
in the user’s namespace after IPython start. These lines can contain full IPython syntax with magics,
etc.

c.InteractiveShellApp.exec_files A list of strings, each of which is the full pathname of a
.py or .ipy file that will be executed as IPython starts. These files are run in IPython in the user’s
namespace. Files with a .py extension need to be pure Python. Files with a .ipy extension can have
custom IPython syntax (magics, etc.). These files need to be in the cwd, the ipythondir or be absolute
paths.

6.4.2 Classes that can be configured

The following classes can also be configured in the configuration file for ipython:

• InteractiveShell

• PrefilterManager

• AliasManager

To see which attributes of these classes are configurable, please see the source code for these classes, the
class docstrings or the sample configuration file IPython.config.default.ipython_config.

6.4.3 Example

For those who want to get a quick start, here is a sample ipython_config.py that sets some of the
common configuration attributes:

sample ipython_config.py
c = get_config()

c.IPythonTerminalApp.display_banner = True
c.InteractiveShellApp.log_level = 20
c.InteractiveShellApp.extensions = [

’myextension’
]
c.InteractiveShellApp.exec_lines = [

’import numpy’,
’import scipy’

]
c.InteractiveShellApp.exec_files = [

’mycode.py’,
’fancy.ipy’

]
c.InteractiveShell.autoindent = True
c.InteractiveShell.colors = ’LightBG’
c.InteractiveShell.confirm_exit = False
c.InteractiveShell.deep_reload = True

6.4. Configuring the ipython command line application 189

IPython Documentation, Release 0.11

c.InteractiveShell.editor = ’nano’
c.InteractiveShell.prompt_in1 = ’In [\#]: ’
c.InteractiveShell.prompt_in2 = ’ .\D.: ’
c.InteractiveShell.prompt_out = ’Out[\#]: ’
c.InteractiveShell.prompts_pad_left = True
c.InteractiveShell.xmode = ’Context’

c.PrefilterManager.multi_line_specials = True

c.AliasManager.user_aliases = [
(’la’, ’ls -al’)

]

6.5 Editor configuration

IPython can integrate with text editors in a number of different ways:

• Editors (such as (X)Emacs [Emacs], vim [vim] and TextMate [TextMate]) can send code to IPython
for execution.

• IPython’s %edit magic command can open an editor of choice to edit a code block.

The %edit command (and its alias %ed) will invoke the editor set in your environment as EDITOR. If this
variable is not set, it will default to vi under Linux/Unix and to notepad under Windows. You may want to
set this variable properly and to a lightweight editor which doesn’t take too long to start (that is, something
other than a new instance of Emacs). This way you can edit multi-line code quickly and with the power of
a real editor right inside IPython.

You can also control the editor via the commmand-line option ‘-editor’ or in your configuration file, by
setting the InteractiveShell.editor configuration attribute.

6.5.1 TextMate

Currently, TextMate support in IPython is broken. It used to work well, but the code has been moved to
IPython.quarantine until it is updated.

6.5.2 vim configuration

Currently, vim support in IPython is broken. Like the TextMate code, the vim support code has been moved
to IPython.quarantine until it is updated.

6.5.3 (X)Emacs

6.5.4 Editor

If you are a dedicated Emacs user, and want to use Emacs when IPython’s %edit magic command is called
you should set up the Emacs server so that new requests are handled by the original process. This means that

190 Chapter 6. Configuration and customization

IPython Documentation, Release 0.11

almost no time is spent in handling the request (assuming an Emacs process is already running). For this to
work, you need to set your EDITOR environment variable to ‘emacsclient’. The code below, supplied by
Francois Pinard, can then be used in your .emacs file to enable the server:

(defvar server-buffer-clients)
(when (and (fboundp ’server-start) (string-equal (getenv "TERM") ’xterm))

(server-start)
(defun fp-kill-server-with-buffer-routine ()

(and server-buffer-clients (server-done)))
(add-hook ’kill-buffer-hook ’fp-kill-server-with-buffer-routine))

Thanks to the work of Alexander Schmolck and Prabhu Ramachandran, currently (X)Emacs and IPython
get along very well in other ways.

Note: You will need to use a recent enough version of python-mode.el, along with the file
ipython.el. You can check that the version you have of python-mode.el is new enough by ei-
ther looking at the revision number in the file itself, or asking for it in (X)Emacs via M-x py-version.
Versions 4.68 and newer contain the necessary fixes for proper IPython support.

The file ipython.el is included with the IPython distribution, in the directory docs/emacs. Once you
put these files in your Emacs path, all you need in your .emacs file is:

(require ’ipython)

This should give you full support for executing code snippets via IPython, opening IPython as your Python
shell via C-c !, etc.

You can customize the arguments passed to the IPython instance at startup by setting the
py-python-command-args variable. For example, to start always in pylab mode with hardcoded
light-background colors, you can use:

(setq py-python-command-args ’("-pylab" "-colors" "LightBG"))

If you happen to get garbage instead of colored prompts as described in the previous section, you may need
to set also in your .emacs file:

(setq ansi-color-for-comint-mode t)

Notes on emacs support:

• There is one caveat you should be aware of: you must start the IPython shell before attempting to
execute any code regions via C-c |. Simply type C-c ! to start IPython before passing any code
regions to the interpreter, and you shouldn’t experience any problems. This is due to a bug in Python
itself, which has been fixed for Python 2.3, but exists as of Python 2.2.2 (reported as SF bug [737947
]).

• The (X)Emacs support is maintained by Alexander Schmolck, so all comments/requests should be
directed to him through the IPython mailing lists.

• This code is still somewhat experimental so it’s a bit rough around the edges (although in practice, it
works quite well).

6.5. Editor configuration 191

IPython Documentation, Release 0.11

• Be aware that if you customized py-python-command previously, this value will override what
ipython.el does (because loading the customization variables comes later).

6.6 Outdated configuration information that might still be useful

Warning: All of the information in this file is outdated. Until the new configuration system is better
documented, this material is being kept.

This section will help you set various things in your environment for your IPython sessions to be as efficient
as possible. All of IPython’s configuration information, along with several example files, is stored in a
directory named by default $HOME/.config/ipython if $HOME/.config exists (Linux), or $HOME/.ipython
as a secondary default. You can change this by defining the environment variable IPYTHONDIR, or at
runtime with the command line option -ipythondir.

If all goes well, the first time you run IPython it should automatically create a user copy of the config
directory for you, based on its builtin defaults. You can look at the files it creates to learn more about
configuring the system. The main file you will modify to configure IPython’s behavior is called ipythonrc
(with a .ini extension under Windows), included for reference here. This file is very commented and has
many variables you can change to suit your taste, you can find more details here. Here we discuss the basic
things you will want to make sure things are working properly from the beginning.

6.6.1 Color

The default IPython configuration has most bells and whistles turned on (they’re pretty safe). But there’s
one that may cause problems on some systems: the use of color on screen for displaying information.
This is very useful, since IPython can show prompts and exception tracebacks with various colors, display
syntax-highlighted source code, and in general make it easier to visually parse information.

The following terminals seem to handle the color sequences fine:

• Linux main text console, KDE Konsole, Gnome Terminal, E-term, rxvt, xterm.

• CDE terminal (tested under Solaris). This one boldfaces light colors.

• (X)Emacs buffers. See the emacs_ section for more details on using IPython with (X)Emacs.

• A Windows (XP/2k) command prompt with pyreadline.

• A Windows (XP/2k) CygWin shell. Although some users have reported problems; it is not clear
whether there is an issue for everyone or only under specific configurations. If you have full color
support under cygwin, please post to the IPython mailing list so this issue can be resolved for all users.

These have shown problems:

• Windows command prompt in WinXP/2k logged into a Linux machine via telnet or ssh.

• Windows native command prompt in WinXP/2k, without Gary Bishop’s extensions. Once Gary’s
readline library is installed, the normal WinXP/2k command prompt works perfectly.

Currently the following color schemes are available:

192 Chapter 6. Configuration and customization

https://code.launchpad.net/pyreadline

IPython Documentation, Release 0.11

• NoColor: uses no color escapes at all (all escapes are empty ‘’ ‘’ strings). This ‘scheme’ is thus fully
safe to use in any terminal.

• Linux: works well in Linux console type environments: dark background with light fonts. It uses
bright colors for information, so it is difficult to read if you have a light colored background.

• LightBG: the basic colors are similar to those in the Linux scheme but darker. It is easy to read in
terminals with light backgrounds.

IPython uses colors for two main groups of things: prompts and tracebacks which are directly printed to the
terminal, and the object introspection system which passes large sets of data through a pager.

6.6.2 Input/Output prompts and exception tracebacks

You can test whether the colored prompts and tracebacks work on your system interactively by typing
‘%colors Linux’ at the prompt (use ‘%colors LightBG’ if your terminal has a light background). If the input
prompt shows garbage like:

[0;32mIn [[1;32m1[0;32m]: [0;00m

instead of (in color) something like:

In [1]:

this means that your terminal doesn’t properly handle color escape sequences. You can go to a ‘no color’
mode by typing ‘%colors NoColor’.

You can try using a different terminal emulator program (Emacs users, see below). To permanently set your
color preferences, edit the file $IPYTHON_DIR/ipythonrc and set the colors option to the desired value.

6.6.3 Object details (types, docstrings, source code, etc.)

IPython has a set of special functions for studying the objects you are working with, discussed in detail here.
But this system relies on passing information which is longer than your screen through a data pager, such as
the common Unix less and more programs. In order to be able to see this information in color, your pager
needs to be properly configured. I strongly recommend using less instead of more, as it seems that more
simply can not understand colored text correctly.

In order to configure less as your default pager, do the following:

1. Set the environment PAGER variable to less.

2. Set the environment LESS variable to -r (plus any other options you always want to pass to less by
default). This tells less to properly interpret control sequences, which is how color information is
given to your terminal.

For the bash shell, add to your ~/.bashrc file the lines:

export PAGER=less
export LESS=-r

For the csh or tcsh shells, add to your ~/.cshrc file the lines:

6.6. Outdated configuration information that might still be useful 193

IPython Documentation, Release 0.11

setenv PAGER less
setenv LESS -r

There is similar syntax for other Unix shells, look at your system documentation for details.

If you are on a system which lacks proper data pagers (such as Windows), IPython will use a very limited
builtin pager.

6.6.4 Fine-tuning your prompt

IPython’s prompts can be customized using a syntax similar to that of the bash shell. Many of bash’s escapes
are supported, as well as a few additional ones. We list them below:

\#
the prompt/history count number. This escape is automatically
wrapped in the coloring codes for the currently active color scheme.

\N
the ’naked’ prompt/history count number: this is just the number
itself, without any coloring applied to it. This lets you produce
numbered prompts with your own colors.

\D
the prompt/history count, with the actual digits replaced by dots.
Used mainly in continuation prompts (prompt_in2)

\w
the current working directory

\W
the basename of current working directory

\Xn
where $n=0\ldots5.$ The current working directory, with $HOME
replaced by ~, and filtered out to contain only n path elements

\Yn
Similar to \Xn, but with the $n+1$ element included if it is ~ (this
is similar to the behavior of the %cn escapes in tcsh)

\u
the username of the current user

\$
if the effective UID is 0, a #, otherwise a $

\h
the hostname up to the first ’.’

\H
the hostname

\n
a newline

\r
a carriage return

\v
IPython version string

In addition to these, ANSI color escapes can be insterted into the prompts, as C_ColorName. The list
of valid color names is: Black, Blue, Brown, Cyan, DarkGray, Green, LightBlue, LightCyan, LightGray,
LightGreen, LightPurple, LightRed, NoColor, Normal, Purple, Red, White, Yellow.

Finally, IPython supports the evaluation of arbitrary expressions in your prompt string. The prompt strings

194 Chapter 6. Configuration and customization

IPython Documentation, Release 0.11

are evaluated through the syntax of PEP 215, but basically you can use $x.y to expand the value of x.y,
and for more complicated expressions you can use braces: ${foo()+x} will call function foo and add to
it the value of x, before putting the result into your prompt. For example, using prompt_in1 ‘${com-
mands.getoutput(“uptime”)}nIn [#]: ‘ will print the result of the uptime command on each prompt (assuming
the commands module has been imported in your ipythonrc file).

Prompt examples

The following options in an ipythonrc file will give you IPython’s default prompts:

prompt_in1 ’In [\#]:’
prompt_in2 ’ .\D.:’
prompt_out ’Out[\#]:’

which look like this:

In [1]: 1+2
Out[1]: 3

In [2]: for i in (1,2,3):
...: print i,
...:

1 2 3

These will give you a very colorful prompt with path information:

#prompt_in1 ’\C_Red\u\C_Blue[\C_Cyan\Y1\C_Blue]\C_LightGreen\#>’
prompt_in2 ’ ..\D>’
prompt_out ’<\#>’

which look like this:

fperez[~/ipython]1> 1+2
<1> 3

fperez[~/ipython]2> for i in (1,2,3):
...> print i,
...>

1 2 3

6.6. Outdated configuration information that might still be useful 195

IPython Documentation, Release 0.11

196 Chapter 6. Configuration and customization

CHAPTER

SEVEN

IPYTHON DEVELOPER’S GUIDE

7.1 How to contribute to IPython

7.1.1 Overview

IPython development is done using Git [Git] and Github.com [Github.com]. This makes it easy for people
to contribute to the development of IPython. There are several ways in which you can join in.

7.1.2 Merging a branch into trunk

Core developers, who ultimately merge any approved branch (from themselves, another developer, or any
third-party contribution) will typically use git merge to merge the branch into the trunk and push it to the
main Git repository. There are a number of things to keep in mind when doing this, so that the project
history is easy to understand in the long run, and that generating release notes is as painless and accurate as
possible.

• When you merge any non-trivial functionality (from one small bug fix to a big feature branch), please
remember to always edit the appropriate file in the What’s new section of our documentation. Ideally,
the author of the branch should provide this content when they submit the branch for review. But if
they don’t it is the responsibility of the developer doing the merge to add this information.

• When merges are done, the practice of putting a summary commit message in the merge is extremely
useful. It is probably easiest if you simply use the same list of changes that were added to the What’s
new section of the documentation.

• It’s important that we remember to always credit who gave us something if it’s not the committer. In
general, we have been fairly good on this front, this is just a reminder to keep things up. As a note, if
you are ever committing something that is completely (or almost so) a third-party contribution, do the
commit as:

$ git commit --author="Someone Else <who@somewhere.com>"

This way it will show that name separately in the log, which makes it even easier to spot. Obviously
we often rework third party contributions extensively, but this is still good to keep in mind for cases
when we don’t touch the code too much.

197

IPython Documentation, Release 0.11

7.1.3 Commit messages

Good commit messages are very important; they provide a verbal account of what happened that is often
invaluable for anyone trying to undestand the intent of a commit later on (including the original author!).
And git’s log command is a very versatile and powerful tool, capable of extracting a lot of information from
the commit logs, so it’s important that these logs actually have useful information in them.

In short, a commit message should have the form:

One line summary.
<THIS LINE MUST BE LEFT BLANK>

More detailed description of what was done, using multiple lines and even
more than one paragraph if needed. For very simple commits this may not be
necessary, but non-trivial ones should always have it.

Closes gh-NNN. # if the commit closes issue NNN on github.

This format is understood by many git tools that expect a single line summary, so please do respect it.

An excellent reference on commits message is this blog post, please take a moment to read it (it’s short but
very informative).

7.2 Working with IPython source code

These pages describe a git and github workflow for the IPython project.

There are several different workflows here, for different ways of working with IPython.

This is not a comprehensive git reference, it’s just a workflow for our own project. It’s tailored to the github
hosting service. You may well find better or quicker ways of getting stuff done with git, but these should get
you started.

For general resources for learning git see git resources.

Contents:

7.2.1 Install git

Overview

Debian / Ubuntu sudo apt-get install git-core
Fedora sudo yum install git-core
Windows Download and install msysGit
OS X Use the git-osx-installer

In detail

See the git page for the most recent information.

198 Chapter 7. IPython developer’s guide

http://who-t.blogspot.com/2009/12/on-commit-messages.html
http://git-scm.com/
http://github.com
http://ipython.org
http://git-scm.com/
http://github.com
http://git-scm.com/
http://code.google.com/p/msysgit/downloads/list
http://code.google.com/p/git-osx-installer/downloads/list
http://git-scm.com/

IPython Documentation, Release 0.11

Have a look at the github install help pages available from github help

There are good instructions here: http://book.git-scm.com/2_installing_git.html

7.2.2 Following the latest source

These are the instructions if you just want to follow the latest ipython source, but you don’t need to do any
development for now.

The steps are:

• Install git

• get local copy of the git repository from github

• update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/ipython/ipython.git

You now have a copy of the code tree in the new ipython directory.

Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd ipython
git pull

The tree in ipython will now have the latest changes from the initial repository.

7.2.3 Making a patch

You’ve discovered a bug or something else you want to change in ipython - excellent!

You’ve worked out a way to fix it - even better!

You want to tell us about it - best of all!

The easiest way is to make a patch or set of patches. Here we explain how. Making a patch is the simplest and
quickest, but if you’re going to be doing anything more than simple quick things, please consider following
the Git for development model instead.

7.2. Working with IPython source code 199

http://github.com
http://help.github.com
http://book.git-scm.com/2_installing_git.html
http://github.com
http://ipython.org

IPython Documentation, Release 0.11

Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don’t have it
git clone git://github.com/ipython/ipython.git
make a branch for your patching
cd ipython
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you’ve made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am ’BF - added tests for Funny bug’
hack hack, hack
git commit -am ’BF - added fix for Funny bug’
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the ipython mailing list - where we will thank you warmly.

In detail

1. Tell git who you are so it can label the commits you’ve made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

2. If you don’t already have one, clone a copy of the ipython repository:

git clone git://github.com/ipython/ipython.git
cd ipython

3. Make a ‘feature branch’. This will be where you work on your bug fix. It’s nice and safe and leaves
you with access to an unmodified copy of the code in the main branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

4. Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you’ve made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am ’BF - added tests for Funny bug’
hack hack, hack
git commit -am ’BF - added fix for Funny bug’

200 Chapter 7. IPython developer’s guide

http://mail.scipy.org/mailman/listinfo/IPython-dev
http://git-scm.com/
http://ipython.org

IPython Documentation, Release 0.11

Note the -am options to commit. The m flag just signals that you’re going to type a message on the
command line. The a flag - you can just take on faith - or see why the -a flag?.

5. When you have finished, check you have committed all your changes:

git status

6. Finally, make your commits into patches. You want all the commits since you branched from the
master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the ipython mailing list.

When you are done, to switch back to the main copy of the code, just return to the master branch:

git checkout master

Moving from patching to development

If you find you have done some patches, and you have one or more feature branches, you will probably want
to switch to development mode. You can do this with the repository you have.

Fork the ipython repository on github - Making your own copy (fork) of ipython. Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to ’upstream’
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/ipython.git
push up any branches you’ve made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the Development workflow.

7.2.4 Git for development

Contents:

Making your own copy (fork) of ipython

You need to do this only once. The instructions here are very similar to the instructions at
http://help.github.com/forking/ - please see that page for more detail. We’re repeating some of it here just to
give the specifics for the ipython project, and to suggest some default names.

7.2. Working with IPython source code 201

http://www.gitready.com/beginner/2009/01/18/the-staging-area.html
http://mail.scipy.org/mailman/listinfo/IPython-dev
http://ipython.org
http://github.com
http://help.github.com/forking/
http://ipython.org

IPython Documentation, Release 0.11

Set up and configure a github account

If you don’t have a github account, go to the github page, and make one.

You then need to configure your account to allow write access - see the Generating SSH keys help on
github help.

Create your own forked copy of ipython

1. Log into your github account.

2. Go to the ipython github home at ipython github.

3. Click on the fork button:

Now, after a short pause and some ‘Hardcore forking action’, you should find yourself at the home
page for your own forked copy of ipython.

Set up your fork

First you follow the instructions for Making your own copy (fork) of ipython.

Overview

git clone git@github.com:your-user-name/ipython.git
cd ipython
git remote add upstream git://github.com/ipython/ipython.git

In detail

Clone your fork

1. Clone your fork to the local computer with git clone
git@github.com:your-user-name/ipython.git

2. Investigate. Change directory to your new repo: cd ipython. Then git branch -a to show
you all branches. You’ll get something like:

* master
remotes/origin/master

202 Chapter 7. IPython developer’s guide

http://github.com
http://github.com
http://help.github.com
http://github.com
http://ipython.org
http://github.com/ipython/ipython
http://ipython.org

IPython Documentation, Release 0.11

This tells you that you are currently on the master branch, and that you also have a remote con-
nection to origin/master. What remote repository is remote/origin? Try git remote
-v to see the URLs for the remote. They will point to your github fork.

Now you want to connect to the upstream ipython github repository, so you can merge in changes
from trunk.

Linking your repository to the upstream repo
cd ipython
git remote add upstream git://github.com/ipython/ipython.git

upstream here is just the arbitrary name we’re using to refer to the main ipython repository at ipython
github.

Note that we’ve used git:// for the URL rather than git@. The git:// URL is read only. This means
we that we can’t accidentally (or deliberately) write to the upstream repo, and we are only going to use it to
merge into our own code.

Just for your own satisfaction, show yourself that you now have a new ‘remote’, with git remote -v
show, giving you something like:

upstream git://github.com/ipython/ipython.git (fetch)
upstream git://github.com/ipython/ipython.git (push)
origin git@github.com:your-user-name/ipython.git (fetch)
origin git@github.com:your-user-name/ipython.git (push)

Configure git

Overview

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

In detail

This is to tell git who you are, for labeling any changes you make to the code. The simplest way to do this
is from the command line:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

This will write the settings into your git configuration file - a file called .gitconfig in your home direc-
tory.

Advanced git configuration

You might well benefit from some aliases to common commands.

7.2. Working with IPython source code 203

http://github.com
http://github.com/ipython/ipython
http://ipython.org
http://github.com/ipython/ipython
http://github.com/ipython/ipython
http://git-scm.com/

IPython Documentation, Release 0.11

For example, you might well want to be able to shorten git checkout to git co.

The easiest way to do this, is to create a .gitconfig file in your home directory, with contents like this:

[core]
editor = emacs

[user]
email = you@yourdomain.example.com
name = Your Name Comes Here

[alias]
st = status
stat = status
co = checkout

[color]
diff = auto
status = true

(of course you’ll need to set your email and name, and may want to set your editor). If you prefer, you can
do the same thing from the command line:

git config --global core.editor emacs
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
git config --global alias.st status
git config --global alias.stat status
git config --global alias.co checkout
git config --global color.diff auto
git config --global color.status true

These commands will write to your user’s git configuration file ~/.gitconfig.

To set up on another computer, you can copy your ~/.gitconfig file, or run the commands above.

Other configuration recommended by Yarik

In your ~/.gitconfig file alias section:

wdiff = diff --color-words

so that git wdiff gives a nicely formatted output of the diff.

To enforce summaries when doing merges(~/.gitconfig file again):

[merge]
summary = true

Development workflow

You already have your own forked copy of the ipython repository, by following Making your own copy
(fork) of ipython, Set up your fork, and you have configured git by following Configure git.

204 Chapter 7. IPython developer’s guide

http://ipython.org
http://git-scm.com/

IPython Documentation, Release 0.11

Workflow summary

• Keep your master branch clean of edits that have not been merged to the main ipython development
repo. Your master then will follow the main ipython repository.

• Start a new feature branch for each set of edits that you do.

• If you can avoid it, try not to merge other branches into your feature branch while you are working.

• Ask for review!

This way of working really helps to keep work well organized, and in keeping history as clear as possible.

See - for example - linux git workflow.

Making a new feature branch

git branch my-new-feature
git checkout my-new-feature

Generally, you will want to keep this also on your public github fork of ipython. To do this, you git push
this new branch up to your github repo. Generally (if you followed the instructions in these pages, and by
default), git will have a link to your github repo, called origin. You push up to your own repo on github
with:

git push origin my-new-feature

From now on git will know that my-new-feature is related to the my-new-feature branch in the
github repo.

The editing workflow

Overview
hack hack
git add my_new_file
git commit -am ’NF - some message’
git push

In more detail

1. Make some changes

2. See which files have changed with git status (see git status). You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README

7.2. Working with IPython source code 205

http://ipython.org
http://ipython.org
http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
http://github.com
http://ipython.org
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://github.com
http://github.com
http://github.com
http://git-scm.com/
http://github.com
http://www.kernel.org/pub/software/scm/git/docs/git-status.html

IPython Documentation, Release 0.11

#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

3. Check what the actual changes are with git diff (git diff).

4. Add any new files to version control git add new_file_name (see git add).

5. To commit all modified files into the local copy of your repo„ do git commit -am ’A commit
message’. Note the -am options to commit. The m flag just signals that you’re going to type a
message on the command line. The a flag - you can just take on faith - or see why the -a flag?. See
also the git commit manual page.

6. To push the changes up to your forked repo on github, do a git push (see git push).

Asking for code review

1. Go to your repo URL - e.g. http://github.com/your-user-name/ipython.

2. Click on the Branch list button:

3. Click on the Compare button for your feature branch - here my-new-feature:

4. If asked, select the base and comparison branch names you want to compare. Usually these will be
master and my-new-feature (where that is your feature branch name).

5. At this point you should get a nice summary of the changes. Copy the URL for this, and
post it to the ipython mailing list, asking for review. The URL will look something like:
http://github.com/your-user-name/ipython/compare/master...my-new-feature.
There’s an example at http://github.com/matthew-brett/nipy/compare/master...find-install-data See:
http://github.com/blog/612-introducing-github-compare-view for more detail.

The generated comparison, is between your feature branch my-new-feature, and the place in master
from which you branched my-new-feature. In other words, you can keep updating master without
interfering with the output from the comparison. More detail? Note the three dots in the URL above
(master...my-new-feature) and see dot2-dot3.

206 Chapter 7. IPython developer’s guide

http://www.kernel.org/pub/software/scm/git/docs/git-diff.html
http://www.kernel.org/pub/software/scm/git/docs/git-add.html
http://www.gitready.com/beginner/2009/01/18/the-staging-area.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http://github.com
http://mail.scipy.org/mailman/listinfo/IPython-dev
http://github.com/matthew-brett/nipy/compare/master...find-install-data
http://github.com/blog/612-introducing-github-compare-view

IPython Documentation, Release 0.11

Asking for your changes to be merged with the main repo

When you are ready to ask for the merge of your code:

1. Go to the URL of your forked repo, say http://github.com/your-user-name/ipython.git.

2. Click on the ‘Pull request’ button:

Enter a message; we suggest you select only ipython as the recipient. The message will go to the
ipython mailing list. Please feel free to add others from the list as you like.

Merging from trunk

This updates your code from the upstream ipython github repo.

Overview
go to your master branch
git checkout master
pull changes from github
git fetch upstream
merge from upstream
git merge upstream/master

In detail We suggest that you do this only for your master branch, and leave your ‘feature’ branches
unmerged, to keep their history as clean as possible. This makes code review easier:

git checkout master

Make sure you have done Linking your repository to the upstream repo.

Merge the upstream code into your current development by first pulling the upstream repo to a copy on your
local machine:

git fetch upstream

then merging into your current branch:

git merge upstream/master

7.2. Working with IPython source code 207

http://mail.scipy.org/mailman/listinfo/IPython-dev
http://github.com/ipython/ipython

IPython Documentation, Release 0.11

Deleting a branch on github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also: http://github.com/guides/remove-a-remote-branch

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all committing into the same repository,
or even the same branch, then just share it via github.

First fork ipython into your account, as from Making your own copy (fork) of ipython.

Then, go to your forked repository github page, say http://github.com/your-user-name/ipython

Click on the ‘Admin’ button, and add anyone else to the repo as a collaborator:

Now all those people can do:

git clone git@githhub.com:your-user-name/ipython.git

Remember that links starting with git@ use the ssh protocol and are read-write; links starting with git://
are read-only.

Your collaborators can then commit directly into that repo with the usual:

git commit -am ’ENH - much better code’
git push origin master # pushes directly into your repo

Exploring your repository

To see a graphical representation of the repository branches and commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer for your github repo.

208 Chapter 7. IPython developer’s guide

http://github.com/guides/remove-a-remote-branch
http://github.com
http://github.com/blog/39-say-hello-to-the-network-graph-visualizer
http://github.com

IPython Documentation, Release 0.11

7.2.5 git resources

Tutorials and summaries

• github help has an excellent series of how-to guides.

• learn.github has an excellent series of tutorials

• The pro git book is a good in-depth book on git.

• A git cheat sheet is a page giving summaries of common commands.

• The git user manual

• The git tutorial

• The git community book

• git ready - a nice series of tutorials

• git casts - video snippets giving git how-tos.

• git magic - extended introduction with intermediate detail

• Fernando Perez’ git page - Fernando’s git page - many links and tips

• A good but technical page on git concepts

• Th git parable is an easy read explaining the concepts behind git.

• git svn crash course: git for those of us used to subversion

Advanced git workflow

There are many ways of working with git; here are some posts on the rules of thumb that other projects have
come up with:

• Linus Torvalds on git management

• Linus Torvalds on linux git workflow . Summary; use the git tools to make the history of your edits
as clean as possible; merge from upstream edits as little as possible in branches where you are doing
active development.

Manual pages online

You can get these on your own machine with (e.g) git help push or (same thing) git push
--help, but, for convenience, here are the online manual pages for some common commands:

• git add

• git branch

• git checkout

• git clone

7.2. Working with IPython source code 209

http://help.github.com
http://learn.github.com/
http://progit.org/
http://github.com/guides/git-cheat-sheet
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
http://book.git-scm.com/
http://www.gitready.com/
http://www.gitcasts.com/
http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html
http://www.fperez.org/py4science/git.html
http://www.eecs.harvard.edu/~cduan/technical/git/
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://git-scm.com/course/svn.html
http://git-scm.com/
http://subversion.tigris.org/
http://git-scm.com/
http://kerneltrap.org/Linux/Git_Management
http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
http://www.kernel.org/pub/software/scm/git/docs/git-add.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html

IPython Documentation, Release 0.11

• git commit

• git config

• git diff

• git log

• git pull

• git push

• git remote

• git status

7.3 Coding guide

7.3.1 General coding conventions

In general, we’ll try to follow the standard Python style conventions as described in Python’s PEP 8 [PEP8],
the official Python Style Guide.

Other general comments:

• In a large file, top level classes and functions should be separated by 2 lines to make it easier to
separate them visually.

• Use 4 spaces for indentation, never use hard tabs.

• Keep the ordering of methods the same in classes that have the same methods. This is particularly
true for classes that implement similar interfaces and for interfaces that are similar.

7.3.2 Naming conventions

In terms of naming conventions, we’ll follow the guidelines of PEP 8 [PEP8]. Some of the existing code
doesn’t honor this perfectly, but for all new IPython code (and much existing code is being refactored), we’ll
use:

• All lowercase module names.

• CamelCase for class names.

• lowercase_with_underscores for methods, functions, variables and attributes.

This may be confusing as some of the existing codebase uses a different convention (lowerCamelCase
for methods and attributes). Slowly, we will move IPython over to the new convention, providing shadow
names for backward compatibility in public interfaces.

There are, however, some important exceptions to these rules. In some cases, IPython code will interface
with packages (Twisted, Wx, Qt) that use other conventions. At some level this makes it impossible to adhere
to our own standards at all times. In particular, when subclassing classes that use other naming conventions,
you must follow their naming conventions. To deal with cases like this, we propose the following policy:

210 Chapter 7. IPython developer’s guide

http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http://www.kernel.org/pub/software/scm/git/docs/git-config.html
http://www.kernel.org/pub/software/scm/git/docs/git-diff.html
http://www.kernel.org/pub/software/scm/git/docs/git-log.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-remote.html
http://www.kernel.org/pub/software/scm/git/docs/git-status.html

IPython Documentation, Release 0.11

• If you are subclassing a class that uses different conventions, use its naming conventions
throughout your subclass. Thus, if you are creating a Twisted Protocol class, used Twisted’s
namingSchemeForMethodsAndAttributes.

• All IPython’s official interfaces should use our conventions. In some cases this will mean that you
need to provide shadow names (first implement fooBar and then foo_bar = fooBar). We want
to avoid this at all costs, but it will probably be necessary at times. But, please use this sparingly!

Implementation-specific private methods will use _single_underscore_prefix. Names with a lead-
ing double underscore will only be used in special cases, as they makes subclassing difficult (such names
are not easily seen by child classes).

Occasionally some run-in lowercase names are used, but mostly for very short names or where we are imple-
menting methods very similar to existing ones in a base class (like runlines() where runsource()
and runcode() had established precedent).

The old IPython codebase has a big mix of classes and modules prefixed with an explicit IP. In Python this
is mostly unnecessary, redundant and frowned upon, as namespaces offer cleaner prefixing. The only case
where this approach is justified is for classes which are expected to be imported into external namespaces
and a very generic name (like Shell) is too likely to clash with something else. However, if a prefix seems
absolutely necessary the more specific IPY or ipy are preferred.

7.3.3 Attribute declarations for objects

In general, objects should declare in their class all attributes the object is meant to hold throughout its life.
While Python allows you to add an attribute to an instance at any point in time, this makes the code harder
to read and requires methods to constantly use checks with hasattr() or try/except calls. By declaring all
attributes of the object in the class header, there is a single place one can refer to for understanding the
object’s data interface, where comments can explain the role of each variable and when possible, sensible
deafaults can be assigned.

Warning: If an attribute is meant to contain a mutable object, it should be set to None in the class
and its mutable value should be set in the object’s constructor. Since class attributes are shared by all
instances, failure to do this can lead to difficult to track bugs. But you should still set it in the class
declaration so the interface specification is complete and documdented in one place.

A simple example:

class foo:
X does..., sensible default given:
x = 1
y does..., default will be set by constructor
y = None
z starts as an empty list, must be set in constructor
z = None

def __init__(self, y):
self.y = y
self.z = []

7.3. Coding guide 211

IPython Documentation, Release 0.11

7.3.4 New files

When starting a new file for IPython, you can use the following template as a starting point that has
a few common things pre-written for you. The template is included in the documentation sources as
docs/sources/development/template.py:

"""A one-line description.

A longer description that spans multiple lines. Explain the purpose of the
file and provide a short list of the key classes/functions it contains. This
is the docstring shown when some does ’import foo;foo?’ in IPython, so it
should be reasonably useful and informative.
"""
#---
Copyright (c) 2011, the IPython Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file COPYING.txt, distributed with this software.
#---

#---
Imports
#---
from __future__ import print_function

[remove this comment in production]
#
List all imports, sorted within each section (stdlib/third-party/ipython).
For ’import foo’, use one import per line. For ’from foo.bar import a, b, c’
it’s OK to import multiple items, use the parenthesized syntax ’from foo
import (a, b, ...)’ if the list needs multiple lines.

Stdlib imports

Third-party imports

Our own imports

[remove this comment in production]
#
Use broad section headers like this one that make it easier to navigate the
file, with descriptive titles. For complex classes, simliar (but indented)
headers are useful to organize the internal class structure.

#---
Globals and constants
#---

#---
Local utilities
#---

212 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

#---
Classes and functions
#---

7.4 Documenting IPython

When contributing code to IPython, you should strive for clarity and consistency, without falling prey to a
style straitjacket. Basically, ‘document everything, try to be consistent, do what makes sense.’

By and large we follow existing Python practices in major projects like Python itself or NumPy, this docu-
ment provides some additional detail for IPython.

7.4.1 Standalone documentation

All standalone documentation should be written in plain text (.txt) files using reStructuredText [re-
StructuredText] for markup and formatting. All such documentation should be placed in the directory
docs/source of the IPython source tree. Or, when appropriate, a suitably named subdirectory should
be used. The documentation in this location will serve as the main source for IPython documentation.

The actual HTML and PDF docs are built using the Sphinx [Sphinx] documentation generation tool. Once
you have Sphinx installed, you can build the html docs yourself by doing:

$ cd ipython-mybranch/docs
$ make html

Our usage of Sphinx follows that of matplotlib [Matplotlib] closely. We are using a number of Sphinx tools
and extensions written by the matplotlib team and will mostly follow their conventions, which are nicely
spelled out in their documentation guide [MatplotlibDocGuide]. What follows is thus a abridged version of
the matplotlib documentation guide, taken with permission from the matplotlib team.

If you are reading this in a web browser, you can click on the “Show Source” link to see the original
reStricturedText for the following examples.

A bit of Python code:

for i in range(10):
print i,

print "A big number:",2**34

An interactive Python session:

>>> from IPython.utils.path import get_ipython_dir
>>> get_ipython_dir()
’/home/fperez/.config/ipython’

An IPython session:

In [7]: import IPython

In [8]: print "This IPython is version:",IPython.__version__

7.4. Documenting IPython 213

IPython Documentation, Release 0.11

This IPython is version: 0.9.1

In [9]: 2+4
Out[9]: 6

A bit of shell code:

cd /tmp
echo "My home directory is: $HOME"
ls

7.4.2 Docstring format

Good docstrings are very important. Unfortunately, Python itself only provides a rather loose standard for
docstrings [PEP257], and there is no universally accepted convention for all the different parts of a complete
docstring. However, the NumPy project has established a very reasonable standard, and has developed some
tools to support the smooth inclusion of such docstrings in Sphinx-generated manuals. Rather than inventing
yet another pseudo-standard, IPython will be henceforth documented using the NumPy conventions; we
carry copies of some of the NumPy support tools to remain self-contained, but share back upstream with
NumPy any improvements or fixes we may make to the tools.

The NumPy documentation guidelines [NumPyDocGuide] contain detailed information on this standard,
and for a quick overview, the NumPy example docstring [NumPyExampleDocstring] is a useful read.

For user-facing APIs, we try to be fairly strict about following the above standards (even though they mean
more verbose and detailed docstrings). Wherever you can reasonably expect people to do introspection with:

In [1]: some_function?

the docstring should follow the NumPy style and be fairly detailed.

For purely internal methods that are only likely to be read by others extending IPython itself we are a bit
more relaxed, especially for small/short methods and functions whose intent is reasonably obvious. We still
expect docstrings to be written, but they can be simpler. For very short functions with a single-line docstring
you can use something like:

def add(a, b):
"""The sum of two numbers.
"""
code

and for longer multiline strings:

def add(a, b):
"""The sum of two numbers.

Here is the rest of the docs.
"""
code

Here are two additional PEPs of interest regarding documentation of code. While both of these were rejected,
the ideas therein form much of the basis of docutils (the machinery to process reStructuredText):

214 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

• Docstring Processing System Framework

• Docutils Design Specification

Note: In the past IPython used epydoc so currently many docstrings still use epydoc conventions. We will
update them as we go, but all new code should be documented using the NumPy standard.

7.4.3 Building and uploading

The built docs are stored in a separate repository. Through some github magic, they’re automatically exposed
as a website. It works like this:

• You will need to have sphinx and latex installed. In Ubuntu, in-
stall texlive-latex-recommended texlive-latex-extra
texlive-fonts-recommended. Install the latest version of sphinx from PyPI (pip install
sphinx).

• Ensure that the development version of IPython is the first in your system path. You can either use a
virtualenv, or modify your PYTHONPATH.

• Switch into the docs directory, and run make gh-pages. This will build your updated docs as html
and pdf, then automatically check out the latest version of the docs repository, copy the built docs into
it, and commit your changes.

• Open the built docs in a web browser, and check that they’re as expected.

• (When building the docs for a new tagged release, you will have to add its link to index.rst, then run
python build_index.py to update index.html. Commit the change.)

• Upload the docs with git push. This only works if you have write access to the docs repository.

• If you are building a version that is not the current dev branch, nor a tagged release, then you
must run gh-pages.py directly with python gh-pages.py <version>, and not with make
gh-pages.

7.5 Testing IPython for users and developers

7.5.1 Overview

It is extremely important that all code contributed to IPython has tests. Tests should be written as unittests,
doctests or other entities that the IPython test system can detect. See below for more details on this.

Each subpackage in IPython should have its own tests directory that contains all of the tests for that
subpackage. All of the files in the tests directory should have the word “tests” in them to enable the
testing framework to find them.

In docstrings, examples (either using IPython prompts like In [1]: or ‘classic’ python >>> ones) can
and should be included. The testing system will detect them as doctests and will run them; it offers control

7.5. Testing IPython for users and developers 215

http://www.python.org/peps/pep-0256.html
http://www.python.org/peps/pep-0258.html

IPython Documentation, Release 0.11

to skip parts or all of a specific doctest if the example is meant to be informative but shows non-reproducible
information (like filesystem data).

If a subpackage has any dependencies beyond the Python standard library, the tests for that subpackage
should be skipped if the dependencies are not found. This is very important so users don’t get tests failing
simply because they don’t have dependencies.

The testing system we use is a hybrid of nose and Twisted’s trial test runner. We use both because nose
detects more things than Twisted and allows for more flexible (and lighter-weight) ways of writing tests; in
particular we’ve developed a nose plugin that allows us to paste verbatim IPython sessions and test them
as doctests, which is extremely important for us. But the parts of IPython that depend on Twisted must be
tested using trial, because only trial manages the Twisted reactor correctly.

7.5.2 For the impatient: running the tests

You can run IPython from the source download directory without even installing it system-wide or having
configure anything, by typing at the terminal:

python ipython.py

In order to run the test suite, you must at least be able to import IPython, even if you haven’t fully installed
the user-facing scripts yet (common in a development environment). You can then run the tests with:

python -c "import IPython; IPython.test()"

Once you have installed IPython either via a full install or using:

python setup.py develop

you will have available a system-wide script called iptest that runs the full test suite. You can then run
the suite with:

iptest [args]

Regardless of how you run things, you should eventually see something like:

**
Test suite completed for system with the following information:
{’commit_hash’: ’144fdae’,
’commit_source’: ’repository’,
’ipython_path’: ’/home/fperez/usr/lib/python2.6/site-packages/IPython’,
’ipython_version’: ’0.11.dev’,
’os_name’: ’posix’,
’platform’: ’Linux-2.6.35-22-generic-i686-with-Ubuntu-10.10-maverick’,
’sys_executable’: ’/usr/bin/python’,
’sys_platform’: ’linux2’,
’sys_version’: ’2.6.6 (r266:84292, Sep 15 2010, 15:52:39) \n[GCC 4.4.5]’}

Tools and libraries available at test time:
curses foolscap gobject gtk pexpect twisted wx wx.aui zope.interface

Ran 9 test groups in 67.213s

216 Chapter 7. IPython developer’s guide

http://code.google.com/p/python-nose
http://twistedmatrix.com/trac/wiki/TwistedTrial

IPython Documentation, Release 0.11

Status:
OK

If not, there will be a message indicating which test group failed and how to rerun that group individually.
For example, this tests the IPython.utils subpackage, the -v option shows progress indicators:

$ iptest -v IPython.utils
..........................SS..SSS............................S.S...
...
--
Ran 125 tests in 0.119s

OK (SKIP=7)

Because the IPython test machinery is based on nose, you can use all nose options and syntax,
typing iptest -h shows all available options. For example, this lets you run the specific test
test_rehashx() inside the test_magic module:

$ iptest -vv IPython.core.tests.test_magic:test_rehashx
IPython.core.tests.test_magic.test_rehashx(True,) ... ok
IPython.core.tests.test_magic.test_rehashx(True,) ... ok

--
Ran 2 tests in 0.100s

OK

When developing, the --pdb and --pdb-failures of nose are particularly useful, these drop you into
an interactive pdb session at the point of the error or failure respectively.

To run Twisted-using tests, use the trial command on a per file or package basis:

trial IPython.kernel

Note: The system information summary printed above is accessible from the top level package. If you
encounter a problem with IPython, it’s useful to include this information when reporting on the mailing list;
use:

from IPython import sys_info
print sys_info()

and include the resulting information in your query.

7.5.3 For developers: writing tests

By now IPython has a reasonable test suite, so the best way to see what’s available is to look at the tests
directory in most subpackages. But here are a few pointers to make the process easier.

7.5. Testing IPython for users and developers 217

IPython Documentation, Release 0.11

Main tools: IPython.testing

The IPython.testing package is where all of the machinery to test IPython (rather than the tests for its
various parts) lives. In particular, the iptest module in there has all the smarts to control the test process.
In there, the make_exclude() function is used to build a blacklist of exclusions, these are modules that
do not get even imported for tests. This is important so that things that would fail to even import because of
missing dependencies don’t give errors to end users, as we stated above.

The decorators module contains a lot of useful decorators, especially useful to mark individual tests
that should be skipped under certain conditions (rather than blacklisting the package altogether because of
a missing major dependency).

Our nose plugin for doctests

The plugin subpackage in testing contains a nose plugin called ipdoctest that teaches nose about
IPython syntax, so you can write doctests with IPython prompts. You can also mark doctest out-
put with # random for the output corresponding to a single input to be ignored (stronger than us-
ing ellipsis and useful to keep it as an example). If you want the entire docstring to be executed
but none of the output from any input to be checked, you can use the # all-random marker. The
IPython.testing.plugin.dtexample module contains examples of how to use these; for ref-
erence here is how to use # random:

def ranfunc():
"""A function with some random output.

Normal examples are verified as usual:
>>> 1+3
4

But if you put ’# random’ in the output, it is ignored:
>>> 1+3
junk goes here... # random

>>> 1+2
again, anything goes #random
if multiline, the random mark is only needed once.

>>> 1+2
You can also put the random marker at the end:
random

>>> 1+2
random
.. or at the beginning.

More correct input is properly verified:
>>> ranfunc()
’ranfunc’

"""
return ’ranfunc’

218 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

and an example of # all-random:

def random_all():
"""A function where we ignore the output of ALL examples.

Examples:

all-random

This mark tells the testing machinery that all subsequent examples
should be treated as random (ignoring their output). They are still
executed, so if a they raise an error, it will be detected as such,
but their output is completely ignored.

>>> 1+3
junk goes here...

>>> 1+3
klasdfj;

In [8]: print ’hello’
world # random

In [9]: iprand()
Out[9]: ’iprand’
"""
return ’iprand’

When writing docstrings, you can use the @skip_doctest decorator to indicate that a docstring should
not be treated as a doctest at all. The difference between # all-random and @skip_doctest
is that the former executes the example but ignores output, while the latter doesn’t execute any code.
@skip_doctest should be used for docstrings whose examples are purely informational.

If a given docstring fails under certain conditions but otherwise is a good doctest, you can use code like the
following, that relies on the ‘null’ decorator to leave the docstring intact where it works as a test:

The docstring for full_path doctests differently on win32 (different path
separator) so just skip the doctest there, and use a null decorator
elsewhere:

doctest_deco = dec.skip_doctest if sys.platform == ’win32’ else dec.null_deco

@doctest_deco
def full_path(startPath,files):

"""Make full paths for all the listed files, based on startPath..."""

function body follows...

With our nose plugin that understands IPython syntax, an extremely effective way to write tests is to simply
copy and paste an interactive session into a docstring. You can writing this type of test, where your docstring
is meant only as a test, by prefixing the function name with doctest_ and leaving its body absolutely
empty other than the docstring. In IPython.core.tests.test_magic you can find several examples
of this, but for completeness sake, your code should look like this (a simple case):

7.5. Testing IPython for users and developers 219

IPython Documentation, Release 0.11

def doctest_time():
"""
In [10]: %time None
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
"""

This function is only analyzed for its docstring but it is not considered a separate test, which is why its body
should be empty.

Parametric tests done right

If you need to run multiple tests inside the same standalone function or method of a
unittest.TestCase subclass, IPython provides the parametric decorator for this purpose. This
is superior to how test generators work in nose, because IPython’s keeps intact your stack, which makes
debugging vastly easier. For example, these are some parametric tests both in class form and as a standalone
function (choose in each situation the style that best fits the problem at hand, since both work):

from IPython.testing import decorators as dec

def is_smaller(i,j):
assert i<j,"%s !< %s" % (i,j)

class Tester(ParametricTestCase):

def test_parametric(self):
yield is_smaller(3, 4)
x, y = 1, 2
yield is_smaller(x, y)

@dec.parametric
def test_par_standalone():

yield is_smaller(3, 4)
x, y = 1, 2
yield is_smaller(x, y)

Writing tests for Twisted-using code

Tests of Twisted [Twisted] using code should be written by subclassing the TestCase class that comes
with twisted.trial.unittest. Furthermore, all Deferred instances that are created in the test
must be properly chained and the final one must be the return value of the test method.

Note: The best place to see how to use the testing tools, are the tests for these tools themselves, which live
in IPython.testing.tests.

220 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

7.5.4 Design requirements

This section is a set of notes on the key points of the IPython testing needs, that were used when writing the
system and should be kept for reference as it eveolves.

Testing IPython in full requires modifications to the default behavior of nose and doctest, because the
IPython prompt is not recognized to determine Python input, and because IPython admits user input that
is not valid Python (things like %magics and !system commands.

We basically need to be able to test the following types of code:

1. Pure Python files containing normal tests. These are not a problem, since Nose will pick them up as
long as they conform to the (flexible) conventions used by nose to recognize tests.

2. Python files containing doctests. Here, we have two possibilities:

• The prompts are the usual >>> and the input is pure Python.

• The prompts are of the form In [1]: and the input can contain extended IPython expressions.

In the first case, Nose will recognize the doctests as long as it is called with the --with-doctest
flag. But the second case will likely require modifications or the writing of a new doctest plugin for
Nose that is IPython-aware.

3. ReStructuredText files that contain code blocks. For this type of file, we have three distinct possibili-
ties for the code blocks:

• They use >>> prompts.

• They use In [1]: prompts.

• They are standalone blocks of pure Python code without any prompts.

The first two cases are similar to the situation #2 above, except that in this case the doctests must be
extracted from input code blocks using docutils instead of from the Python docstrings.

In the third case, we must have a convention for distinguishing code blocks that are meant for exe-
cution from others that may be snippets of shell code or other examples not meant to be run. One
possibility is to assume that all indented code blocks are meant for execution, but to have a special
docutils directive for input that should not be executed.

For those code blocks that we will execute, the convention used will simply be that they get called
and are considered successful if they run to completion without raising errors. This is similar to what
Nose does for standalone test functions, and by putting asserts or other forms of exception-raising
statements it becomes possible to have literate examples that double as lightweight tests.

4. Extension modules with doctests in function and method docstrings. Currently Nose simply can’t find
these docstrings correctly, because the underlying doctest DocTestFinder object fails there. Similarly
to #2 above, the docstrings could have either pure python or IPython prompts.

Of these, only 3-c (reST with standalone code blocks) is not implemented at this point.

7.5. Testing IPython for users and developers 221

IPython Documentation, Release 0.11

7.6 Releasing IPython

This section contains notes about the process that is used to release IPython. Our release process is currently
not very formal and could be improved.

Most of the release process is automated by the release script in the tools directory. This is just a
handy reminder for the release manager.

1. For writing release notes, this will cleanly show who contributed as author of commits (get the previ-
ous release name from the tag list with git tag):

git log –pretty=format:”* %an” PREV_RELEASE... | sort | uniq

2. Run build_release, which does all the file checking and building that the real release script will
do. This will let you do test installations, check that the build procedure runs OK, etc. You may want
to disable a few things like multi-version RPM building while testing, because otherwise the build
takes really long.

3. Run the release script, which makes the tar.gz, eggs and Win32 .exe installer. It posts them to the site
and registers the release with PyPI.

4. Update the website with announcements and links to the updated changes.txt in html form. Remember
to put a short note both on the news page of the site and on Launcphad.

5. Drafting a short release announcement with i) highlights and ii) a link to the html version of the Whats
new section of the documentation.

6. Make sure that the released version of the docs is live on the site. For this we are now using the
gh-pages system:

• Make a static directory for the final copy of the release docs.

• Update the index.rst file and run build_index.py to update the html version.

• Update the stable symlink to point to the released version.

• Run git add for all the new files and commit.

• Run git push to update the public version of the docs on gh-pages.

7. Celebrate!

7.7 Development roadmap

IPython is an ambitious project that is still under heavy development. However, we want IPython to become
useful to as many people as possible, as quickly as possible. To help us accomplish this, we are laying out
a roadmap of where we are headed and what needs to happen to get there. Hopefully, this will help the
IPython developers figure out the best things to work on for each upcoming release.

222 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

7.7.1 Work targeted to particular releases

Release 0.11

• Full module and package reorganization (done).

• Removal of the threaded shells and new implementation of GUI support based on PyOSInputHook
(done).

• Refactor the configuration system (done).

• Prepare to refactor IPython’s core by creating a new component and application system (done).

• Start to refactor IPython’s core by turning everything into configurables (mostly done).

Release 0.12

• Continue to refactor IPython’s core by turning everything into configurables.

• Merge draft html notebook (started).

• Add two-process Terminal frontend using ZMQ architecture.

7.7.2 Major areas of work

Refactoring the main IPython core

During the summer of 2009, we began refactoring IPython’s core. The main thrust in this work was to
make the IPython core into a set of loosely coupled components. The base configurable class for this is
IPython.core.configurable.Configurable. This section outlines the status of this work.

Parts of the IPython core that have been turned into configurables:

• The main InteractiveShell class.

• The aliases (IPython.core.alias).

• History management (IPython.core.history).

• Plugins (IPython.core.plugin).

• The display and builtin traps (IPython.core.display_trap and
IPython.core.builtin_trap).

• The prefilter machinery (IPython.core.prefilter).

Parts of the IPython core that still need to be Configurable:

• Magics.

• Prompts.

• Tab completers.

• Exception handling.

7.7. Development roadmap 223

IPython Documentation, Release 0.11

• Anything else.

Process management for IPython.parallel

A few things need to be done to improve how processes are started up and managed for the parallel comput-
ing side of IPython:

• Improve the SSH launcher so it is at least back to the levels of 0.10.2

• We need to add support for other batch systems (LSF, Condor, etc.).

7.7.3 Porting to 3.0

Dropping 2.5 support was a major step towards working with Python 3 due to future syntax support in 2.6.
IPython 0.11 requires 2.6 now, so 0.10.2 will be the last IPython release that supports Python 2.5.

We currently have a separate repo tracking IPython development that works with Python 3. The core of
IPython does work, but the parallel computing code in IPython.parallel does not yet work in Python
3, though the only major dependency of the parallel code, pyzmq, does work on Python 3.

7.8 IPython module organization

As of the 0.11 release of IPython, the top-level packages and modules have been completely reorganized.
This section describes the purpose of the top-level IPython subpackages.

7.8.1 Subpackage descriptions

• IPython.config. This package contains the configuration system of IPython, as well as default
configuration files for the different IPython applications.

• IPython.core. This sub-package contains the core of the IPython interpreter, but none of its
extended capabilities.

• IPython.deathrow. This is for code that is outdated, untested, rotting, or that belongs in a
separate third party project. Eventually all this code will either i) be revived by someone willing to
maintain it with tests and docs and re-included into IPython or 2) be removed from IPython proper,
but put into a separate third-party Python package. No new code will be allowed here. If your favorite
extension has been moved here please contact the IPython developer mailing list to help us determine
the best course of action.

• IPython.extensions. This package contains fully supported IPython extensions. These ex-
tensions adhere to the official IPython extension API and can be enabled by adding them to a
field in the configuration file. If your extension is no longer in this location, please look in
IPython.quarantine and IPython.deathrow and contact the IPython developer mailing
list.

• IPython.external. This package contains third party packages and modules that IPython ships
internally to reduce the number of dependencies. Usually, these are short, single file modules.

224 Chapter 7. IPython developer’s guide

https://github.com/ipython/ipython-py3k

IPython Documentation, Release 0.11

• IPython.frontend. This package contains the various IPython frontends. Currently, the code in
this subpackage is very experimental and may be broken.

• IPython.gui. Another semi-experimental wxPython based IPython GUI.

• IPython.kernel. This contains IPython’s parallel computing system.

• IPython.lib. IPython has many extended capabilities that are not part of the IPython core. These
things will go here and in. Modules in this package are similar to extensions, but don’t adhere to the
official IPython extension API.

• IPython.quarantine. This is for code that doesn’t meet IPython’s standards, but that we plan
on keeping. To be moved out of this sub-package a module needs to have approval of the core IPython
developers, tests and documentation. If your favorite extension has been moved here please contact
the IPython developer mailing list to help us determine the best course of action.

• IPython.scripts. This package contains a variety of top-level command line scripts. Eventually,
these should be moved to the scripts subdirectory of the appropriate IPython subpackage.

• IPython.utils. This sub-package will contain anything that might eventually be found in the
Python standard library, like things in genutils. Each sub-module in this sub-package should
contain functions and classes that serve a single purpose and that don’t depend on things in the rest of
IPython.

7.9 Messaging in IPython

7.9.1 Introduction

This document explains the basic communications design and messaging specification for how the various
IPython objects interact over a network transport. The current implementation uses the ZeroMQ library for
messaging within and between hosts.

Note: This document should be considered the authoritative description of the IPython messaging protocol,
and all developers are strongly encouraged to keep it updated as the implementation evolves, so that we have
a single common reference for all protocol details.

7.9. Messaging in IPython 225

http://zeromq.org

IPython Documentation, Release 0.11

The basic design is explained in the following diagram:
A single kernel can be simultaneously connected to one or more frontends. The kernel has three sockets
that serve the following functions:

1. REQ: this socket is connected to a single frontend at a time, and it allows the kernel to request input
from a frontend when raw_input() is called. The frontend holding the matching REP socket acts
as a ‘virtual keyboard’ for the kernel while this communication is happening (illustrated in the figure
by the black outline around the central keyboard). In practice, frontends may display such kernel
requests using a special input widget or otherwise indicating that the user is to type input for the
kernel instead of normal commands in the frontend.

2. XREP: this single sockets allows multiple incoming connections from frontends, and this is the socket
where requests for code execution, object information, prompts, etc. are made to the kernel by any

226 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

frontend. The communication on this socket is a sequence of request/reply actions from each frontend
and the kernel.

3. PUB: this socket is the ‘broadcast channel’ where the kernel publishes all side effects (stdout, stderr,
etc.) as well as the requests coming from any client over the XREP socket and its own requests on
the REP socket. There are a number of actions in Python which generate side effects: print()
writes to sys.stdout, errors generate tracebacks, etc. Additionally, in a multi-client scenario, we
want all frontends to be able to know what each other has sent to the kernel (this can be useful in
collaborative scenarios, for example). This socket allows both side effects and the information about
communications taking place with one client over the XREQ/XREP channel to be made available to
all clients in a uniform manner.

All messages are tagged with enough information (details below) for clients to know which messages
come from their own interaction with the kernel and which ones are from other clients, so they can
display each type appropriately.

The actual format of the messages allowed on each of these channels is specified below. Messages are dicts
of dicts with string keys and values that are reasonably representable in JSON. Our current implementation
uses JSON explicitly as its message format, but this shouldn’t be considered a permanent feature. As we’ve
discovered that JSON has non-trivial performance issues due to excessive copying, we may in the future
move to a pure pickle-based raw message format. However, it should be possible to easily convert from the
raw objects to JSON, since we may have non-python clients (e.g. a web frontend). As long as it’s easy to
make a JSON version of the objects that is a faithful representation of all the data, we can communicate with
such clients.

Note: Not all of these have yet been fully fleshed out, but the key ones are, see kernel and frontend files for
actual implementation details.

7.9.2 Python functional API

As messages are dicts, they map naturally to a func(**kw) call form. We should develop, at a few key
points, functional forms of all the requests that take arguments in this manner and automatically construct
the necessary dict for sending.

7.9.3 General Message Format

All messages send or received by any IPython process should have the following generic structure:

{
The message header contains a pair of unique identifiers for the
originating session and the actual message id, in addition to the
username for the process that generated the message. This is useful in
collaborative settings where multiple users may be interacting with the
same kernel simultaneously, so that frontends can label the various
messages in a meaningful way.
’header’ : { ’msg_id’ : uuid,

’username’ : str,
’session’ : uuid

7.9. Messaging in IPython 227

IPython Documentation, Release 0.11

},

In a chain of messages, the header from the parent is copied so that
clients can track where messages come from.
’parent_header’ : dict,

All recognized message type strings are listed below.
’msg_type’ : str,

The actual content of the message must be a dict, whose structure
depends on the message type.x
’content’ : dict,

}

For each message type, the actual content will differ and all existing message types are specified in what
follows of this document.

7.9.4 Messages on the XREP/XREQ socket

Execute

This message type is used by frontends to ask the kernel to execute code on behalf of the user, in a namespace
reserved to the user’s variables (and thus separate from the kernel’s own internal code and variables).

Message type: execute_request:

content = {
Source code to be executed by the kernel, one or more lines.

’code’ : str,

A boolean flag which, if True, signals the kernel to execute this
code as quietly as possible. This means that the kernel will compile
the code witIPython/core/tests/h ’exec’ instead of ’single’ (so
sys.displayhook will not fire), and will *not*:
- broadcast exceptions on the PUB socket
- do any logging
- populate any history
#
The default is False.
’silent’ : bool,

A list of variable names from the user’s namespace to be retrieved. What
returns is a JSON string of the variable’s repr(), not a python object.
’user_variables’ : list,

Similarly, a dict mapping names to expressions to be evaluated in the
user’s dict.
’user_expressions’ : dict,
}

The code field contains a single string (possibly multiline). The kernel is responsible for splitting this into
one or more independent execution blocks and deciding whether to compile these in ‘single’ or ‘exec’ mode

228 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

(see below for detailed execution semantics).

The user_ fields deserve a detailed explanation. In the past, IPython had the notion of a prompt string
that allowed arbitrary code to be evaluated, and this was put to good use by many in creating prompts
that displayed system status, path information, and even more esoteric uses like remote instrument status
aqcuired over the network. But now that IPython has a clean separation between the kernel and the clients,
the kernel has no prompt knowledge; prompts are a frontend-side feature, and it should be even possible for
different frontends to display different prompts while interacting with the same kernel.

The kernel now provides the ability to retrieve data from the user’s namespace after the execution of the
main code, thanks to two fields in the execute_request message:

• user_variables: If only variables from the user’s namespace are needed, a list of variable names
can be passed and a dict with these names as keys and their repr() as values will be returned.

• user_expressions: For more complex expressions that require function evaluations, a dict can
be provided with string keys and arbitrary python expressions as values. The return message will
contain also a dict with the same keys and the repr() of the evaluated expressions as value.

With this information, frontends can display any status information they wish in the form that best suits each
frontend (a status line, a popup, inline for a terminal, etc).

Note: In order to obtain the current execution counter for the purposes of displaying input prompts, fron-
tends simply make an execution request with an empty code string and silent=True.

Execution semantics

When the silent flag is false, the execution of use code consists of the following phases (in silent mode, only
the code field is executed):

1. Run the pre_runcode_hook.

2. Execute the code field, see below for details.

3. If #2 succeeds, compute user_variables and user_expressions are computed. This en-
sures that any error in the latter don’t harm the main code execution.

4. Call any method registered with register_post_execute().

Warning: The API for running code before/after the main code block is likely to change soon. Both
the pre_runcode_hook and the register_post_execute() are susceptible to modification,
as we find a consistent model for both.

To understand how the code field is executed, one must know that Python code can be compiled in one of
three modes (controlled by the mode argument to the compile() builtin):

single Valid for a single interactive statement (though the source can contain multiple lines, such as a for
loop). When compiled in this mode, the generated bytecode contains special instructions that trigger
the calling of sys.displayhook() for any expression in the block that returns a value. This
means that a single statement can actually produce multiple calls to sys.displayhook(), if for

7.9. Messaging in IPython 229

IPython Documentation, Release 0.11

example it contains a loop where each iteration computes an unassigned expression would generate
10 calls:

for i in range(10):
i**2

exec An arbitrary amount of source code, this is how modules are compiled. sys.displayhook() is
never implicitly called.

eval A single expression that returns a value. sys.displayhook() is never implicitly called.

The code field is split into individual blocks each of which is valid for execution in ‘single’ mode, and
then:

• If there is only a single block: it is executed in ‘single’ mode.

• If there is more than one block:

– if the last one is a single line long, run all but the last in ‘exec’ mode and the very last one in
‘single’ mode. This makes it easy to type simple expressions at the end to see computed values.

– if the last one is no more than two lines long, run all but the last in ‘exec’ mode and the very last
one in ‘single’ mode. This makes it easy to type simple expressions at the end to see computed
values. - otherwise (last one is also multiline), run all in ‘exec’ mode

– otherwise (last one is also multiline), run all in ‘exec’ mode as a single unit.

Any error in retrieving the user_variables or evaluating the user_expressions will result in a
simple error message in the return fields of the form:

[ERROR] ExceptionType: Exception message

The user can simply send the same variable name or expression for evaluation to see a regular traceback.

Errors in any registered post_execute functions are also reported similarly, and the failing function is re-
moved from the post_execution set so that it does not continue triggering failures.

Upon completion of the execution request, the kernel always sends a reply, with a status code indicating
what happened and additional data depending on the outcome. See below for the possible return codes and
associated data.

Execution counter (old prompt number)

The kernel has a single, monotonically increasing counter of all execution requests that are made with
silent=False. This counter is used to populate the In[n], Out[n] and _n variables, so clients
will likely want to display it in some form to the user, which will typically (but not necessarily) be
done in the prompts. The value of this counter will be returned as the execution_count field of all
execute_reply messages.

Execution results

Message type: execute_reply:

230 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

content = {
One of: ’ok’ OR ’error’ OR ’abort’
’status’ : str,

The global kernel counter that increases by one with each non-silent
executed request. This will typically be used by clients to display
prompt numbers to the user. If the request was a silent one, this will
be the current value of the counter in the kernel.
’execution_count’ : int,

}

When status is ‘ok’, the following extra fields are present:

{
The execution payload is a dict with string keys that may have been
produced by the code being executed. It is retrieved by the kernel at
the end of the execution and sent back to the front end, which can take
action on it as needed. See main text for further details.
’payload’ : dict,

Results for the user_variables and user_expressions.
’user_variables’ : dict,
’user_expressions’ : dict,

The kernel will often transform the input provided to it. If the
’---->’ transform had been applied, this is filled, otherwise it’s the
empty string. So transformations like magics don’t appear here, only
autocall ones.
’transformed_code’ : str,
}

Execution payloads

The notion of an ‘execution payload’ is different from a return value of a given set of code, which normally
is just displayed on the pyout stream through the PUB socket. The idea of a payload is to allow special types
of code, typically magics, to populate a data container in the IPython kernel that will be shipped back to the
caller via this channel. The kernel will have an API for this, probably something along the lines of:

ip.exec_payload_add(key, value)

though this API is still in the design stages. The data returned in this payload will allow frontends to present
special views of what just happened.

When status is ‘error’, the following extra fields are present:

{
’exc_name’ : str, # Exception name, as a string
’exc_value’ : str, # Exception value, as a string

The traceback will contain a list of frames, represented each as a
string. For now we’ll stick to the existing design of ultraTB, which
controls exception level of detail statefully. But eventually we’ll

7.9. Messaging in IPython 231

IPython Documentation, Release 0.11

want to grow into a model where more information is collected and
packed into the traceback object, with clients deciding how little or
how much of it to unpack. But for now, let’s start with a simple list
of strings, since that requires only minimal changes to ultratb as
written.
’traceback’ : list,

}

When status is ‘abort’, there are for now no additional data fields. This happens when the kernel was
interrupted by a signal.

Kernel attribute access

Warning: This part of the messaging spec is not actually implemented in the kernel yet.

While this protocol does not specify full RPC access to arbitrary methods of the kernel object, the kernel
does allow read (and in some cases write) access to certain attributes.

The policy for which attributes can be read is: any attribute of the kernel, or its sub-objects, that belongs to
a Configurable object and has been declared at the class-level with Traits validation, is in principle ac-
cessible as long as its name does not begin with a leading underscore. The attribute itself will have metadata
indicating whether it allows remote read and/or write access. The message spec follows for attribute read
and write requests.

Message type: getattr_request:

content = {
The (possibly dotted) name of the attribute
’name’ : str,

}

When a getattr_request fails, there are two possible error types:

• AttributeError: this type of error was raised when trying to access the given name by the kernel itself.
This means that the attribute likely doesn’t exist.

• AccessError: the attribute exists but its value is not readable remotely.

Message type: getattr_reply:

content = {
One of [’ok’, ’AttributeError’, ’AccessError’].
’status’ : str,
If status is ’ok’, a JSON object.
’value’ : object,

}

Message type: setattr_request:

content = {
The (possibly dotted) name of the attribute
’name’ : str,

232 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

A JSON-encoded object, that will be validated by the Traits
information in the kernel
’value’ : object,

}

When a setattr_request fails, there are also two possible error types with similar meanings as those
of the getattr_request case, but for writing.

Message type: setattr_reply:

content = {
One of [’ok’, ’AttributeError’, ’AccessError’].
’status’ : str,

}

Object information

One of IPython’s most used capabilities is the introspection of Python objects in the user’s namespace,
typically invoked via the ? and ?? characters (which in reality are shorthands for the %pinfo magic). This
is used often enough that it warrants an explicit message type, especially because frontends may want to get
object information in response to user keystrokes (like Tab or F1) besides from the user explicitly typing
code like x??.

Message type: object_info_request:

content = {
The (possibly dotted) name of the object to be searched in all
relevant namespaces
’name’ : str,

The level of detail desired. The default (0) is equivalent to typing
’x?’ at the prompt, 1 is equivalent to ’x??’.
’detail_level’ : int,

}

The returned information will be a dictionary with keys very similar to the field names that IPython prints
at the terminal.

Message type: object_info_reply:

content = {
The name the object was requested under
’name’ : str,

Boolean flag indicating whether the named object was found or not. If
it’s false, all other fields will be empty.
’found’ : bool,

Flags for magics and system aliases
’ismagic’ : bool,
’isalias’ : bool,

7.9. Messaging in IPython 233

IPython Documentation, Release 0.11

The name of the namespace where the object was found (’builtin’,
’magics’, ’alias’, ’interactive’, etc.)
’namespace’ : str,

The type name will be type.__name__ for normal Python objects, but it
can also be a string like ’Magic function’ or ’System alias’
’type_name’ : str,

The string form of the object, possibly truncated for length if
detail_level is 0
’string_form’ : str,

For objects with a __class__ attribute this will be set
’base_class’ : str,

For objects with a __len__ attribute this will be set
’length’ : int,

If the object is a function, class or method whose file we can find,
we give its full path
’file’ : str,

For pure Python callable objects, we can reconstruct the object
definition line which provides its call signature. For convenience this
is returned as a single ’definition’ field, but below the raw parts that
compose it are also returned as the argspec field.
’definition’ : str,

The individual parts that together form the definition string. Clients
with rich display capabilities may use this to provide a richer and more
precise representation of the definition line (e.g. by highlighting
arguments based on the user’s cursor position). For non-callable
objects, this field is empty.
’argspec’ : { # The names of all the arguments

args : list,
The name of the varargs (*args), if any
varargs : str,
The name of the varkw (**kw), if any
varkw : str,
The values (as strings) of all default arguments. Note
that these must be matched *in reverse* with the ’args’
list above, since the first positional args have no default
value at all.
defaults : list,
},

For instances, provide the constructor signature (the definition of
the __init__ method):
’init_definition’ : str,

Docstrings: for any object (function, method, module, package) with a
docstring, we show it. But in addition, we may provide additional
docstrings. For example, for instances we will show the constructor

234 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

and class docstrings as well, if available.
’docstring’ : str,

For instances, provide the constructor and class docstrings
’init_docstring’ : str,
’class_docstring’ : str,

If it’s a callable object whose call method has a separate docstring and
definition line:
’call_def’ : str,
’call_docstring’ : str,

If detail_level was 1, we also try to find the source code that
defines the object, if possible. The string ’None’ will indicate
that no source was found.
’source’ : str,
}

‘

Complete

Message type: complete_request:

content = {
The text to be completed, such as ’a.is’

’text’ : str,

The full line, such as ’print a.is’. This allows completers to
make decisions that may require information about more than just the
current word.
’line’ : str,

The entire block of text where the line is. This may be useful in the
case of multiline completions where more context may be needed. Note: if
in practice this field proves unnecessary, remove it to lighten the
messages.

’block’ : str,

The position of the cursor where the user hit ’TAB’ on the line.
’cursor_pos’ : int,
}

Message type: complete_reply:

content = {
The list of all matches to the completion request, such as

[’a.isalnum’, ’a.isalpha’] for the above example.
’matches’ : list
}

7.9. Messaging in IPython 235

IPython Documentation, Release 0.11

History

For clients to explicitly request history from a kernel. The kernel has all the actual execution history stored
in a single location, so clients can request it from the kernel when needed.

Message type: history_request:

content = {

If True, also return output history in the resulting dict.
’output’ : bool,

If True, return the raw input history, else the transformed input.
’raw’ : bool,

So far, this can be ’range’, ’tail’ or ’search’.
’hist_access_type’ : str,

If hist_access_type is ’range’, get a range of input cells. session can
be a positive session number, or a negative number to count back from
the current session.
’session’ : int,
start and stop are line numbers within that session.
’start’ : int,
’stop’ : int,

If hist_access_type is ’tail’, get the last n cells.
’n’ : int,

If hist_access_type is ’search’, get cells matching the specified glob
pattern (with * and ? as wildcards).
’pattern’ : str,

}

Message type: history_reply:

content = {
A list of 3 tuples, either:
(session, line_number, input) or
(session, line_number, (input, output)),
depending on whether output was False or True, respectively.
’history’ : list,

}

Connect

When a client connects to the request/reply socket of the kernel, it can issue a connect request to get basic
information about the kernel, such as the ports the other ZeroMQ sockets are listening on. This allows
clients to only have to know about a single port (the XREQ/XREP channel) to connect to a kernel.

Message type: connect_request:

236 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

content = {
}

Message type: connect_reply:

content = {
’xrep_port’ : int # The port the XREP socket is listening on.
’pub_port’ : int # The port the PUB socket is listening on.
’req_port’ : int # The port the REQ socket is listening on.
’hb_port’ : int # The port the heartbeat socket is listening on.

}

Kernel shutdown

The clients can request the kernel to shut itself down; this is used in multiple cases:

• when the user chooses to close the client application via a menu or window control.

• when the user types ‘exit’ or ‘quit’ (or their uppercase magic equivalents).

• when the user chooses a GUI method (like the ‘Ctrl-C’ shortcut in the IPythonQt client) to force a
kernel restart to get a clean kernel without losing client-side state like history or inlined figures.

The client sends a shutdown request to the kernel, and once it receives the reply message (which is otherwise
empty), it can assume that the kernel has completed shutdown safely.

Upon their own shutdown, client applications will typically execute a last minute sanity check and forcefully
terminate any kernel that is still alive, to avoid leaving stray processes in the user’s machine.

For both shutdown request and reply, there is no actual content that needs to be sent, so the content dict is
empty.

Message type: shutdown_request:

content = {
’restart’ : bool # whether the shutdown is final, or precedes a restart

}

Message type: shutdown_reply:

content = {
’restart’ : bool # whether the shutdown is final, or precedes a restart

}

Note: When the clients detect a dead kernel thanks to inactivity on the heartbeat socket, they simply
send a forceful process termination signal, since a dead process is unlikely to respond in any useful way to
messages.

7.9. Messaging in IPython 237

IPython Documentation, Release 0.11

7.9.5 Messages on the PUB/SUB socket

Streams (stdout, stderr, etc)

Message type: stream:

content = {
The name of the stream is one of ’stdin’, ’stdout’, ’stderr’
’name’ : str,

The data is an arbitrary string to be written to that stream
’data’ : str,

}

When a kernel receives a raw_input call, it should also broadcast it on the pub socket with the names ‘stdin’
and ‘stdin_reply’. This will allow other clients to monitor/display kernel interactions and possibly replay
them to their user or otherwise expose them.

Display Data

This type of message is used to bring back data that should be diplayed (text, html, svg, etc.) in the frontends.
This data is published to all frontends. Each message can have multiple representations of the data; it is up
to the frontend to decide which to use and how. A single message should contain all possible representations
of the same information. Each representation should be a JSON’able data structure, and should be a valid
MIME type.

Some questions remain about this design:

• Do we use this message type for pyout/displayhook? Probably not, because the displayhook also has
to handle the Out prompt display. On the other hand we could put that information into the metadata
secion.

Message type: display_data:

content = {

Who create the data
’source’ : str,

The data dict contains key/value pairs, where the kids are MIME
types and the values are the raw data of the representation in that
format. The data dict must minimally contain the ‘‘text/plain‘‘
MIME type which is used as a backup representation.
’data’ : dict,

Any metadata that describes the data
’metadata’ : dict

}

238 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

Python inputs

These messages are the re-broadcast of the execute_request.

Message type: pyin:

content = {
’code’ : str # Source code to be executed, one or more lines

}

Python outputs

When Python produces output from code that has been compiled in with the ‘single’ flag to compile(),
any expression that produces a value (such as 1+1) is passed to sys.displayhook, which is a callable
that can do with this value whatever it wants. The default behavior of sys.displayhook in the Python
interactive prompt is to print to sys.stdout the repr() of the value as long as it is not None (which
isn’t printed at all). In our case, the kernel instantiates as sys.displayhook an object which has similar
behavior, but which instead of printing to stdout, broadcasts these values as pyout messages for clients to
display appropriately.

IPython’s displayhook can handle multiple simultaneous formats depending on its configuration. The default
pretty-printed repr text is always given with the data entry in this message. Any other formats are provided
in the extra_formats list. Frontends are free to display any or all of these according to its capabilities.
extra_formats list contains 3-tuples of an ID string, a type string, and the data. The ID is unique to
the formatter implementation that created the data. Frontends will typically ignore the ID unless if it has
requested a particular formatter. The type string tells the frontend how to interpret the data. It is often, but
not always a MIME type. Frontends should ignore types that it does not understand. The data itself is any
JSON object and depends on the format. It is often, but not always a string.

Message type: pyout:

content = {

The counter for this execution is also provided so that clients can
display it, since IPython automatically creates variables called _N
(for prompt N).
’execution_count’ : int,

The data dict contains key/value pairs, where the kids are MIME
types and the values are the raw data of the representation in that
format. The data dict must minimally contain the ‘‘text/plain‘‘
MIME type which is used as a backup representation.
’data’ : dict,

}

Python errors

When an error occurs during code execution

7.9. Messaging in IPython 239

IPython Documentation, Release 0.11

Message type: pyerr:

content = {
Similar content to the execute_reply messages for the ’error’ case,
except the ’status’ field is omitted.

}

Kernel status

This message type is used by frontends to monitor the status of the kernel.

Message type: status:

content = {
When the kernel starts to execute code, it will enter the ’busy’
state and when it finishes, it will enter the ’idle’ state.
execution_state : (’busy’, ’idle’)

}

Kernel crashes

When the kernel has an unexpected exception, caught by the last-resort sys.excepthook, we should broadcast
the crash handler’s output before exiting. This will allow clients to notice that a kernel died, inform the user
and propose further actions.

Message type: crash:

content = {
Similarly to the ’error’ case for execute_reply messages, this will
contain exc_name, exc_type and traceback fields.

An additional field with supplementary information such as where to
send the crash message
’info’ : str,

}

Future ideas

Other potential message types, currently unimplemented, listed below as ideas.

Message type: file:

content = {
’path’ : ’cool.jpg’,
’mimetype’ : str,
’data’ : str,
}

240 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

7.9.6 Messages on the REQ/REP socket

This is a socket that goes in the opposite direction: from the kernel to a single frontend, and its purpose is to
allow raw_input and similar operations that read from sys.stdin on the kernel to be fulfilled by the
client. For now we will keep these messages as simple as possible, since they basically only mean to convey
the raw_input(prompt) call.

Message type: input_request:

content = { ’prompt’ : str }

Message type: input_reply:

content = { ’value’ : str }

Note: We do not explicitly try to forward the raw sys.stdin object, because in practice the kernel should
behave like an interactive program. When a program is opened on the console, the keyboard effectively
takes over the stdin file descriptor, and it can’t be used for raw reading anymore. Since the IPython kernel
effectively behaves like a console program (albeit one whose “keyboard” is actually living in a separate
process and transported over the zmq connection), raw stdin isn’t expected to be available.

7.9.7 Heartbeat for kernels

Initially we had considered using messages like those above over ZMQ for a kernel ‘heartbeat’ (a way to
detect quickly and reliably whether a kernel is alive at all, even if it may be busy executing user code).
But this has the problem that if the kernel is locked inside extension code, it wouldn’t execute the python
heartbeat code. But it turns out that we can implement a basic heartbeat with pure ZMQ, without using any
Python messaging at all.

The monitor sends out a single zmq message (right now, it is a str of the monitor’s lifetime in seconds),
and gets the same message right back, prefixed with the zmq identity of the XREQ socket in the heartbeat
process. This can be a uuid, or even a full message, but there doesn’t seem to be a need for packing up a
message when the sender and receiver are the exact same Python object.

The model is this:

monitor.send(str(self.lifetime)) # ’1.2345678910’

and the monitor receives some number of messages of the form:

[’uuid-abcd-dead-beef’, ’1.2345678910’]

where the first part is the zmq.IDENTITY of the heart’s XREQ on the engine, and the rest is the message
sent by the monitor. No Python code ever has any access to the message between the monitor’s send, and
the monitor’s recv.

7.9.8 ToDo

Missing things include:

7.9. Messaging in IPython 241

IPython Documentation, Release 0.11

• Important: finish thinking through the payload concept and API.

• Important: ensure that we have a good solution for magics like %edit. It’s likely that with the payload
concept we can build a full solution, but not 100% clear yet.

• Finishing the details of the heartbeat protocol.

• Signal handling: specify what kind of information kernel should broadcast (or not) when it receives
signals.

7.10 Messaging for Parallel Computing

This is an extension of the messaging doc. Diagrams of the connections can be found in the parallel con-
nections doc.

ZMQ messaging is also used in the parallel computing IPython system. All messages to/from kernels remain
the same as the single kernel model, and are forwarded through a ZMQ Queue device. The controller
receives all messages and replies in these channels, and saves results for future use.

7.10.1 The Controller

The controller is the central collection of processes in the IPython parallel computing model. It has two
major components:

• The Hub

• A collection of Schedulers

7.10.2 The Hub

The Hub is the central process for monitoring the state of the engines, and all task requests and results. It
has no role in execution and does no relay of messages, so large blocking requests or database actions in the
Hub do not have the ability to impede job submission and results.

Registration (XREP)

The first function of the Hub is to facilitate and monitor connections of clients and engines. Both client and
engine registration are handled by the same socket, so only one ip/port pair is needed to connect any number
of connections and clients.

Engines register with the zmq.IDENTITY of their two XREQ sockets, one for the queue, which receives
execute requests, and one for the heartbeat, which is used to monitor the survival of the Engine process.

Message type: registration_request:

content = {
’queue’ : ’abcd-1234-...’, # the MUX queue zmq.IDENTITY
’control’ : ’abcd-1234-...’, # the control queue zmq.IDENTITY

242 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

’heartbeat’ : ’abcd-1234-...’ # the heartbeat zmq.IDENTITY
}

Note: these are always the same, at least for now.

The Controller replies to an Engine’s registration request with the engine’s integer ID, and all the remaining
connection information for connecting the heartbeat process, and kernel queue socket(s). The message status
will be an error if the Engine requests IDs that already in use.

Message type: registration_reply:

content = {
’status’ : ’ok’, # or ’error’
if ok:
’id’ : 0, # int, the engine id
’queue’ : ’tcp://127.0.0.1:12345’, # connection for engine side of the queue
’control’ : ’tcp://...’, # addr for control queue
’heartbeat’ : (’tcp://...’,’tcp://...’), # tuple containing two interfaces needed for heartbeat
’task’ : ’tcp://...’, # addr for task queue, or None if no task queue running

}

Clients use the same socket as engines to start their connections. Connection requests from clients need no
information:

Message type: connection_request:

content = {}

The reply to a Client registration request contains the connection information for the multiplexer and load
balanced queues, as well as the address for direct hub queries. If any of these addresses is None, that
functionality is not available.

Message type: connection_reply:

content = {
’status’ : ’ok’, # or ’error’
if ok:
’queue’ : ’tcp://127.0.0.1:12345’, # connection for client side of the MUX queue
’task’ : (’lru’,’tcp...’), # routing scheme and addr for task queue (len 2 tuple)
’query’ : ’tcp...’, # addr for methods to query the hub, like queue_request, etc.
’control’ : ’tcp...’, # addr for control methods, like abort, etc.

}

Heartbeat

The hub uses a heartbeat system to monitor engines, and track when they become unresponsive. As de-
scribed in messaging, and shown in connections.

7.10. Messaging for Parallel Computing 243

IPython Documentation, Release 0.11

Notification (PUB)

The hub publishes all engine registration/unregistration events on a PUB socket. This allows clients to have
up-to-date engine ID sets without polling. Registration notifications contain both the integer engine ID and
the queue ID, which is necessary for sending messages via the Multiplexer Queue and Control Queues.

Message type: registration_notification:

content = {
’id’ : 0, # engine ID that has been registered
’queue’ : ’engine_id’ # the IDENT for the engine’s queue

}

Message type : unregistration_notification:

content = {
’id’ : 0 # engine ID that has been unregistered

}

Client Queries (XREP)

The hub monitors and logs all queue traffic, so that clients can retrieve past results or monitor pending tasks.
This information may reside in-memory on the Hub, or on disk in a database (SQLite and MongoDB are
currently supported). These requests are handled by the same socket as registration.

queue_request() requests can specify multiple engines to query via the targets element. A verbose
flag can be passed, to determine whether the result should be the list of msg_ids in the queue or simply the
length of each list.

Message type: queue_request:

content = {
’verbose’ : True, # whether return should be lists themselves or just lens
’targets’ : [0,3,1] # list of ints

}

The content of a reply to a queue_request() request is a dict, keyed by the engine IDs. Note that they
will be the string representation of the integer keys, since JSON cannot handle number keys. The three keys
of each dict are:

’completed’ : messages submitted via any queue that ran on the engine
’queue’ : jobs submitted via MUX queue, whose results have not been received
’tasks’ : tasks that are known to have been submitted to the engine, but

have not completed. Note that with the pure zmq scheduler, this will
always be 0/[].

Message type: queue_reply:

content = {
’status’ : ’ok’, # or ’error’
if verbose=False:
’0’ : {’completed’ : 1, ’queue’ : 7, ’tasks’ : 0},
if verbose=True:

244 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

’1’ : {’completed’ : [’abcd-...’,’1234-...’], ’queue’ : [’58008-’], ’tasks’ : []},
}

Clients can request individual results directly from the hub. This is primarily for gathering results of execu-
tions not submitted by the requesting client, as the client will have all its own results already. Requests are
made by msg_id, and can contain one or more msg_id. An additional boolean key ‘statusonly’ can be used
to not request the results, but simply poll the status of the jobs.

Message type: result_request:

content = {
’msg_ids’ : [’uuid’,’...’], # list of strs
’targets’ : [1,2,3], # list of int ids or uuids
’statusonly’ : False, # bool

}

The result_request() reply contains the content objects of the actual execution reply messages. If
statusonly=True, then there will be only the ‘pending’ and ‘completed’ lists.

Message type: result_reply:

content = {
’status’ : ’ok’, # else error
if ok:
’acbd-...’ : msg, # the content dict is keyed by msg_ids,

values are the result messages
there will be none of these if ‘statusonly=True‘

’pending’ : [’msg_id’,’...’], # msg_ids still pending
’completed’ : [’msg_id’,’...’], # list of completed msg_ids

}
buffers = [’bufs’,’...’] # the buffers that contained the results of the objects.

this will be empty if no messages are complete, or if
statusonly is True.

For memory management purposes, Clients can also instruct the hub to forget the results of messages. This
can be done by message ID or engine ID. Individual messages are dropped by msg_id, and all messages
completed on an engine are dropped by engine ID. This may no longer be necessary with the mongodb-
based message logging backend.

If the msg_ids element is the string ’all’ instead of a list, then all completed results are forgotten.

Message type: purge_request:

content = {
’msg_ids’ : [’id1’, ’id2’,...], # list of msg_ids or ’all’
’engine_ids’ : [0,2,4] # list of engine IDs

}

The reply to a purge request is simply the status ‘ok’ if the request succeeded, or an explanation of why it
failed, such as requesting the purge of a nonexistent or pending message.

Message type: purge_reply:

7.10. Messaging for Parallel Computing 245

IPython Documentation, Release 0.11

content = {
’status’ : ’ok’, # or ’error’

}

7.10.3 Schedulers

There are three basic schedulers:

• Task Scheduler

• MUX Scheduler

• Control Scheduler

The MUX and Control schedulers are simple MonitoredQueue ØMQ devices, with XREP sockets on either
side. This allows the queue to relay individual messages to particular targets via zmq.IDENTITY routing.
The Task scheduler may be a MonitoredQueue ØMQ device, in which case the client-facing socket is XREP,
and the engine-facing socket is XREQ. The result of this is that client-submitted messages are load-balanced
via the XREQ socket, but the engine’s replies to each message go to the requesting client.

Raw XREQ scheduling is quite primitive, and doesn’t allow message introspection, so there are also Python
Schedulers that can be used. These Schedulers behave in much the same way as a MonitoredQueue does
from the outside, but have rich internal logic to determine destinations, as well as handle dependency graphs
Their sockets are always XREP on both sides.

The Python task schedulers have an additional message type, which informs the Hub of the destination of a
task as soon as that destination is known.

Message type: task_destination:

content = {
’msg_id’ : ’abcd-1234-...’, # the msg’s uuid
’engine_id’ : ’1234-abcd-...’, # the destination engine’s zmq.IDENTITY

}

apply() and apply_bound()

In terms of message classes, the MUX scheduler and Task scheduler relay the exact same message types.
Their only difference lies in how the destination is selected.

The Namespace model suggests that execution be able to use the model:

ns.apply(f, *args, **kwargs)

which takes f, a function in the user’s namespace, and executes f(*args, **kwargs) on a remote
engine, returning the result (or, for non-blocking, information facilitating later retrieval of the result). This
model, unlike the execute message which just uses a code string, must be able to send arbitrary (pickleable)
Python objects. And ideally, copy as little data as we can. The buffers property of a Message was introduced
for this purpose.

246 Chapter 7. IPython developer’s guide

http://gist.github.com/483294

IPython Documentation, Release 0.11

Utility method build_apply_message() in IPython.zmq.streamsession wraps a function
signature and builds a sendable buffer format for minimal data copying (exactly zero copies of numpy array
data or buffers or large strings).

Message type: apply_request:

content = {
’bound’ : True, # whether to execute in the engine’s namespace or unbound
’after’ : [’msg_id’,...], # list of msg_ids or output of Dependency.as_dict()
’follow’ : [’msg_id’,...], # list of msg_ids or output of Dependency.as_dict()

}
buffers = [’...’] # at least 3 in length

as built by build_apply_message(f,args,kwargs)

after/follow represent task dependencies. ‘after’ corresponds to a time dependency. The request will not
arrive at an engine until the ‘after’ dependency tasks have completed. ‘follow’ corresponds to a location
dependency. The task will be submitted to the same engine as these msg_ids (see Dependency docs for
details).

Message type: apply_reply:

content = {
’status’ : ’ok’ # ’ok’ or ’error’
other error info here, as in other messages

}
buffers = [’...’] # either 1 or 2 in length

a serialization of the return value of f(*args,**kwargs)
only populated if status is ’ok’

All engine execution and data movement is performed via apply messages.

7.10.4 Control Messages

Messages that interact with the engines, but are not meant to execute code, are submitted via the Control
queue. These messages have high priority, and are thus received and handled before any execution requests.

Clients may want to clear the namespace on the engine. There are no arguments nor information involved
in this request, so the content is empty.

Message type: clear_request:

content = {}

Message type: clear_reply:

content = {
’status’ : ’ok’ # ’ok’ or ’error’
other error info here, as in other messages

}

Clients may want to abort tasks that have not yet run. This can by done by message id, or all enqueued
messages can be aborted if None is specified.

7.10. Messaging for Parallel Computing 247

IPython Documentation, Release 0.11

Message type: abort_request:

content = {
’msg_ids’ : [’1234-...’, ’...’] # list of msg_ids or None

}

Message type: abort_reply:

content = {
’status’ : ’ok’ # ’ok’ or ’error’
other error info here, as in other messages

}

The last action a client may want to do is shutdown the kernel. If a kernel receives a shutdown request, then
it aborts all queued messages, replies to the request, and exits.

Message type: shutdown_request:

content = {}

Message type: shutdown_reply:

content = {
’status’ : ’ok’ # ’ok’ or ’error’
other error info here, as in other messages

}

7.10.5 Implementation

There are a few differences in implementation between the StreamSession object used in the newparallel
branch and the Session object, the main one being that messages are sent in parts, rather than as a single
serialized object. StreamSession objects also take pack/unpack functions, which are to be used when serial-
izing/deserializing objects. These can be any functions that translate to/from formats that ZMQ sockets can
send (buffers,bytes, etc.).

Split Sends

Previously, messages were bundled as a single json object and one call to socket.send_json(). Since
the hub inspects all messages, and doesn’t need to see the content of the messages, which can be large,
messages are now serialized and sent in pieces. All messages are sent in at least 3 parts: the header, the
parent header, and the content. This allows the controller to unpack and inspect the (always small) header,
without spending time unpacking the content unless the message is bound for the controller. Buffers are
added on to the end of the message, and can be any objects that present the buffer interface.

7.11 Connection Diagrams of The IPython ZMQ Cluster

This is a quick summary and illustration of the connections involved in the ZeroMQ based IPython cluster
for parallel computing.

248 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

7.11.1 All Connections

The IPython cluster consists of a Controller, and one or more each of clients and engines. The goal of
the Controller is to manage and monitor the connections and communications between the clients and the
engines. The Controller is no longer a single process entity, but rather a collection of processes - specifically
one Hub, and 4 (or more) Schedulers.

It is important for security/practicality reasons that all connections be inbound to the controller processes.
The arrows in the figures indicate the direction of the connection.

Figure 7.1: All the connections involved in connecting one client to one engine.

The Controller consists of 1-4 processes. Central to the cluster is the Hub, which monitors engine state,
execution traffic, and handles registration and notification. The Hub includes a Heartbeat Monitor for keep-
ing track of engines that are alive. Outside the Hub are 4 Schedulers. These devices are very small pure-C

7.11. Connection Diagrams of The IPython ZMQ Cluster 249

IPython Documentation, Release 0.11

MonitoredQueue processes (or optionally threads) that relay messages very fast, but also send a copy of each
message along a side socket to the Hub. The MUX queue and Control queue are MonitoredQueue ØMQ
devices which relay explicitly addressed messages from clients to engines, and their replies back up. The
Balanced queue performs load-balancing destination-agnostic scheduling. It may be a MonitoredQueue de-
vice, but may also be a Python Scheduler that behaves externally in an identical fashion to MQ devices, but
with additional internal logic. stdout/err are also propagated from the Engines to the clients via a PUB/SUB
MonitoredQueue.

Registration

Figure 7.2: Engines and Clients only need to know where the Query XREP is located to start connecting.

Once a controller is launched, the only information needed for connecting clients and/or engines is the
IP/port of the Hub’s XREP socket called the Registrar. This socket handles connections from both clients

250 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

and engines, and replies with the remaining information necessary to establish the remaining connections.
Clients use this same socket for querying the Hub for state information.

Heartbeat

Figure 7.3: The heartbeat sockets.

The heartbeat process has been described elsewhere. To summarize: the Heartbeat Monitor publishes a
distinct message periodically via a PUB socket. Each engine has a zmq.FORWARDER device with a SUB
socket for input, and XREQ socket for output. The SUB socket is connected to the PUB socket labeled ping,
and the XREQ is connected to the XREP labeled pong. This results in the same message being relayed back
to the Heartbeat Monitor with the addition of the XREQ prefix. The Heartbeat Monitor receives all the replies
via an XREP socket, and identifies which hearts are still beating by the zmq.IDENTITY prefix of the XREQ
sockets, which information the Hub uses to notify clients of any changes in the available engines.

7.11. Connection Diagrams of The IPython ZMQ Cluster 251

IPython Documentation, Release 0.11

Schedulers

Figure 7.4: Control message scheduler on the left, execution (apply) schedulers on the right.

The controller has at least three Schedulers. These devices are primarily for relaying messages between
clients and engines, but the Hub needs to see those messages for its own purposes. Since no Python code
may exist between the two sockets in a queue, all messages sent through these queues (both directions) are
also sent via a PUB socket to a monitor, which allows the Hub to monitor queue traffic without interfering
with it.

For tasks, the engine need not be specified. Messages sent to the XREP socket from the client side are
assigned to an engine via ZMQ’s XREQ round-robin load balancing. Engine replies are directed to specific
clients via the IDENTITY of the client, which is received as a prefix at the Engine.

For Multiplexing, XREP is used for both in and output sockets in the device. Clients must specify the
destination by the zmq.IDENTITY of the XREP socket connected to the downstream end of the device.

252 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

At the Kernel level, both of these XREP sockets are treated in the same way as the REP socket in the serial
version (except using ZMQStreams instead of explicit sockets).

Execution can be done in a load-balanced (engine-agnostic) or multiplexed (engine-specified) manner. The
sockets on the Client and Engine are the same for these two actions, but the scheduler used determines
the actual behavior. This routing is done via the zmq.IDENTITY of the upstream sockets in each Moni-
toredQueue.

IOPub

Figure 7.5: stdout/err are published via a PUB/SUB MonitoredQueue

On the kernels, stdout/stderr are captured and published via a PUB socket. These PUB sockets all connect to
a SUB socket input of a MonitoredQueue, which subscribes to all messages. They are then republished via
another PUB socket, which can be subscribed by the clients.

7.11. Connection Diagrams of The IPython ZMQ Cluster 253

IPython Documentation, Release 0.11

Client connections

Figure 7.6: Clients connect to an XREP socket to query the hub.

The hub’s registrar XREP socket also listens for queries from clients as to queue status, and control instruc-
tions. Clients connect to this socket via an XREQ during registration.

The Hub publishes all registration/unregistration events via a PUB socket. This allows clients to stay up to
date with what engines are available by subscribing to the feed with a SUB socket. Other processes could
selectively subscribe to just registration or unregistration events.

254 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

Figure 7.7: Engine registration events are published via a PUB socket.

7.11. Connection Diagrams of The IPython ZMQ Cluster 255

IPython Documentation, Release 0.11

7.12 The magic commands subsystem

Warning: These are preliminary notes and thoughts on the magic system, kept here for reference so we
can come up with a good design now that the major core refactoring has made so much progress. Do not
consider yet any part of this document final.

Two entry points:

• m.line_eval(self,parameter_s): like today

• m.block_eval(self,code_block): for whole-block evaluation.

This would allow us to have magics that take input, and whose single line form can even take input and call
block_eval later (like %cpaste does, but with a generalized interface).

7.12.1 Constructor

Suggested syntax:

class MyMagic(BaseMagic):
requires_shell = True/False
def __init__(self,shell=None):

7.12.2 Registering magics

Today, ipapi provides an expose_magic() function for making simple magics. We will probably extend this
(in a backwards-compatible manner if possible) to allow the simplest cases to work as today, while letting
users register more complex ones.

Use cases:

def func(arg): pass # note signature, no ’self’
ip.expose_magic(’name’,func)

def func_line(arg): pass
def func_block(arg):pass
ip.expose_magic(’name’,func_line,func_block)

class mymagic(BaseMagic):
"""Magic docstring, used in help messages.
"""
def line_eval(self,arg): pass
def block_eval(self,arg): pass

ip.register_magic(mymagic)

The BaseMagic class will offer common functionality to all, including things like options handling (via
argparse).

256 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

7.12.3 Call forms: line and block

Block-oriented environments will call line_eval() for the first line of input (the call line starting with ‘%’)
and will then feed the rest of the block to block_eval() if the magic in question has a block mode.

In line environments, by default %foo -> foo.line_eval(), but no block call is made. Specific implementations
of line_eval can decide to then call block_eval if they want to provide for whole-block input in line-oriented
environments.

The api might be adapted for this decision to be made automatically by the frontend...

7.12.4 Precompiled magics for rapid loading

For IPython itself, we’ll have a module of ‘core’ magic functions that do not require run-time registration.
These will be the ones contained today in Magic.py, plus any others we deem worthy of being available by
default. This is a trick to enable faster startup, since once we move to a model where each magic can in
principle be registered at runtime, creating a lot of them can easily swamp startup time.

The trick is to make a module with a top-level class object that contains explicit references to all the ‘core’
magics in its dict. This way, the magic table can be quickly updated at interpreter startup with a single call,
by doing something along the lines of:

self.magic_table.update(static_magics.__dict__)

The point will be to be able to bypass the explicit calling of whatever register_magic() API we end up
making for users to declare their own magics. So ultimately one should be able to do either:

ip.register_magic(mymagic) # for one function

or:

ip.load_magics(static_magics) # for a bunch of them

I still need to clarify exactly how this should work though.

7.13 Notes on code execution in InteractiveShell

7.13.1 Overview

This section contains information and notes about the code execution system in InteractiveShell.
This system needs to be refactored and we are keeping notes about this process here.

7.13.2 Current design

Here is a script that shows the relationships between the various methods in InteractiveShell that
manage code execution:

7.13. Notes on code execution in InteractiveShell 257

IPython Documentation, Release 0.11

import networkx as nx
import matplotlib.pyplot as plt

exec_init_cmd = ’exec_init_cmd’
interact = ’interact’
runlines = ’runlines’
runsource = ’runsource’
runcode = ’runcode’
push_line = ’push_line’
mainloop = ’mainloop’
embed_mainloop = ’embed_mainloop’
ri = ’raw_input’
prefilter = ’prefilter’

g = nx.DiGraph()

g.add_node(exec_init_cmd)
g.add_node(interact)
g.add_node(runlines)
g.add_node(runsource)
g.add_node(push_line)
g.add_node(mainloop)
g.add_node(embed_mainloop)
g.add_node(ri)
g.add_node(prefilter)

g.add_edge(exec_init_cmd, push_line)
g.add_edge(exec_init_cmd, prefilter)
g.add_edge(mainloop, exec_init_cmd)
g.add_edge(mainloop, interact)
g.add_edge(embed_mainloop, interact)
g.add_edge(interact, ri)
g.add_edge(interact, push_line)
g.add_edge(push_line, runsource)
g.add_edge(runlines, push_line)
g.add_edge(runlines, prefilter)
g.add_edge(runsource, runcode)
g.add_edge(ri, prefilter)

nx.draw_spectral(g, node_size=100, alpha=0.6, node_color=’r’,
font_size=10, node_shape=’o’)

plt.show()

7.14 IPython Qt interface

7.14.1 Abstract

This is about the implementation of a Qt-based Graphical User Interface (GUI) to execute Python code with
an interpreter that runs in a separate process and the two systems (GUI frontend and interpreter kernel)
communicating via the ZeroMQ Messaging library. The bulk of the implementation will be done without

258 Chapter 7. IPython developer’s guide

IPython Documentation, Release 0.11

dependencies on IPython (only on Zmq). Once the key features are ready, IPython-specific features can be
added using the IPython codebase.

7.14.2 Project details

For a long time there has been demand for a graphical user interface for IPython, and the project already
ships Wx-based prototypes thereof. But these run all code in a single process, making them extremely
brittle, as a crash of the Python interpreter kills the entire user session. Here I propose to build a Qt-based
GUI that will communicate with a separate process for the code execution, so that if the interpreter kernel
dies, the frontend can continue to function after restarting a new kernel (and offering the user the option to
re-execute all inputs, which the frontend can know).

This GUI will allow for the easy editing of multi-line input and the convenient re-editing of previous blocks
of input, which can be displayed in a 2-d workspace instead of a line-driven one like today’s IPython. This
makes it much easier to incrementally build and tune a code, by combining the rapid feedback cycle of
IPython with the ability to edit multiline code with good graphical support.

2-process model pyzmq base

Since the necessity of a user to keep his data safe, the design is based in a 2-process model that will be
achieved with a simple client/server system with pyzmq, so the GUI session do not crash if the the kernel
process does. This will be achieved using this test code and customizing it to the necessities of the GUI
such as queue management with discrimination for different frontends connected to the same kernel and tab
completion. A piece of drafted code for the kernel (server) should look like this:

def main():
c = zmq.Context(1, 1)
rep_conn = connection % port_base
pub_conn = connection % (port_base+1)
print >>sys.__stdout__, "Starting the kernel..."
print >>sys.__stdout__, "On:",rep_conn, pub_conn
session = Session(username=u’kernel’)
reply_socket = c.socket(zmq.XREP)
reply_socket.bind(rep_conn)
pub_socket = c.socket(zmq.PUB)
pub_socket.bind(pub_conn)
stdout = OutStream(session, pub_socket, u’stdout’)
stderr = OutStream(session, pub_socket, u’stderr’)
sys.stdout = stdout
sys.stderr = stderr
display_hook = DisplayHook(session, pub_socket)
sys.displayhook = display_hook
kernel = Kernel(session, reply_socket, pub_socket)

This kernel will use two queues (output and input), the input queue will have the id of the process(frontend)
making the request, type(execute, complete, help, etc) and id of the request itself and the string of code to be
executed, the output queue will have basically the same information just that the string is the to be displayed.
This model is because the kernel needs to maintain control of timeouts when multiple requests are sent and
keep them indexed.

7.14. IPython Qt interface 259

http://www.zeromq.org/bindings:python
http://github.com/fperez/pyzmq/blob/completer/examples/kernel/kernel.py

IPython Documentation, Release 0.11

Qt based GUI

Design of the interface is going to be based in cells of code executed on the previous defined kernel. It will
also have GUI facilities such toolboxes, tooltips to autocomplete code and function summary, highlighting
and autoindentation. It will have the cell kind of multiline edition mode so each block of code can be edited
and executed independently, this can be achieved queuing QTextEdit objects (the cell) giving them format
so we can discriminate outputs from inputs. One of the main characteristics will be the debug support that
will show the requested outputs as the debugger (that will be on a popup widget) “walks” through the code,
this design is to be reviewed with the mentor. This is a tentative view of the main window.

The GUI will check continuously the output queue from the kernel for new information to handle. This
information have to be handled with care since any output will come at anytime and possibly in a different
order than requested or maybe not appear at all, this could be possible due to a variety of reasons(for example
tab completion request while the kernel is busy processing another frontend’s request). This is, if the kernel
is busy it won’t be possible to fulfill the request for a while so the GUI will be prepared to abandon waiting
for the reply if the user moves on or a certain timeout expires.

7.14.3 POSSIBLE FUTURE DIRECTIONS

The near future will bring the feature of saving and loading sessions, also importing and exporting to dif-
ferent formats like rst, html, pdf and python/ipython code, a discussion about this is taking place in the
ipython-dev mailing list. Also the interaction with a remote kernel and distributed computation which is an
IPython’s project already in development.

The idea of a mathematica-like help widget (i.e. there will be parts of it that will execute as a native session
of IPythonQt) is still to be discussed in the development mailing list but it’s definitively a great idea.

7.15 Porting IPython to a two process model using zeromq

7.15.1 Abstract

IPython’s execution in a command-line environment will be ported to a two process model using the zeromq
library for inter-process communication. this will:

• prevent an interpreter crash from destroying the user session,

• allow multiple clients to interact simultaneously with a single interpreter

• allow IPython to reuse code for local execution and distributed computing (dc)

• give us a path for python3 support, since zeromq supports python3 while twisted (what we use today
for dc) does not.

7.15.2 Project description

Currently IPython provides a command-line client that executes all code in a single process, and a set of
tools for distributed and parallel computing that execute code in multiple processes (possibly but not nec-
essarily on different hosts), using the twisted asynchronous framework for communication between nodes.

260 Chapter 7. IPython developer’s guide

http://gfif.udea.edu.co/IPythonQt_snapshot.png

IPython Documentation, Release 0.11

for a number of reasons, it is desirable to unify the architecture of the local execution with that of dis-
tributed computing, since ultimately many of the underlying abstractions are similar and should be reused.
in particular, we would like to:

• have even for a single user a 2-process model, so that the environment where code is being input runs
in a different process from that which executes the code. this would prevent a crash of the python
interpreter executing code (because of a segmentation fault in a compiled extension or an improper
access to a c library via ctypes, for example) from destroying the user session.

• have the same kernel used for executing code locally be available over the network for distributed
computing. currently the twisted-using IPython engines for distributed computing do not share any
code with the command-line client, which means that many of the additional features of IPython (tab
completion, object introspection, magic functions, etc) are not available while using the distributed
computing system. once the regular command-line environment is ported to allowing such a 2-process
model, this newly decoupled kernel could form the core of a distributed computing IPython engine
and all capabilities would be available throughout the system.

• have a route to python3 support. twisted is a large and complex library that does currently
not support python3, and as indicated by the twisted developers it may take a while be-
fore it is ported (http://stackoverflow.com/questions/172306/how-are-you-planning-on-handling-the-
migration-to-python-3). for IPython, this means that while we could port the command-line environ-
ment, a large swath of IPython would be left 2.x-only, a highly undesirable situation. for this reason,
the search for an alternative to twisted has been active for a while, and recently we’ve identified the
zeromq (http://www.zeromq.org, zmq for short) library as a viable candidate. zmq is a fast, simple
messaging library written in c++, for which one of the IPython developers has written python bindings
using cython (http://www.zeromq.org/bindings:python). since cython already knows how to generate
python3-compliant bindings with a simple command-line switch, zmq can be used with python3 when
needed.

As part of the zmq python bindings, the IPython developers have already developed a simple prototype of
such a two-process kernel/frontend system (details below). I propose to start from this example and port
today’s IPython code to operate in a similar manner. IPython’s command-line program (the main ‘ipython’
script) executes both user interaction and the user’s code in the same process. This project will thus require
breaking up IPython into the parts that correspond to the kernel and the parts that are meant to interact with
the user, and making these two components communicate over the network using zmq instead of accessing
local attributes and methods of a single global object.

Once this port is complete, the resulting tools will be the foundation (though as part of this proposal i do
not expect to undertake either of these tasks) to allow the distributed computing parts of IPython to use the
same code as the command-line client, and for the whole system to be ported to python3. so while i do not
intend to tackle here the removal of twisted and the unification of the local and distributed parts of IPython,
my proposal is a necessary step before those are possible.

7.15.3 Project details

As part of the zeromq bindings, the IPython developers have already developed a simple prototype example
that provides a python execution kernel (with none of IPython’s code or features, just plain code execution)
that listens on zmq sockets, and a frontend based on the interactiveconsole class of the code.py module
from the python standard library. this example is capable of executing code, propagating errors, performing

7.15. Porting IPython to a two process model using zeromq 261

http://stackoverflow.com/questions/172306/how-are-you-planning-on-handling-the-migration-to-python-3
http://stackoverflow.com/questions/172306/how-are-you-planning-on-handling-the-migration-to-python-3
http://www.zeromq.org
http://www.zeromq.org/bindings:python

IPython Documentation, Release 0.11

tab-completion over the network and having multiple frontends connect and disconnect simultaneously to a
single kernel, with all inputs and outputs being made available to all connected clients (thanks to zqm’s pub
sockets that provide multicasting capabilities for the kernel and to which the frontends subscribe via a sub
socket).

We have all example code in:

• http://github.com/ellisonbg/pyzmq/blob/completer/examples/kernel/kernel.py

• http://github.com/ellisonbg/pyzmq/blob/completer/examples/kernel/completer.py

• http://github.com/fperez/pyzmq/blob/completer/examples/kernel/frontend.py

all of this code already works, and can be seen in this example directory from the zmq python bindings:

• http://github.com/ellisonbg/pyzmq/blob/completer/examples/kernel

Based on this work, i expect to write a stable system for IPython kernel with IPython standards, error
control,crash recovery system and general configuration options, also standardize defaults ports or auth
system for remote connection etc.

The crash recovery system, is a IPython kernel module for when it fails unexpectedly, you can retrieve the
information from the section, this will be based on a log and a lock file to indicate when the kernel was not
closed in a proper way.

262 Chapter 7. IPython developer’s guide

http://github.com/ellisonbg/pyzmq/blob/completer/examples/kernel/kernel.py
http://github.com/ellisonbg/pyzmq/blob/completer/examples/kernel/completer.py
http://github.com/fperez/pyzmq/blob/completer/examples/kernel/frontend.py
http://github.com/ellisonbg/pyzmq/blob/completer/examples/kernel

CHAPTER

EIGHT

THE IPYTHON API

8.1 config.application

8.1.1 Module: config.application

Inheritance diagram for IPython.config.application:

config.application.ApplicationError

config.application.Applicationconfig.configurable.SingletonConfigurableconfig.configurable.Configurableutils.traitlets.HasTraits

A base class for a configurable application.

Authors:

• Brian Granger

• Min RK

8.1.2 Classes

Application

class IPython.config.application.Application(**kwargs)
Bases: IPython.config.configurable.SingletonConfigurable

A singleton application with full configuration support.

__init__(**kwargs)

aliases
An instance of a Python dict.

classmethod class_config_section()
Get the config class config section

263

IPython Documentation, Release 0.11

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

description
A trait for unicode strings.

examples
A trait for unicode strings.

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

init_logging()
Start logging for this application.

264 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

initialize(argv=None)
Do the basic steps to configure me.

Override in subclasses.

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

keyvalue_description
A trait for unicode strings.

load_config_file(filename, path=None)
Load a .py based config file by filename and path.

log_level
An enum that whose value must be in a given sequence.

name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

8.1. config.application 265

IPython Documentation, Release 0.11

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

start()
Start the app mainloop.

Override in subclasses.

266 Chapter 8. The IPython API

IPython Documentation, Release 0.11

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

version
A trait for unicode strings.

ApplicationError

class IPython.config.application.ApplicationError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.1.3 Function

IPython.config.application.boolean_flag(name, configurable, set_help=’‘, un-
set_help=’‘)

Helper for building basic –trait, –no-trait flags.

Parameters name : str

The name of the flag.

8.1. config.application 267

IPython Documentation, Release 0.11

configurable : str

The ‘Class.trait’ string of the trait to be set/unset with the flag

set_help : unicode

help string for –name flag

unset_help : unicode

help string for –no-name flag

Returns cfg : dict

A dict with two keys: ‘name’, and ‘no-name’, for setting and unsetting the
trait, respectively.

8.2 config.configurable

8.2.1 Module: config.configurable

Inheritance diagram for IPython.config.configurable:

config.configurable.MultipleInstanceErrorconfig.configurable.ConfigurableError

config.configurable.SingletonConfigurable

config.configurable.Configurable

config.configurable.LoggingConfigurable

utils.traitlets.HasTraits

A base class for objects that are configurable.

Authors:

• Brian Granger

• Fernando Perez

• Min RK

8.2.2 Classes

Configurable

class IPython.config.configurable.Configurable(**kwargs)
Bases: IPython.utils.traitlets.HasTraits

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

268 Chapter 8. The IPython API

IPython Documentation, Release 0.11

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

8.2. config.configurable 269

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

ConfigurableError

class IPython.config.configurable.ConfigurableError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

LoggingConfigurable

class IPython.config.configurable.LoggingConfigurable(**kwargs)
Bases: IPython.config.configurable.Configurable

A parent class for Configurables that log.

270 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Subclasses have a log trait, and the default behavior is to get the logger from the currently running
Application via Application.instance().log.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

8.2. config.configurable 271

IPython Documentation, Release 0.11

The value can also be an instance of a subclass of the specified class.

created = None

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

MultipleInstanceError

class IPython.config.configurable.MultipleInstanceError
Bases: IPython.config.configurable.ConfigurableError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

272 Chapter 8. The IPython API

IPython Documentation, Release 0.11

args

message

SingletonConfigurable

class IPython.config.configurable.SingletonConfigurable(**kwargs)
Bases: IPython.config.configurable.Configurable

A configurable that only allows one instance.

This class is for classes that should only have one instance of itself or any subclass. To create and
retrieve such a class use the SingletonConfigurable.instance() method.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

8.2. config.configurable 273

IPython Documentation, Release 0.11

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

274 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.3 config.loader

8.3.1 Module: config.loader

Inheritance diagram for IPython.config.loader:

8.3. config.loader 275

IPython Documentation, Release 0.11

config.loader.KeyValueConfigLoader

config.loader.CommandLineConfigLoader config.loader.ArgParseConfigLoader

config.loader.ConfigLoaderError config.loader.ArgumentErrorconfig.loader.ConfigError

config.loader.ConfigLoader

config.loader.FileConfigLoader

argparse._ActionsContainer

argparse.ArgumentParser

config.loader.PyFileConfigLoader

config.loader.ArgumentParser

argparse._AttributeHolder

config.loader.Config

A simple configuration system.

Authors

• Brian Granger

• Fernando Perez

• Min RK

8.3.2 Classes

ArgParseConfigLoader

class IPython.config.loader.ArgParseConfigLoader(argv=None, *parser_args,
**parser_kw)

Bases: IPython.config.loader.CommandLineConfigLoader

A loader that uses the argparse module to load from the command line.

__init__(argv=None, *parser_args, **parser_kw)
Create a config loader for use with argparse.

Parameters argv : optional, list

If given, used to read command-line arguments from, otherwise sys.argv[1:]
is used.

parser_args : tuple

A tuple of positional arguments that will be passed to the constructor of
argparse.ArgumentParser.

276 Chapter 8. The IPython API

IPython Documentation, Release 0.11

parser_kw : dict

A tuple of keyword arguments that will be passed to the constructor of
argparse.ArgumentParser.

Returns config : Config

The resulting Config object.

clear()

get_extra_args()

load_config(argv=None)
Parse command line arguments and return as a Config object.

Parameters args : optional, list

If given, a list with the structure of sys.argv[1:] to parse arguments from.
If not given, the instance’s self.argv attribute (given at construction time) is
used.

ArgumentError

class IPython.config.loader.ArgumentError
Bases: IPython.config.loader.ConfigLoaderError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

ArgumentParser

class IPython.config.loader.ArgumentParser(prog=None, usage=None, de-
scription=None, epilog=None,
version=None, parents=[
], formatter_class=<class
‘argparse.HelpFormatter’>,
prefix_chars=’-‘, from-
file_prefix_chars=None, ar-
gument_default=None, con-
flict_handler=’error’, add_help=True)

Bases: argparse.ArgumentParser

Simple argparse subclass that prints help to stdout by default.

__init__(prog=None, usage=None, description=None, epilog=None, version=None, par-
ents=[], formatter_class=<class ‘argparse.HelpFormatter’>, prefix_chars=’-‘,
fromfile_prefix_chars=None, argument_default=None, conflict_handler=’error’,
add_help=True)

8.3. config.loader 277

IPython Documentation, Release 0.11

add_argument(dest, ..., name=value, ...) add_argument(option_string, option_string, ...,
name=value, ...)

add_argument_group(*args, **kwargs)

add_mutually_exclusive_group(**kwargs)

add_subparsers(**kwargs)

error(message: string)
Prints a usage message incorporating the message to stderr and exits.

If you override this in a subclass, it should not return – it should either exit or raise an exception.

exit(status=0, message=None)

format_help()

format_usage()

format_version()

parse_args(args=None, namespace=None)

parse_known_args(args=None, namespace=None)

print_help(file=None)

print_usage(file=None)

print_version(file=None)

register(registry_name, value, object)

set_defaults(**kwargs)

CommandLineConfigLoader

class IPython.config.loader.CommandLineConfigLoader
Bases: IPython.config.loader.ConfigLoader

A config loader for command line arguments.

As we add more command line based loaders, the common logic should go here.

__init__()
A base class for config loaders.

Examples

>>> cl = ConfigLoader()
>>> config = cl.load_config()
>>> config
{}

clear()

278 Chapter 8. The IPython API

IPython Documentation, Release 0.11

load_config()
Load a config from somewhere, return a Config instance.

Usually, this will cause self.config to be set and then returned. However, in most cases,
ConfigLoader.clear() should be called to erase any previous state.

Config

class IPython.config.loader.Config(*args, **kwds)
Bases: dict

An attribute based dict that can do smart merges.

__init__(*args, **kwds)

clear
D.clear() -> None. Remove all items from D.

copy()

static fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

get
D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

has_key(key)

items
D.items() -> list of D’s (key, value) pairs, as 2-tuples

iteritems
D.iteritems() -> an iterator over the (key, value) items of D

iterkeys
D.iterkeys() -> an iterator over the keys of D

itervalues
D.itervalues() -> an iterator over the values of D

keys
D.keys() -> list of D’s keys

pop
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found,
d is returned if given, otherwise KeyError is raised

popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError
if D is empty.

setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

8.3. config.loader 279

IPython Documentation, Release 0.11

update
D.update(E, **F) -> None. Update D from dict/iterable E and F. If E has a .keys() method, does:
for k in E: D[k] = E[k] If E lacks .keys() method, does: for (k, v) in E: D[k] = v In either case,
this is followed by: for k in F: D[k] = F[k]

values
D.values() -> list of D’s values

ConfigError

class IPython.config.loader.ConfigError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

ConfigLoader

class IPython.config.loader.ConfigLoader
Bases: object

A object for loading configurations from just about anywhere.

The resulting configuration is packaged as a Struct.

Notes

A ConfigLoader does one thing: load a config from a source (file, command line arguments) and
returns the data as a Struct. There are lots of things that ConfigLoader does not do. It does not
implement complex logic for finding config files. It does not handle default values or merge multiple
configs. These things need to be handled elsewhere.

__init__()
A base class for config loaders.

Examples

>>> cl = ConfigLoader()
>>> config = cl.load_config()
>>> config
{}

clear()

280 Chapter 8. The IPython API

IPython Documentation, Release 0.11

load_config()
Load a config from somewhere, return a Config instance.

Usually, this will cause self.config to be set and then returned. However, in most cases,
ConfigLoader.clear() should be called to erase any previous state.

ConfigLoaderError

class IPython.config.loader.ConfigLoaderError
Bases: IPython.config.loader.ConfigError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

FileConfigLoader

class IPython.config.loader.FileConfigLoader
Bases: IPython.config.loader.ConfigLoader

A base class for file based configurations.

As we add more file based config loaders, the common logic should go here.

__init__()
A base class for config loaders.

Examples

>>> cl = ConfigLoader()
>>> config = cl.load_config()
>>> config
{}

clear()

load_config()
Load a config from somewhere, return a Config instance.

Usually, this will cause self.config to be set and then returned. However, in most cases,
ConfigLoader.clear() should be called to erase any previous state.

KeyValueConfigLoader

class IPython.config.loader.KeyValueConfigLoader(argv=None, aliases=None,
flags=None)

Bases: IPython.config.loader.CommandLineConfigLoader

8.3. config.loader 281

IPython Documentation, Release 0.11

A config loader that loads key value pairs from the command line.

This allows command line options to be gives in the following form:

ipython --profile="foo" --InteractiveShell.autocall=False

__init__(argv=None, aliases=None, flags=None)
Create a key value pair config loader.

Parameters argv : list

A list that has the form of sys.argv[1:] which has unicode elements of the
form u”key=value”. If this is None (default), then sys.argv[1:] will be used.

aliases : dict

A dict of aliases for configurable traits. Keys are the short aliases, Values are
the resolved trait. Of the form: {‘alias’ : ‘Configurable.trait’}

flags : dict

A dict of flags, keyed by str name. Vaues can be Config objects, dicts, or
“key=value” strings. If Config or dict, when the flag is triggered, The flag is
loaded as self.config.update(m).

Returns config : Config

The resulting Config object.

Examples

>>> from IPython.config.loader import KeyValueConfigLoader
>>> cl = KeyValueConfigLoader()
>>> cl.load_config(["--A.name=’brian’","--B.number=0"])
{’A’: {’name’: ’brian’}, ’B’: {’number’: 0}}

clear()

load_config(argv=None, aliases=None, flags=None)
Parse the configuration and generate the Config object.

After loading, any arguments that are not key-value or flags will be stored in self.extra_args -
a list of unparsed command-line arguments. This is used for arguments such as input files or
subcommands.

Parameters argv : list, optional

A list that has the form of sys.argv[1:] which has unicode elements of the
form u”key=value”. If this is None (default), then self.argv will be used.

aliases : dict

A dict of aliases for configurable traits. Keys are the short aliases, Values are
the resolved trait. Of the form: {‘alias’ : ‘Configurable.trait’}

flags : dict

282 Chapter 8. The IPython API

IPython Documentation, Release 0.11

A dict of flags, keyed by str name. Values can be Config objects or dicts.
When the flag is triggered, The config is loaded as self.config.update(cfg).

PyFileConfigLoader

class IPython.config.loader.PyFileConfigLoader(filename, path=None)
Bases: IPython.config.loader.FileConfigLoader

A config loader for pure python files.

This calls execfile on a plain python file and looks for attributes that are all caps. These attribute are
added to the config Struct.

__init__(filename, path=None)
Build a config loader for a filename and path.

Parameters filename : str

The file name of the config file.

path : str, list, tuple

The path to search for the config file on, or a sequence of paths to try in order.

clear()

load_config()
Load the config from a file and return it as a Struct.

8.4 core.alias

8.4.1 Module: core.alias

Inheritance diagram for IPython.core.alias:

core.alias.InvalidAliasErrorcore.alias.AliasError

core.alias.AliasManagerconfig.configurable.Configurableutils.traitlets.HasTraits

System command aliases.

Authors:

• Fernando Perez

• Brian Granger

8.4. core.alias 283

IPython Documentation, Release 0.11

8.4.2 Classes

AliasError

class IPython.core.alias.AliasError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

AliasManager

class IPython.core.alias.AliasManager(shell=None, config=None)
Bases: IPython.config.configurable.Configurable

__init__(shell=None, config=None)

aliases

call_alias(alias, rest=’‘)
Call an alias given its name and the rest of the line.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

284 Chapter 8. The IPython API

IPython Documentation, Release 0.11

clear_aliases()

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

default_aliases
An instance of a Python list.

define_alias(name, cmd)
Define a new alias after validating it.

This will raise an AliasError if there are validation problems.

exclude_aliases()

expand_alias(line)
Expand an alias in the command line

Returns the provided command line, possibly with the first word (command) translated accord-
ing to alias expansion rules.

[ipython]|16> _ip.expand_aliases(“np myfile.txt”) <16> ‘q:/opt/np/notepad++.exe my-
file.txt’

expand_aliases(fn, rest)
Expand multiple levels of aliases:

if:

alias foo bar /tmp alias baz foo

then:

baz huhhahhei -> bar /tmp huhhahhei

init_aliases()

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

8.4. core.alias 285

IPython Documentation, Release 0.11

remove : bool

If False (the default), then install the handler. If True then unintall it.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

soft_define_alias(name, cmd)
Define an alias, but don’t raise on an AliasError.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

transform_alias(alias, rest=’‘)
Transform alias to system command string.

undefine_alias(name)

user_aliases
An instance of a Python list.

validate_alias(name, cmd)
Validate an alias and return the its number of arguments.

InvalidAliasError

class IPython.core.alias.InvalidAliasError
Bases: IPython.core.alias.AliasError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

286 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.4.3 Function

IPython.core.alias.default_aliases()
Return list of shell aliases to auto-define.

8.5 core.application

8.5.1 Module: core.application

Inheritance diagram for IPython.core.application:

core.application.BaseIPythonApplicationconfig.application.Applicationutils.traitlets.HasTraits config.configurable.Configurable config.configurable.SingletonConfigurable

An application for IPython.

All top-level applications should use the classes in this module for handling configuration and creating
componenets.

The job of an Application is to create the master configuration object and then create the configurable
objects, passing the config to them.

Authors:

• Brian Granger

• Fernando Perez

• Min RK

8.5.2 BaseIPythonApplication

class IPython.core.application.BaseIPythonApplication(**kwargs)
Bases: IPython.config.application.Application

__init__(**kwargs)

aliases
An instance of a Python dict.

auto_create
A boolean (True, False) trait.

builtin_profile_dir
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

8.5. core.application 287

IPython Documentation, Release 0.11

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config_file_name
A trait for unicode strings.

config_file_paths
An instance of a Python list.

config_file_specified
A boolean (True, False) trait.

config_files
An instance of a Python list.

copy_config_files
A boolean (True, False) trait.

crash_handler_class
A trait whose value must be a subclass of a specified class.

created = None

288 Chapter 8. The IPython API

IPython Documentation, Release 0.11

description
A trait for unicode strings.

examples
A trait for unicode strings.

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

init_config_files()
[optionally] copy default config files into profile dir.

init_crash_handler()
Create a crash handler, typically setting sys.excepthook to it.

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

init_profile_dir()
initialize the profile dir

initialize(argv=None)

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

8.5. core.application 289

IPython Documentation, Release 0.11

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

keyvalue_description
A trait for unicode strings.

load_config_file(suppress_errors=True)
Load the config file.

By default, errors in loading config are handled, and a warning printed on screen. For testing,
the suppress_errors option is set to False, so errors will make tests fail.

log_level
An enum that whose value must be in a given sequence.

name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

290 Chapter 8. The IPython API

IPython Documentation, Release 0.11

overwrite
A boolean (True, False) trait.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

profile
A trait for unicode strings.

stage_default_config_file()
auto generate default config file, and stage it into the profile.

start()
Start the app mainloop.

Override in subclasses.

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

8.5. core.application 291

IPython Documentation, Release 0.11

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

version
A trait for unicode strings.

8.6 core.autocall

8.6.1 Module: core.autocall

Inheritance diagram for IPython.core.autocall:

core.autocall.ZMQExitAutocallcore.autocall.ExitAutocallcore.autocall.IPyAutocall

Autocall capabilities for IPython.core.

Authors:

• Brian Granger

• Fernando Perez

• Thomas Kluyver

Notes

8.6.2 Classes

ExitAutocall

class IPython.core.autocall.ExitAutocall(ip=None)
Bases: IPython.core.autocall.IPyAutocall

292 Chapter 8. The IPython API

IPython Documentation, Release 0.11

An autocallable object which will be added to the user namespace so that exit, exit(), quit or quit() are
all valid ways to close the shell.

__init__(ip=None)

rewrite = False

set_ip(ip)
Will be used to set _ip point to current ipython instance b/f call

Override this method if you don’t want this to happen.

IPyAutocall

class IPython.core.autocall.IPyAutocall(ip=None)
Bases: object

Instances of this class are always autocalled

This happens regardless of ‘autocall’ variable state. Use this to develop macro-like mechanisms.

__init__(ip=None)

rewrite = True

set_ip(ip)
Will be used to set _ip point to current ipython instance b/f call

Override this method if you don’t want this to happen.

ZMQExitAutocall

class IPython.core.autocall.ZMQExitAutocall(ip=None)
Bases: IPython.core.autocall.ExitAutocall

Exit IPython. Autocallable, so it needn’t be explicitly called.

Parameters keep_kernel : bool

If True, leave the kernel alive. Otherwise, tell the kernel to exit too (default).

__init__(ip=None)

rewrite = False

set_ip(ip)
Will be used to set _ip point to current ipython instance b/f call

Override this method if you don’t want this to happen.

8.6. core.autocall 293

IPython Documentation, Release 0.11

8.7 core.builtin_trap

8.7.1 Module: core.builtin_trap

Inheritance diagram for IPython.core.builtin_trap:

utils.traitlets.HasTraits config.configurable.Configurable

core.builtin_trap.__HideBuiltin

core.builtin_trap.__BuiltinUndefined

core.builtin_trap.BuiltinTrap

A context manager for managing things injected into __builtin__.

Authors:

• Brian Granger

• Fernando Perez

8.7.2 BuiltinTrap

class IPython.core.builtin_trap.BuiltinTrap(shell=None)
Bases: IPython.config.configurable.Configurable

__init__(shell=None)

activate()
Store ipython references in the __builtin__ namespace.

add_builtin(key, value)
Add a builtin and save the original.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

294 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

deactivate()
Remove any builtins which might have been added by add_builtins, or restore overwritten ones
to their previous values.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

remove_builtin(key)
Remove an added builtin and re-set the original.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

8.7. core.builtin_trap 295

IPython Documentation, Release 0.11

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.8 core.compilerop

8.8.1 Module: core.compilerop

Inheritance diagram for IPython.core.compilerop:

core.compilerop.CachingCompilercodeop.Compile

Compiler tools with improved interactive support.

Provides compilation machinery similar to codeop, but with caching support so we can provide interactive
tracebacks.

Authors

• Robert Kern

• Fernando Perez

• Thomas Kluyver

8.8.2 CachingCompiler

class IPython.core.compilerop.CachingCompiler
Bases: codeop.Compile

A compiler that caches code compiled from interactive statements.

__init__()

296 Chapter 8. The IPython API

IPython Documentation, Release 0.11

cache(code, number=0)
Make a name for a block of code, and cache the code.

Parameters code : str

The Python source code to cache.

number : int

A number which forms part of the code’s name. Used for the execution
counter.

Returns The name of the cached code (as a string). Pass this as the filename :

argument to compilation, so that tracebacks are correctly hooked up. :

check_cache(*args)
Call linecache.checkcache() safely protecting our cached values.

compiler_flags
Flags currently active in the compilation process.

IPython.core.compilerop.code_name(code, number=0)
Compute a (probably) unique name for code for caching.

This now expects code to be unicode.

8.9 core.completer

8.9.1 Module: core.completer

Inheritance diagram for IPython.core.completer:

core.completer.IPCompletercore.completer.Completer

core.completer.Bunch

core.completer.CompletionSplitter

Word completion for IPython.

This module is a fork of the rlcompleter module in the Python standard library. The original enhancements
made to rlcompleter have been sent upstream and were accepted as of Python 2.3, but we need a lot more
functionality specific to IPython, so this module will continue to live as an IPython-specific utility.

8.9. core.completer 297

IPython Documentation, Release 0.11

Original rlcompleter documentation:

This requires the latest extension to the readline module (the completes keywords, built-ins and globals in
__main__; when completing NAME.NAME..., it evaluates (!) the expression up to the last dot and completes
its attributes.

It’s very cool to do “import string” type “string.”, hit the completion key (twice), and see the list of names
defined by the string module!

Tip: to use the tab key as the completion key, call

readline.parse_and_bind(“tab: complete”)

Notes:

• Exceptions raised by the completer function are ignored (and

generally cause the completion to fail). This is a feature – since readline sets the tty device in raw (or cbreak)
mode, printing a traceback wouldn’t work well without some complicated hoopla to save, reset and restore
the tty state.

• The evaluation of the NAME.NAME... form may cause arbitrary

application defined code to be executed if an object with a __getattr__ hook is found. Since it is the re-
sponsibility of the application (or the user) to enable this feature, I consider this an acceptable risk. More
complicated expressions (e.g. function calls or indexing operations) are not evaluated.

• GNU readline is also used by the built-in functions input() and

raw_input(), and thus these also benefit/suffer from the completer features. Clearly an interactive application
can benefit by specifying its own completer function and using raw_input() for all its input.

• When the original stdin is not a tty device, GNU readline is never

used, and this module (and the readline module) are silently inactive.

8.9.2 Classes

Bunch

class IPython.core.completer.Bunch
Bases: object

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

Completer

class IPython.core.completer.Completer(namespace=None,
global_namespace=None)

Bases: object

298 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__(namespace=None, global_namespace=None)
Create a new completer for the command line.

Completer([namespace,global_namespace]) -> completer instance.

If unspecified, the default namespace where completions are performed is __main__ (techni-
cally, __main__.__dict__). Namespaces should be given as dictionaries.

An optional second namespace can be given. This allows the completer to handle cases where
both the local and global scopes need to be distinguished.

Completer instances should be used as the completion mechanism of readline via the
set_completer() call:

readline.set_completer(Completer(my_namespace).complete)

attr_matches(text)
Compute matches when text contains a dot.

Assuming the text is of the form NAME.NAME....[NAME], and is evaluatable in self.namespace
or self.global_namespace, it will be evaluated and its attributes (as revealed by dir()) are used as
possible completions. (For class instances, class members are are also considered.)

WARNING: this can still invoke arbitrary C code, if an object with a __getattr__ hook is evalu-
ated.

complete(text, state)
Return the next possible completion for ‘text’.

This is called successively with state == 0, 1, 2, ... until it returns None. The completion should
begin with ‘text’.

global_matches(text)
Compute matches when text is a simple name.

Return a list of all keywords, built-in functions and names currently defined in self.namespace
or self.global_namespace that match.

CompletionSplitter

class IPython.core.completer.CompletionSplitter(delims=None)
Bases: object

An object to split an input line in a manner similar to readline.

By having our own implementation, we can expose readline-like completion in a uniform manner to
all frontends. This object only needs to be given the line of text to be split and the cursor position on
said line, and it returns the ‘word’ to be completed on at the cursor after splitting the entire line.

What characters are used as splitting delimiters can be controlled by setting the delims attribute (this
is a property that internally automatically builds the necessary

__init__(delims=None)

8.9. core.completer 299

IPython Documentation, Release 0.11

get_delims()
Return the string of delimiter characters.

set_delims(delims)
Set the delimiters for line splitting.

split_line(line, cursor_pos=None)
Split a line of text with a cursor at the given position.

IPCompleter

class IPython.core.completer.IPCompleter(shell, namespace=None,
global_namespace=None,
omit__names=True, alias_table=None,
use_readline=True)

Bases: IPython.core.completer.Completer

Extension of the completer class with IPython-specific features

__init__(shell, namespace=None, global_namespace=None, omit__names=True,
alias_table=None, use_readline=True)

IPCompleter() -> completer

Return a completer object suitable for use by the readline library via readline.set_completer().

Inputs:

•shell: a pointer to the ipython shell itself. This is needed

because this completer knows about magic functions, and those can only be accessed via the
ipython instance.

•namespace: an optional dict where completions are performed.

•global_namespace: secondary optional dict for completions, to

handle cases (such as IPython embedded inside functions) where both Python scopes are visible.

•The optional omit__names parameter sets the completer to omit the

‘magic’ names (__magicname__) for python objects unless the text to be completed explicitly
starts with one or more underscores.

•If alias_table is supplied, it should be a dictionary of aliases

to complete.

use_readline [bool, optional] If true, use the readline library. This completer can still function
without readline, though in that case callers must provide some extra information on each
call about the current line.

alias_matches(text)
Match internal system aliases

all_completions(text)
Wrapper around the complete method for the benefit of emacs and pydb.

300 Chapter 8. The IPython API

IPython Documentation, Release 0.11

attr_matches(text)
Compute matches when text contains a dot.

Assuming the text is of the form NAME.NAME....[NAME], and is evaluatable in self.namespace
or self.global_namespace, it will be evaluated and its attributes (as revealed by dir()) are used as
possible completions. (For class instances, class members are are also considered.)

WARNING: this can still invoke arbitrary C code, if an object with a __getattr__ hook is evalu-
ated.

complete(text=None, line_buffer=None, cursor_pos=None)
Find completions for the given text and line context.

This is called successively with state == 0, 1, 2, ... until it returns None. The completion should
begin with ‘text’.

Note that both the text and the line_buffer are optional, but at least one of them must be given.

Parameters text : string, optional

Text to perform the completion on. If not given, the line buffer is split
using the instance’s CompletionSplitter object.

line_buffer [string, optional] If not given, the completer attempts to obtain
the current line buffer via readline. This keyword allows clients which
are requesting for text completions in non-readline contexts to inform the
completer of the entire text.

cursor_pos [int, optional] Index of the cursor in the full line buffer. Should
be provided by remote frontends where kernel has no access to frontend
state.

Returns text : str

Text that was actually used in the completion.

matches : list

A list of completion matches.

dispatch_custom_completer(text)

file_matches(text)
Match filenames, expanding ~USER type strings.

Most of the seemingly convoluted logic in this completer is an attempt to handle filenames with
spaces in them. And yet it’s not quite perfect, because Python’s readline doesn’t expose all of
the GNU readline details needed for this to be done correctly.

For a filename with a space in it, the printed completions will be only the parts after what’s
already been typed (instead of the full completions, as is normally done). I don’t think with the
current (as of Python 2.3) Python readline it’s possible to do better.

global_matches(text)
Compute matches when text is a simple name.

8.9. core.completer 301

IPython Documentation, Release 0.11

Return a list of all keywords, built-in functions and names currently defined in self.namespace
or self.global_namespace that match.

magic_matches(text)
Match magics

python_func_kw_matches(text)
Match named parameters (kwargs) of the last open function

python_matches(text)
Match attributes or global python names

rlcomplete(text, state)
Return the state-th possible completion for ‘text’.

This is called successively with state == 0, 1, 2, ... until it returns None. The completion should
begin with ‘text’.

Parameters text : string

Text to perform the completion on.

state [int] Counter used by readline.

8.9.3 Functions

IPython.core.completer.compress_user(path, tilde_expand, tilde_val)
Does the opposite of expand_user, with its outputs.

IPython.core.completer.expand_user(path)
Expand ‘~’-style usernames in strings.

This is similar to os.path.expanduser(), but it computes and returns extra information that
will be useful if the input was being used in computing completions, and you wish to return the
completions with the original ‘~’ instead of its expanded value.

Parameters path : str

String to be expanded. If no ~ is present, the output is the same as the input.

Returns newpath : str

Result of ~ expansion in the input path.

tilde_expand : bool

Whether any expansion was performed or not.

tilde_val : str

The value that ~ was replaced with.

IPython.core.completer.has_open_quotes(s)
Return whether a string has open quotes.

This simply counts whether the number of quote characters of either type in the string is odd.

302 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Returns If there is an open quote, the quote character is returned. Else, return :

False. :

IPython.core.completer.mark_dirs(matches)
Mark directories in input list by appending ‘/’ to their names.

IPython.core.completer.protect_filename(s)
Escape a string to protect certain characters.

IPython.core.completer.single_dir_expand(matches)
Recursively expand match lists containing a single dir.

8.10 core.completerlib

8.10.1 Module: core.completerlib

Implementations for various useful completers.

These are all loaded by default by IPython.

8.10.2 Functions

IPython.core.completerlib.cd_completer(self, event)
Completer function for cd, which only returns directories.

IPython.core.completerlib.get_root_modules()
Returns a list containing the names of all the modules available in the folders of the pythonpath.

IPython.core.completerlib.is_importable(module, attr, only_modules)

IPython.core.completerlib.magic_run_completer(self, event)
Complete files that end in .py or .ipy for the %run command.

IPython.core.completerlib.module_completer(self, event)
Give completions after user has typed ‘import ...’ or ‘from ...’

IPython.core.completerlib.module_completion(line)
Returns a list containing the completion possibilities for an import line.

The line looks like this : ‘import xml.d’ ‘from xml.dom import’

IPython.core.completerlib.module_list(path)
Return the list containing the names of the modules available in the given folder.

IPython.core.completerlib.quick_completer(cmd, completions)
Easily create a trivial completer for a command.

Takes either a list of completions, or all completions in string (that will be split on whitespace).

Example:

8.10. core.completerlib 303

IPython Documentation, Release 0.11

[d:\ipython]|1> import ipy_completers
[d:\ipython]|2> ipy_completers.quick_completer(’foo’, [’bar’,’baz’])
[d:\ipython]|3> foo b<TAB>
bar baz
[d:\ipython]|3> foo ba

IPython.core.completerlib.shlex_split(x)
Helper function to split lines into segments.

IPython.core.completerlib.try_import(mod, only_modules=False)

8.11 core.crashhandler

8.11.1 Module: core.crashhandler

Inheritance diagram for IPython.core.crashhandler:

core.crashhandler.CrashHandler

sys.excepthook for IPython itself, leaves a detailed report on disk.

Authors:

• Fernando Perez

• Brian E. Granger

8.11.2 CrashHandler

class IPython.core.crashhandler.CrashHandler(app, contact_name=None,
contact_email=None,
bug_tracker=None,
show_crash_traceback=True,
call_pdb=False)

Bases: object

Customizable crash handlers for IPython applications.

Instances of this class provide a __call__() method which can be used as a sys.excepthook.
The __call__() signature is:

def __call__(self, etype, evalue, etb)

304 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__(app, contact_name=None, contact_email=None, bug_tracker=None,
show_crash_traceback=True, call_pdb=False)

Create a new crash handler

Parameters app : Application

A running Application instance, which will be queried at crash time for
internal information.

contact_name : str

A string with the name of the person to contact.

contact_email : str

A string with the email address of the contact.

bug_tracker : str

A string with the URL for your project’s bug tracker.

show_crash_traceback : bool

If false, don’t print the crash traceback on stderr, only generate the on-disk
report

Non-argument instance attributes: :

These instances contain some non-argument attributes which allow for :

further customization of the crash handler’s behavior. Please see the :

source for further details. :

make_report(traceback)
Return a string containing a crash report.

message_template = “Oops, {app_name} crashed. We do our best to make it stable, but...\n\nA crash report was automatically generated with the following information:\n - A verbatim copy of the crash traceback.\n - A copy of your input history during this session.\n - Data on your current {app_name} configuration.\n\nIt was left in the file named:\n\t’{crash_report_fname}’\nIf you can email this file to the developers, the information in it will help\nthem in understanding and correcting the problem.\n\nYou can mail it to: {contact_name} at {contact_email}\nwith the subject ‘{app_name} Crash Report’.\n\nIf you want to do it now, the following command will work (under Unix):\nmail -s ‘{app_name} Crash Report’ {contact_email} < {crash_report_fname}\n\nTo ensure accurate tracking of this issue, please file a report about it at:\n{bug_tracker}\n”

section_sep = ‘\n\n***\n\n’

8.12 core.debugger

8.12.1 Module: core.debugger

Inheritance diagram for IPython.core.debugger:

8.12. core.debugger 305

IPython Documentation, Release 0.11

cmd.Cmd

pdb.Pdb core.debugger.Pdb

bdb.Bdb

core.debugger.Tracer

Pdb debugger class.

Modified from the standard pdb.Pdb class to avoid including readline, so that the command line completion
of other programs which include this isn’t damaged.

In the future, this class will be expanded with improvements over the standard pdb.

The code in this file is mainly lifted out of cmd.py in Python 2.2, with minor changes. Licensing should
therefore be under the standard Python terms. For details on the PSF (Python Software Foundation) standard
license, see:

http://www.python.org/2.2.3/license.html

8.12.2 Classes

Pdb

class IPython.core.debugger.Pdb(color_scheme=’NoColor’, completekey=None,
stdin=None, stdout=None)

Bases: pdb.Pdb

Modified Pdb class, does not load readline.

__init__(color_scheme=’NoColor’, completekey=None, stdin=None, stdout=None)

bp_commands(frame)
Call every command that was set for the current active breakpoint (if there is one) Returns True
if the normal interaction function must be called, False otherwise

break_anywhere(frame)

break_here(frame)

canonic(filename)

checkline(filename, lineno)
Check whether specified line seems to be executable.

306 Chapter 8. The IPython API

http://www.python.org/2.2.3/license.html

IPython Documentation, Release 0.11

Return lineno if it is, 0 if not (e.g. a docstring, comment, blank line or EOF). Warning: testing
is not comprehensive.

clear_all_breaks()

clear_all_file_breaks(filename)

clear_bpbynumber(arg)

clear_break(filename, lineno)

cmdloop(intro=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dis-
patch to action methods, passing them the remainder of the line as argument.

columnize(list, displaywidth=80)
Display a list of strings as a compact set of columns.

Each column is only as wide as necessary. Columns are separated by two spaces (one was not
legible enough).

commands_resuming = [’do_continue’, ‘do_step’, ‘do_next’, ‘do_return’, ‘do_quit’, ‘do_jump’]

complete(text, state)
Return the next possible completion for ‘text’.

If a command has not been entered, then complete against command list. Otherwise try to call
complete_<command> to get list of completions.

complete_help(*args)

completedefault(*ignored)
Method called to complete an input line when no command-specific complete_*() method is
available.

By default, it returns an empty list.

completenames(text, *ignored)

default(line)

defaultFile()
Produce a reasonable default.

dispatch_call(frame, arg)

dispatch_exception(frame, arg)

dispatch_line(frame)

dispatch_return(frame, arg)

displayhook(obj)
Custom displayhook for the exec in default(), which prevents assignment of the _ variable in the
builtins.

do_EOF(arg)

do_a(arg)

8.12. core.debugger 307

IPython Documentation, Release 0.11

do_alias(arg)

do_args(arg)

do_b(arg, temporary=0)

do_break(arg, temporary=0)

do_bt(arg)

do_c(arg)

do_cl(arg)
Three possibilities, tried in this order: clear -> clear all breaks, ask for confirmation clear
file:lineno -> clear all breaks at file:lineno clear bpno bpno ... -> clear breakpoints by num-
ber

do_clear(arg)
Three possibilities, tried in this order: clear -> clear all breaks, ask for confirmation clear
file:lineno -> clear all breaks at file:lineno clear bpno bpno ... -> clear breakpoints by num-
ber

do_commands(arg)
Defines a list of commands associated to a breakpoint Those commands will be executed when-
ever the breakpoint causes the program to stop execution.

do_condition(arg)

do_cont(arg)

do_continue(arg)

do_d(*args, **kw)

do_debug(arg)

do_disable(arg)

do_down(*args, **kw)

do_enable(arg)

do_exit(arg)

do_h(arg)

do_help(arg)

do_ignore(arg)
arg is bp number followed by ignore count.

do_j(arg)

do_jump(arg)

do_l(arg)

do_list(arg)

do_n(arg)

308 Chapter 8. The IPython API

IPython Documentation, Release 0.11

do_next(arg)

do_p(arg)

do_pdef(arg)
The debugger interface to magic_pdef

do_pdoc(arg)
The debugger interface to magic_pdoc

do_pinfo(arg)
The debugger equivalant of ?obj

do_pp(arg)

do_q(*args, **kw)

do_quit(*args, **kw)

do_r(arg)

do_restart(arg)
Restart program by raising an exception to be caught in the main debugger loop. If arguments
were given, set them in sys.argv.

do_return(arg)

do_retval(arg)

do_run(arg)
Restart program by raising an exception to be caught in the main debugger loop. If arguments
were given, set them in sys.argv.

do_rv(arg)

do_s(arg)

do_step(arg)

do_tbreak(arg)

do_u(*args, **kw)

do_unalias(arg)

do_unt(arg)

do_until(arg)

do_up(*args, **kw)

do_w(arg)

do_whatis(arg)

do_where(arg)

doc_header = ‘Documented commands (type help <topic>):’

doc_leader = ‘’

8.12. core.debugger 309

IPython Documentation, Release 0.11

emptyline()
Called when an empty line is entered in response to the prompt.

If this method is not overridden, it repeats the last nonempty command entered.

execRcLines()

forget()

format_stack_entry(frame_lineno, lprefix=’: ‘, context=3)

get_all_breaks()

get_break(filename, lineno)

get_breaks(filename, lineno)

get_file_breaks(filename)

get_names()

get_stack(f, t)

handle_command_def(line)
Handles one command line during command list definition.

help_EOF()

help_a()

help_alias()

help_args()

help_b()

help_break()

help_bt()

help_c()

help_cl()

help_clear()

help_commands()

help_condition()

help_cont()

help_continue()

help_d()

help_debug()

help_disable()

help_down()

help_enable()

310 Chapter 8. The IPython API

IPython Documentation, Release 0.11

help_exec()

help_exit()

help_h()

help_help()

help_ignore()

help_j()

help_jump()

help_l()

help_list()

help_n()

help_next()

help_p()

help_pdb()

help_pp()

help_q()

help_quit()

help_r()

help_restart()

help_return()

help_run()

help_s()

help_step()

help_tbreak()

help_u()

help_unalias()

help_unt()

help_until()

help_up()

help_w()

help_whatis()

help_where()

identchars = ‘abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_’

8.12. core.debugger 311

IPython Documentation, Release 0.11

interaction(frame, traceback)

intro = None

lastcmd = ‘’

lineinfo(identifier)

list_command_pydb(arg)
List command to use if we have a newer pydb installed

lookupmodule(filename)
Helper function for break/clear parsing – may be overridden.

lookupmodule() translates (possibly incomplete) file or module name into an absolute file name.

misc_header = ‘Miscellaneous help topics:’

new_do_down(arg)

new_do_frame(arg)

new_do_quit(arg)

new_do_restart(arg)
Restart command. In the context of ipython this is exactly the same thing as ‘quit’.

new_do_up(arg)

nohelp = ‘*** No help on %s’

onecmd(line)
Interpret the argument as though it had been typed in response to the prompt.

Checks whether this line is typed at the normal prompt or in a breakpoint command list defini-
tion.

parseline(line)
Parse the line into a command name and a string containing the arguments. Returns a tuple
containing (command, args, line). ‘command’ and ‘args’ may be None if the line couldn’t be
parsed.

postcmd(stop, line)
Hook method executed just after a command dispatch is finished.

postloop()

precmd(line)
Handle alias expansion and ‘;;’ separator.

preloop()
Hook method executed once when the cmdloop() method is called.

print_list_lines(filename, first, last)
The printing (as opposed to the parsing part of a ‘list’ command.

print_stack_entry(frame_lineno, prompt_prefix=’n-> ‘, context=3)

print_stack_trace()

312 Chapter 8. The IPython API

IPython Documentation, Release 0.11

print_topics(header, cmds, cmdlen, maxcol)

prompt = ‘(Cmd) ‘

reset()

ruler = ‘=’

run(cmd, globals=None, locals=None)

runcall(func, *args, **kwds)

runctx(cmd, globals, locals)

runeval(expr, globals=None, locals=None)

set_break(filename, lineno, temporary=0, cond=None, funcname=None)

set_colors(scheme)
Shorthand access to the color table scheme selector method.

set_continue()

set_next(frame)
Stop on the next line in or below the given frame.

set_quit()

set_return(frame)
Stop when returning from the given frame.

set_step()
Stop after one line of code.

set_trace(frame=None)
Start debugging from frame.

If frame is not specified, debugging starts from caller’s frame.

set_until(frame)
Stop when the line with the line no greater than the current one is reached or when returning
from current frame

setup(f, t)

stop_here(frame)

trace_dispatch(frame, event, arg)

undoc_header = ‘Undocumented commands:’

use_rawinput = 1

user_call(frame, argument_list)
This method is called when there is the remote possibility that we ever need to stop in this
function.

user_exception(frame, exc_info)
This function is called if an exception occurs, but only if we are to stop at or just below this
level.

8.12. core.debugger 313

IPython Documentation, Release 0.11

user_line(frame)
This function is called when we stop or break at this line.

user_return(frame, return_value)
This function is called when a return trap is set here.

Tracer

class IPython.core.debugger.Tracer(colors=None)
Bases: object

Class for local debugging, similar to pdb.set_trace.

Instances of this class, when called, behave like pdb.set_trace, but providing IPython’s enhanced
capabilities.

This is implemented as a class which must be initialized in your own code and not as a standalone
function because we need to detect at runtime whether IPython is already active or not. That detec-
tion is done in the constructor, ensuring that this code plays nicely with a running IPython, while
functioning acceptably (though with limitations) if outside of it.

__init__(colors=None)
Create a local debugger instance.

Parameters

• colors (None): a string containing the name of the color scheme to

use, it must be one of IPython’s valid color schemes. If not given, the function will default to
the current IPython scheme when running inside IPython, and to ‘NoColor’ otherwise.

Usage example:

from IPython.core.debugger import Tracer; debug_here = Tracer()

... later in your code debug_here() # -> will open up the debugger at that point.

Once the debugger activates, you can use all of its regular commands to step through code, set
breakpoints, etc. See the pdb documentation from the Python standard library for usage details.

8.12.3 Functions

IPython.core.debugger.BdbQuit_IPython_excepthook(self, et, ev, tb)

IPython.core.debugger.BdbQuit_excepthook(et, ev, tb)

IPython.core.debugger.decorate_fn_with_doc(new_fn, old_fn, additional_text=’‘)
Make new_fn have old_fn’s doc string. This is particularly useful for the do_... commands that hook
into the help system. Adapted from from a comp.lang.python posting by Duncan Booth.

314 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.13 core.display

8.13.1 Module: core.display

Top-level display functions for displaying object in different formats.

Authors:

• Brian Granger

8.13.2 Functions

IPython.core.display.display(*objs, **kwargs)
Display a Python object in all frontends.

By default all representations will be computed and sent to the frontends. Frontends can decide which
representation is used and how.

Parameters objs : tuple of objects

The Python objects to display.

include : list or tuple, optional

A list of format type strings (MIME types) to include in the format data dict.
If this is set only the format types included in this list will be computed.

exclude : list or tuple, optional

A list of format type string (MIME types) to exclue in the format data dict. If
this is set all format types will be computed, except for those included in this
argument.

IPython.core.display.display_html(*objs)
Display the HTML representation of an object.

Parameters objs : tuple of objects

The Python objects to display.

IPython.core.display.display_javascript(*objs)
Display the Javascript representation of an object.

Parameters objs : tuple of objects

The Python objects to display.

IPython.core.display.display_json(*objs)
Display the JSON representation of an object.

Parameters objs : tuple of objects

The Python objects to display.

IPython.core.display.display_latex(*objs)
Display the LaTeX representation of an object.

8.13. core.display 315

IPython Documentation, Release 0.11

Parameters objs : tuple of objects

The Python objects to display.

IPython.core.display.display_png(*objs)
Display the PNG representation of an object.

Parameters objs : tuple of objects

The Python objects to display.

IPython.core.display.display_pretty(*objs)
Display the pretty (default) representation of an object.

Parameters objs : tuple of objects

The Python objects to display.

IPython.core.display.display_svg(*objs)
Display the SVG representation of an object.

Parameters objs : tuple of objects

The Python objects to display.

8.14 core.display_trap

8.14.1 Module: core.display_trap

Inheritance diagram for IPython.core.display_trap:

core.display_trap.DisplayTrapconfig.configurable.Configurableutils.traitlets.HasTraits

A context manager for handling sys.displayhook.

Authors:

• Robert Kern

• Brian Granger

8.14.2 DisplayTrap

class IPython.core.display_trap.DisplayTrap(hook=None)
Bases: IPython.config.configurable.Configurable

Object to manage sys.displayhook.

316 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This came from IPython.core.kernel.display_hook, but is simplified (no callbacks or formatters) until
more of the core is refactored.

__init__(hook=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

hook

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

8.14. core.display_trap 317

IPython Documentation, Release 0.11

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

set()
Set the hook.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unset()
Unset the hook.

8.15 core.displayhook

8.15.1 Module: core.displayhook

Inheritance diagram for IPython.core.displayhook:

core.displayhook.DisplayHookconfig.configurable.Configurableutils.traitlets.HasTraits

Displayhook for IPython.

This defines a callable class that IPython uses for sys.displayhook.

Authors:

• Fernando Perez

• Brian Granger

• Robert Kern

318 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.15.2 DisplayHook

class IPython.core.displayhook.DisplayHook(shell=None, cache_size=1000, col-
ors=’NoColor’, input_sep=’n’,
output_sep=’n’, output_sep2=’‘,
ps1=None, ps2=None, ps_out=None,
pad_left=True, config=None)

Bases: IPython.config.configurable.Configurable

The custom IPython displayhook to replace sys.displayhook.

This class does many things, but the basic idea is that it is a callable that gets called anytime user code
returns a value.

Currently this class does more than just the displayhook logic and that extra logic should eventually
be moved out of here.

__init__(shell=None, cache_size=1000, colors=’NoColor’, input_sep=’n’, out-
put_sep=’n’, output_sep2=’‘, ps1=None, ps2=None, ps_out=None,
pad_left=True, config=None)

check_for_underscore()
Check if the user has set the ‘_’ variable by hand.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

compute_format_data(result)
Compute format data of the object to be displayed.

8.15. core.displayhook 319

IPython Documentation, Release 0.11

The format data is a generalization of the repr() of an object. In the default implementation
the format data is a dict of key value pair where the keys are valid MIME types and the values
are JSON’able data structure containing the raw data for that MIME type. It is up to frontends
to determine pick a MIME to to use and display that data in an appropriate manner.

This method only computes the format data for the object and should NOT actually print or write
that to a stream.

Parameters result : object

The Python object passed to the display hook, whose format will be com-
puted.

Returns format_data : dict

A dictwhose keys are valid MIME types and values are JSON’able raw data
for that MIME type. It is recommended that all return values of this should
always include the “text/plain” MIME type representation of the object.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

finish_displayhook()
Finish up all displayhook activities.

flush()

log_output(format_dict)
Log the output.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prompt_count

320 Chapter 8. The IPython API

IPython Documentation, Release 0.11

quiet()
Should we silence the display hook because of ‘;’?

set_colors(colors)
Set the active color scheme and configure colors for the three prompt subsystems.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

start_displayhook()
Start the displayhook, initializing resources.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_user_ns(result)
Update user_ns with various things like _, __, _1, etc.

write_format_data(format_dict)
Write the format data dict to the frontend.

This default version of this method simply writes the plain text representation of the object
to io.stdout. Subclasses should override this method to send the entire format_dict to the
frontends.

Parameters format_dict : dict

The format dict for the object passed to sys.displayhook.

write_output_prompt()
Write the output prompt.

The default implementation simply writes the prompt to io.stdout.

8.16 core.displaypub

8.16.1 Module: core.displaypub

Inheritance diagram for IPython.core.displaypub:

8.16. core.displaypub 321

IPython Documentation, Release 0.11

core.displaypub.DisplayPublisherconfig.configurable.Configurableutils.traitlets.HasTraits

An interface for publishing rich data to frontends.

There are two components of the display system:

• Display formatters, which take a Python object and compute the representation of the object in various
formats (text, HTML, SVg, etc.).

• The display publisher that is used to send the representation data to the various frontends.

This module defines the logic display publishing. The display publisher uses the display_data message
type that is defined in the IPython messaging spec.

Authors:

• Brian Granger

8.16.2 DisplayPublisher

class IPython.core.displaypub.DisplayPublisher(**kwargs)
Bases: IPython.config.configurable.Configurable

A traited class that publishes display data to frontends.

Instances of this class are created by the main IPython object and should be accessed there.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

322 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

8.16. core.displaypub 323

IPython Documentation, Release 0.11

publish(source, data, metadata=None)
Publish data and metadata to all frontends.

See the display_data message in the messaging documentation for more details about this
message type.

The following MIME types are currently implemented:

•text/plain

•text/html

•text/latex

•application/json

•image/png

•immage/svg+xml

Parameters source : str

A string that give the function or method that created the data, such as
‘IPython.core.page’.

data : dict

A dictionary having keys that are valid MIME types (like ‘text/plain’ or ‘im-
age/svg+xml’) and values that are the data for that MIME type. The data
itself must be a JSON’able data structure. Minimally all data should have the
‘text/plain’ data, which can be displayed by all frontends. If more than the
plain text is given, it is up to the frontend to decide which representation to
use.

metadata : dict

A dictionary for metadata related to the data. This can contain arbitrary key,
value pairs that frontends can use to interpret the data.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

324 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython.core.displaypub.publish_display_data(self, source, data, meta-
data=None)

Publish data and metadata to all frontends.

See the display_data message in the messaging documentation for more details about this mes-
sage type.

The following MIME types are currently implemented:

•text/plain

•text/html

•text/latex

•application/json

•image/png

•immage/svg+xml

Parameters source : str

A string that give the function or method that created the data, such as
‘IPython.core.page’.

data : dict

A dictionary having keys that are valid MIME types (like ‘text/plain’ or ‘im-
age/svg+xml’) and values that are the data for that MIME type. The data
itself must be a JSON’able data structure. Minimally all data should have the
‘text/plain’ data, which can be displayed by all frontends. If more than the
plain text is given, it is up to the frontend to decide which representation to
use.

metadata : dict

A dictionary for metadata related to the data. This can contain arbitrary key,
value pairs that frontends can use to interpret the data.

8.17 core.error

8.17.1 Module: core.error

Inheritance diagram for IPython.core.error:

8.17. core.error 325

IPython Documentation, Release 0.11

core.error.UsageError

core.error.IPythonCoreError

core.error.TryNext

Global exception classes for IPython.core.

Authors:

• Brian Granger

• Fernando Perez

Notes

8.17.2 Classes

IPythonCoreError

class IPython.core.error.IPythonCoreError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

TryNext

class IPython.core.error.TryNext(*args, **kwargs)
Bases: IPython.core.error.IPythonCoreError

Try next hook exception.

Raise this in your hook function to indicate that the next hook handler should be used to handle the
operation. If you pass arguments to the constructor those arguments will be used by the next hook
instead of the original ones.

__init__(*args, **kwargs)

args

message

326 Chapter 8. The IPython API

IPython Documentation, Release 0.11

UsageError

class IPython.core.error.UsageError
Bases: IPython.core.error.IPythonCoreError

Error in magic function arguments, etc.

Something that probably won’t warrant a full traceback, but should nevertheless interrupt a macro /
batch file.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.18 core.excolors

8.18.1 Module: core.excolors

Color schemes for exception handling code in IPython.

IPython.core.excolors.exception_colors()
Return a color table with fields for exception reporting.

The table is an instance of ColorSchemeTable with schemes added for ‘Linux’, ‘LightBG’ and ‘No-
Color’ and fields for exception handling filled in.

Examples:

>>> ec = exception_colors()
>>> ec.active_scheme_name
’’
>>> print ec.active_colors
None

Now we activate a color scheme: >>> ec.set_active_scheme(‘NoColor’) >>> ec.active_scheme_name
‘NoColor’ >>> ec.active_colors.keys() [’em’, ‘filenameEm’, ‘excName’, ‘valEm’, ‘nameEm’, ‘line’,
‘topline’, ‘name’, ‘caret’, ‘val’, ‘vName’, ‘Normal’, ‘filename’, ‘linenoEm’, ‘lineno’, ‘normalEm’]

8.19 core.extensions

8.19.1 Module: core.extensions

Inheritance diagram for IPython.core.extensions:

8.18. core.excolors 327

IPython Documentation, Release 0.11

core.extensions.ExtensionManagerconfig.configurable.Configurableutils.traitlets.HasTraits

A class for managing IPython extensions.

Authors:

• Brian Granger

8.19.2 ExtensionManager

class IPython.core.extensions.ExtensionManager(shell=None, config=None)
Bases: IPython.config.configurable.Configurable

A class to manage IPython extensions.

An IPython extension is an importable Python module that has a function with the signature:

def load_ipython_extension(ipython):
Do things with ipython

This function is called after your extension is imported and the currently active
InteractiveShell instance is passed as the only argument. You can do anything you
want with IPython at that point, including defining new magic and aliases, adding new components,
etc.

The load_ipython_extension()will be called again is you load or reload the extension again.
It is up to the extension author to add code to manage that.

You can put your extension modules anywhere you want, as long as they can be imported by Python’s
standard import mechanism. However, to make it easy to write extensions, you can also put your ex-
tensions in os.path.join(self.ipython_dir, ’extensions’). This directory is added
to sys.path automatically.

__init__(shell=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

328 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

ipython_extension_dir

load_extension(module_str)
Load an IPython extension by its module name.

If load_ipython_extension() returns anything, this function will return that object.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

reload_extension(module_str)
Reload an IPython extension by calling reload.

If the module has not been loaded before, InteractiveShell.load_extension() is
called. Otherwise reload() is called and then the load_ipython_extension() func-
tion of the module, if it exists is called.

8.19. core.extensions 329

IPython Documentation, Release 0.11

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unload_extension(module_str)
Unload an IPython extension by its module name.

This function looks up the extension’s name in sys.modules and simply calls
mod.unload_ipython_extension(self).

8.20 core.formatters

8.20.1 Module: core.formatters

Inheritance diagram for IPython.core.formatters:

core.formatters.JSONFormatter

core.formatters.BaseFormatter

core.formatters.JavascriptFormatter

core.formatters.PNGFormatter

core.formatters.SVGFormatter

core.formatters.HTMLFormatter

core.formatters.PlainTextFormatter

core.formatters.LatexFormatter

utils.traitlets.HasTraits config.configurable.Configurable

core.formatters.FormatterABC

core.formatters.DisplayFormatter

Display formatters.

Authors:

330 Chapter 8. The IPython API

IPython Documentation, Release 0.11

• Robert Kern

• Brian Granger

8.20.2 Classes

BaseFormatter

class IPython.core.formatters.BaseFormatter(**kwargs)
Bases: IPython.config.configurable.Configurable

A base formatter class that is configurable.

This formatter should usually be used as the base class of all formatters. It is a traited
Configurable class and includes an extensible API for users to determine how their objects are
formatted. The following logic is used to find a function to format an given object.

1.The object is introspected to see if it has a method with the name print_method. If is does,
that object is passed to that method for formatting.

2.If no print method is found, three internal dictionaries are consulted to find print method:
singleton_printers, type_printers and deferred_printers.

Users should use these dictionaries to register functions that will be used to compute the format data
for their objects (if those objects don’t have the special print methods). The easiest way of using these
dictionaries is through the for_type() and for_type_by_name() methods.

If no function/callable is found to compute the format data, None is returned and this format type is
not used.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

8.20. core.formatters 331

IPython Documentation, Release 0.11

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

deferred_printers
An instance of a Python dict.

enabled
A boolean (True, False) trait.

for_type(typ, func)
Add a format function for a given type.

Parameters typ : class

The class of the object that will be formatted using func.

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

for_type_by_name(type_module, type_name, func)
Add a format function for a type specified by the full dotted module and name of the type, rather
than the type of the object.

Parameters type_module : str

332 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The full dotted name of the module the type is defined in, like numpy.

type_name : str

The name of the type (the class name), like dtype

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

format_type
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

print_method
A string holding a valid object name in this version of Python.

This does not check that the name exists in any scope.

singleton_printers
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

8.20. core.formatters 333

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

type_printers
An instance of a Python dict.

DisplayFormatter

class IPython.core.formatters.DisplayFormatter(**kwargs)
Bases: IPython.config.configurable.Configurable

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

334 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

format(obj, include=None, exclude=None)
Return a format data dict for an object.

By default all format types will be computed.

The following MIME types are currently implemented:

•text/plain

•text/html

•text/latex

•application/json

•image/png

•immage/svg+xml

Parameters obj : object

The Python object whose format data will be computed.

include : list or tuple, optional

A list of format type strings (MIME types) to include in the format data dict.
If this is set only the format types included in this list will be computed.

exclude : list or tuple, optional

A list of format type string (MIME types) to exclue in the format data dict. If
this is set all format types will be computed, except for those included in this
argument.

Returns format_dict : dict

A dictionary of key/value pairs, one or each format that was generated for
the object. The keys are the format types, which will usually be MIME type
strings and the values and JSON’able data structure containing the raw data
for the representation in that format.

format_types
Return the format types (MIME types) of the active formatters.

8.20. core.formatters 335

IPython Documentation, Release 0.11

formatters
An instance of a Python dict.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

plain_text_only
A boolean (True, False) trait.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

FormatterABC

class IPython.core.formatters.FormatterABC
Bases: object

Abstract base class for Formatters.

A formatter is a callable class that is responsible for computing the raw format data for a particular
format type (MIME type). For example, an HTML formatter would have a format type of text/html
and would return the HTML representation of the object when called.

336 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

enabled = True

format_type = ‘text/plain’

HTMLFormatter

class IPython.core.formatters.HTMLFormatter(**kwargs)
Bases: IPython.core.formatters.BaseFormatter

An HTML formatter.

To define the callables that compute the HTML representation of your objects, define a
_repr_html_() method or use the for_type() or for_type_by_name() methods to reg-
ister functions that handle this.

The return value of this formatter should be a valid HTML snippet that could be injected into an
existing DOM. It should not include the ‘<html> or ‘<body> tags.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

8.20. core.formatters 337

IPython Documentation, Release 0.11

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

deferred_printers
An instance of a Python dict.

enabled
A boolean (True, False) trait.

for_type(typ, func)
Add a format function for a given type.

Parameters typ : class

The class of the object that will be formatted using func.

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

for_type_by_name(type_module, type_name, func)
Add a format function for a type specified by the full dotted module and name of the type, rather
than the type of the object.

Parameters type_module : str

The full dotted name of the module the type is defined in, like numpy.

type_name : str

The name of the type (the class name), like dtype

func : callable

338 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

format_type
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

print_method
A string holding a valid object name in this version of Python.

This does not check that the name exists in any scope.

singleton_printers
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

type_printers
An instance of a Python dict.

8.20. core.formatters 339

IPython Documentation, Release 0.11

JSONFormatter

class IPython.core.formatters.JSONFormatter(**kwargs)
Bases: IPython.core.formatters.BaseFormatter

A JSON string formatter.

To define the callables that compute the JSON string representation of your objects, define a
_repr_json_() method or use the for_type() or for_type_by_name() methods to reg-
ister functions that handle this.

The return value of this formatter should be a valid JSON string.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

340 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

deferred_printers
An instance of a Python dict.

enabled
A boolean (True, False) trait.

for_type(typ, func)
Add a format function for a given type.

Parameters typ : class

The class of the object that will be formatted using func.

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

for_type_by_name(type_module, type_name, func)
Add a format function for a type specified by the full dotted module and name of the type, rather
than the type of the object.

Parameters type_module : str

The full dotted name of the module the type is defined in, like numpy.

type_name : str

The name of the type (the class name), like dtype

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

format_type
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

8.20. core.formatters 341

IPython Documentation, Release 0.11

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

print_method
A string holding a valid object name in this version of Python.

This does not check that the name exists in any scope.

singleton_printers
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

type_printers
An instance of a Python dict.

JavascriptFormatter

class IPython.core.formatters.JavascriptFormatter(**kwargs)
Bases: IPython.core.formatters.BaseFormatter

A Javascript formatter.

342 Chapter 8. The IPython API

IPython Documentation, Release 0.11

To define the callables that compute the Javascript representation of your objects, define a
_repr_javascript_() method or use the for_type() or for_type_by_name() meth-
ods to register functions that handle this.

The return value of this formatter should be valid Javascript code and should not be enclosed in
‘<script>‘ tags.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.20. core.formatters 343

IPython Documentation, Release 0.11

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

deferred_printers
An instance of a Python dict.

enabled
A boolean (True, False) trait.

for_type(typ, func)
Add a format function for a given type.

Parameters typ : class

The class of the object that will be formatted using func.

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

for_type_by_name(type_module, type_name, func)
Add a format function for a type specified by the full dotted module and name of the type, rather
than the type of the object.

Parameters type_module : str

The full dotted name of the module the type is defined in, like numpy.

type_name : str

The name of the type (the class name), like dtype

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

format_type
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

344 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

print_method
A string holding a valid object name in this version of Python.

This does not check that the name exists in any scope.

singleton_printers
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

type_printers
An instance of a Python dict.

LatexFormatter

class IPython.core.formatters.LatexFormatter(**kwargs)
Bases: IPython.core.formatters.BaseFormatter

A LaTeX formatter.

To define the callables that compute the LaTeX representation of your objects, define a
_repr_latex_() method or use the for_type() or for_type_by_name() methods to reg-
ister functions that handle this.

The return value of this formatter should be a valid LaTeX equation, enclosed in either ‘$‘ or ‘$$‘.

8.20. core.formatters 345

IPython Documentation, Release 0.11

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

346 Chapter 8. The IPython API

IPython Documentation, Release 0.11

deferred_printers
An instance of a Python dict.

enabled
A boolean (True, False) trait.

for_type(typ, func)
Add a format function for a given type.

Parameters typ : class

The class of the object that will be formatted using func.

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

for_type_by_name(type_module, type_name, func)
Add a format function for a type specified by the full dotted module and name of the type, rather
than the type of the object.

Parameters type_module : str

The full dotted name of the module the type is defined in, like numpy.

type_name : str

The name of the type (the class name), like dtype

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

format_type
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

8.20. core.formatters 347

IPython Documentation, Release 0.11

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

print_method
A string holding a valid object name in this version of Python.

This does not check that the name exists in any scope.

singleton_printers
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

type_printers
An instance of a Python dict.

PNGFormatter

class IPython.core.formatters.PNGFormatter(**kwargs)
Bases: IPython.core.formatters.BaseFormatter

A PNG formatter.

To define the callables that compute the PNG representation of your objects, define a
_repr_png_() method or use the for_type() or for_type_by_name() methods to reg-
ister functions that handle this.

The return value of this formatter should be raw PNG data, not base64 encoded.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

348 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

deferred_printers
An instance of a Python dict.

enabled
A boolean (True, False) trait.

for_type(typ, func)
Add a format function for a given type.

8.20. core.formatters 349

IPython Documentation, Release 0.11

Parameters typ : class

The class of the object that will be formatted using func.

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

for_type_by_name(type_module, type_name, func)
Add a format function for a type specified by the full dotted module and name of the type, rather
than the type of the object.

Parameters type_module : str

The full dotted name of the module the type is defined in, like numpy.

type_name : str

The name of the type (the class name), like dtype

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

format_type
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

print_method
A string holding a valid object name in this version of Python.

350 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This does not check that the name exists in any scope.

singleton_printers
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

type_printers
An instance of a Python dict.

PlainTextFormatter

class IPython.core.formatters.PlainTextFormatter(**kwargs)
Bases: IPython.core.formatters.BaseFormatter

The default pretty-printer.

This uses IPython.external.pretty to compute the format data of the object. If
the object cannot be pretty printed, repr() is used. See the documentation of
IPython.external.pretty for details on how to write pretty printers. Here is a simple ex-
ample:

def dtype_pprinter(obj, p, cycle):
if cycle:

return p.text(’dtype(...)’)
if hasattr(obj, ’fields’):

if obj.fields is None:
p.text(repr(obj))

else:
p.begin_group(7, ’dtype([’)
for i, field in enumerate(obj.descr):

if i > 0:
p.text(’,’)
p.breakable()

p.pretty(field)
p.end_group(7, ’])’)

__init__(**kwargs)
Create a configurable given a config config.

8.20. core.formatters 351

IPython Documentation, Release 0.11

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

deferred_printers
An instance of a Python dict.

352 Chapter 8. The IPython API

IPython Documentation, Release 0.11

enabled
A boolean (True, False) trait.

float_format
A trait for unicode strings.

float_precision
A casting version of the unicode trait.

for_type(typ, func)
Add a format function for a given type.

Parameters typ : class

The class of the object that will be formatted using func.

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

for_type_by_name(type_module, type_name, func)
Add a format function for a type specified by the full dotted module and name of the type, rather
than the type of the object.

Parameters type_module : str

The full dotted name of the module the type is defined in, like numpy.

type_name : str

The name of the type (the class name), like dtype

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

format_type
A trait for unicode strings.

max_width
A integer trait.

newline
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

8.20. core.formatters 353

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

pprint
A boolean (True, False) trait.

print_method
A string holding a valid object name in this version of Python.

This does not check that the name exists in any scope.

singleton_printers
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

type_printers
An instance of a Python dict.

verbose
A boolean (True, False) trait.

SVGFormatter

class IPython.core.formatters.SVGFormatter(**kwargs)
Bases: IPython.core.formatters.BaseFormatter

354 Chapter 8. The IPython API

IPython Documentation, Release 0.11

An SVG formatter.

To define the callables that compute the SVG representation of your objects, define a
_repr_svg_() method or use the for_type() or for_type_by_name() methods to reg-
ister functions that handle this.

The return value of this formatter should be valid SVG enclosed in ‘<svg>‘ tags, that could be
injected into an existing DOM. It should not include the ‘<html> or ‘<body> tags.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

8.20. core.formatters 355

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

deferred_printers
An instance of a Python dict.

enabled
A boolean (True, False) trait.

for_type(typ, func)
Add a format function for a given type.

Parameters typ : class

The class of the object that will be formatted using func.

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

for_type_by_name(type_module, type_name, func)
Add a format function for a type specified by the full dotted module and name of the type, rather
than the type of the object.

Parameters type_module : str

The full dotted name of the module the type is defined in, like numpy.

type_name : str

The name of the type (the class name), like dtype

func : callable

The callable that will be called to compute the format data. The call signature
of this function is simple, it must take the object to be formatted and return the
raw data for the given format. Subclasses may use a different call signature
for the func argument.

format_type
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

356 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

print_method
A string holding a valid object name in this version of Python.

This does not check that the name exists in any scope.

singleton_printers
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

type_printers
An instance of a Python dict.

8.20.3 Function

IPython.core.formatters.format_display_data(obj, include=None, ex-
clude=None)

Return a format data dict for an object.

By default all format types will be computed.

The following MIME types are currently implemented:

•text/plain

8.20. core.formatters 357

IPython Documentation, Release 0.11

•text/html

•text/latex

•application/json

•image/png

•immage/svg+xml

Parameters obj : object

The Python object whose format data will be computed.

Returns format_dict : dict

A dictionary of key/value pairs, one or each format that was generated for
the object. The keys are the format types, which will usually be MIME type
strings and the values and JSON’able data structure containing the raw data
for the representation in that format.

include : list or tuple, optional

A list of format type strings (MIME types) to include in the format data dict.
If this is set only the format types included in this list will be computed.

exclude : list or tuple, optional

A list of format type string (MIME types) to exclue in the format data dict. If
this is set all format types will be computed, except for those included in this
argument.

8.21 core.history

8.21.1 Module: core.history

Inheritance diagram for IPython.core.history:

core.history.HistoryManagerconfig.configurable.Configurableutils.traitlets.HasTraits

core.history.HistorySavingThreadthreading.Threadthreading._Verbose

History related magics and functionality

358 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.21.2 Classes

HistoryManager

class IPython.core.history.HistoryManager(shell, config=None, **traits)
Bases: IPython.config.configurable.Configurable

A class to organize all history-related functionality in one place.

__init__(shell, config=None, **traits)
Create a new history manager associated with a shell instance.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

db
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

db_cache_size
A integer trait.

8.21. core.history 359

IPython Documentation, Release 0.11

db_input_cache
An instance of a Python list.

db_log_output
A boolean (True, False) trait.

db_output_cache
An instance of a Python list.

dir_hist
An instance of a Python list.

end_session()
Close the database session, filling in the end time and line count.

get_range(session=0, start=1, stop=None, raw=True, output=False)
Retrieve input by session.

Parameters session : int

Session number to retrieve. The current session is 0, and negative numbers
count back from current session, so -1 is previous session.

start : int

First line to retrieve.

stop : int

End of line range (excluded from output itself). If None, retrieve to the end
of the session.

raw : bool

If True, return untranslated input

output : bool

If True, attempt to include output. This will be ‘real’ Python objects for the
current session, or text reprs from previous sessions if db_log_output was
enabled at the time. Where no output is found, None is used.

Returns An iterator over the desired lines. Each line is a 3-tuple, either :

(session, line, input) if output is False, or :

(session, line, (input, output)) if output is True. :

get_range_by_str(rangestr, raw=True, output=False)
Get lines of history from a string of ranges, as used by magic commands %hist, %save, %macro,
etc.

Parameters rangestr : str

A string specifying ranges, e.g. “5 ~2/1-4”. See magic_history() for
full details.

raw, output : bool

360 Chapter 8. The IPython API

IPython Documentation, Release 0.11

As get_range()

Returns Tuples as :meth:‘get_range‘ :

get_tail(n=10, raw=True, output=False, include_latest=False)
Get the last n lines from the history database.

Parameters n : int

The number of lines to get

raw, output : bool

See get_range()

include_latest : bool

If False (default), n+1 lines are fetched, and the latest one is discarded. This
is intended to be used where the function is called by a user command, which
it should not return.

Returns Tuples as :meth:‘get_range‘ :

hist_file
A trait for unicode strings.

init_db()
Connect to the database, and create tables if necessary.

input_hist_parsed
An instance of a Python list.

input_hist_raw
An instance of a Python list.

name_session(name)
Give the current session a name in the history database.

new_session(conn=None)
Get a new session number.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

8.21. core.history 361

IPython Documentation, Release 0.11

remove : bool

If False (the default), then install the handler. If True then unintall it.

output_hist
An instance of a Python dict.

output_hist_reprs
An instance of a Python dict.

reset(new_session=True)
Clear the session history, releasing all object references, and optionally open a new session.

save_flag
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

save_thread
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

search(pattern=’*’, raw=True, search_raw=True, output=False)
Search the database using unix glob-style matching (wildcards * and ?).

Parameters pattern : str

The wildcarded pattern to match when searching

search_raw : bool

If True, search the raw input, otherwise, the parsed input

raw, output : bool

See get_range()

Returns Tuples as :meth:‘get_range‘ :

session_number
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

store_inputs(line_num, source, source_raw=None)
Store source and raw input in history and create input cache variables _i*.

Parameters line_num : int

The prompt number of this input.

source : str

Python input.

source_raw : str, optional

362 Chapter 8. The IPython API

IPython Documentation, Release 0.11

If given, this is the raw input without any IPython transformations applied to
it. If not given, source is used.

store_output(line_num)
If database output logging is enabled, this saves all the outputs from the indicated prompt number
to the database. It’s called by run_cell after code has been executed.

Parameters line_num : int

The line number from which to save outputs

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

writeout_cache(conn=None)
Write any entries in the cache to the database.

HistorySavingThread

class IPython.core.history.HistorySavingThread(history_manager)
Bases: threading.Thread

This thread takes care of writing history to the database, so that the UI isn’t held up while that happens.

It waits for the HistoryManager’s save_flag to be set, then writes out the history cache. The main
thread is responsible for setting the flag when the cache size reaches a defined threshold.

__init__(history_manager)

daemon = True

getName()

ident

isAlive()

isDaemon()

is_alive()

join(timeout=None)

name

8.21. core.history 363

IPython Documentation, Release 0.11

run()

setDaemon(daemonic)

setName(name)

start()

stop()
This can be called from the main thread to safely stop this thread.

Note that it does not attempt to write out remaining history before exiting. That should be done
by calling the HistoryManager’s end_session method.

stop_now = False

8.21.3 Functions

IPython.core.history.extract_hist_ranges(ranges_str)
Turn a string of history ranges into 3-tuples of (session, start, stop).

Examples

list(extract_input_ranges(“~8/5-~7/4 2”)) [(-8, 5, None), (-7, 1, 4), (0, 2, 3)]

IPython.core.history.init_ipython(ip)

IPython.core.history.magic_history(self, parameter_s=’‘)
Print input history (_i<n> variables), with most recent last.

%history -> print at most 40 inputs (some may be multi-line)%history n -> print at most n in-
puts%history n1 n2 -> print inputs between n1 and n2 (n2 not included)

By default, input history is printed without line numbers so it can be directly pasted into an editor.
Use -n to show them.

Ranges of history can be indicated using the syntax: 4 : Line 4, current session 4-6 : Lines 4-6, current
session 243/1-5: Lines 1-5, session 243 ~2/7 : Line 7, session 2 before current ~8/1-~6/5 : From the
first line of 8 sessions ago, to the fifth line

of 6 sessions ago.

Multiple ranges can be entered, separated by spaces

The same syntax is used by %macro, %save, %edit, %rerun

Options:

-n: print line numbers for each input. This feature is only available if numbered prompts
are in use.

-o: also print outputs for each input.

-p: print classic ‘>>>’ python prompts before each input. This is useful for making
documentation, and in conjunction with -o, for producing doctest-ready output.

364 Chapter 8. The IPython API

IPython Documentation, Release 0.11

-r: (default) print the ‘raw’ history, i.e. the actual commands you typed.

-t: print the ‘translated’ history, as IPython understands it. IPython filters your input and
converts it all into valid Python source before executing it (things like magics or aliases
are turned into function calls, for example). With this option, you’ll see the native history
instead of the user-entered version: ‘%cd /’ will be seen as ‘get_ipython().magic(“%cd /”)’
instead of ‘%cd /’.

-g: treat the arg as a pattern to grep for in (full) history. This includes the saved history
(almost all commands ever written). Use ‘%hist -g’ to show full saved history (may be
very long).

-l: get the last n lines from all sessions. Specify n as a single arg, or the default is the last
10 lines.

-f FILENAME: instead of printing the output to the screen, redirect it to the given
file. The file is always overwritten, though IPython asks for confirmation first if it
already exists.

Examples

In [6]: %hist -n 4 6
4:a = 12
5:print a**2

IPython.core.history.magic_rep(self, arg)
Repeat a command, or get command to input line for editing. %recall and %rep are equivalent.

•%recall (no arguments):

Place a string version of last computation result (stored in the special ‘_’ variable) to the next input
prompt. Allows you to create elaborate command lines without using copy-paste:

In[1]: l = ["hei", "vaan"]
In[2]: "".join(l)
Out[2]: heivaan
In[3]: %rep
In[4]: heivaan_ <== cursor blinking

%recall 45

Place history line 45 on the next input prompt. Use %hist to find out the number.

%recall 1-4

Combine the specified lines into one cell, and place it on the next input prompt. See %history for the
slice syntax.

%recall foo+bar

If foo+bar can be evaluated in the user namespace, the result is placed at the next input prompt.
Otherwise, the history is searched for lines which contain that substring, and the most recent one is
placed at the next input prompt.

8.21. core.history 365

IPython Documentation, Release 0.11

IPython.core.history.magic_rerun(self, parameter_s=’‘)
Re-run previous input

By default, you can specify ranges of input history to be repeated (as with %history). With no argu-
ments, it will repeat the last line.

Options:

-l <n> : Repeat the last n lines of input, not including the current command.

-g foo : Repeat the most recent line which contains foo

8.22 core.hooks

8.22.1 Module: core.hooks

Inheritance diagram for IPython.core.hooks:

core.hooks.CommandChainDispatcher

hooks for IPython.

In Python, it is possible to overwrite any method of any object if you really want to. But IPython exposes
a few ‘hooks’, methods which are _designed_ to be overwritten by users for customization purposes. This
module defines the default versions of all such hooks, which get used by IPython if not overridden by the
user.

hooks are simple functions, but they should be declared with ‘self’ as their first argument, because when
activated they are registered into IPython as instance methods. The self argument will be the IPython running
instance itself, so hooks have full access to the entire IPython object.

If you wish to define a new hook and activate it, you need to put the necessary code into a python file which
can be either imported or execfile()’d from within your ipythonrc configuration.

For example, suppose that you have a module called ‘myiphooks’ in your PYTHONPATH, which contains
the following definition:

import os from IPython.core import ipapi ip = ipapi.get()

def calljed(self,filename, linenum): “My editor hook calls the jed editor directly.” print “Calling my own
editor, jed ...” if os.system(‘jed +%d %s’ % (linenum,filename)) != 0:

raise TryNext()

ip.set_hook(‘editor’, calljed)

366 Chapter 8. The IPython API

IPython Documentation, Release 0.11

You can then enable the functionality by doing ‘import myiphooks’ somewhere in your configuration files
or ipython command line.

8.22.2 Class

8.22.3 CommandChainDispatcher

class IPython.core.hooks.CommandChainDispatcher(commands=None)
Dispatch calls to a chain of commands until some func can handle it

Usage: instantiate, execute “add” to add commands (with optional priority), execute normally via f()
calling mechanism.

__init__(commands=None)

add(func, priority=0)
Add a func to the cmd chain with given priority

8.22.4 Functions

IPython.core.hooks.clipboard_get(self)
Get text from the clipboard.

IPython.core.hooks.editor(self, filename, linenum=None)
Open the default editor at the given filename and linenumber.

This is IPython’s default editor hook, you can use it as an example to write your own modified one.
To set your own editor function as the new editor hook, call ip.set_hook(‘editor’,yourfunc).

IPython.core.hooks.fix_error_editor(self, filename, linenum, column, msg)
Open the editor at the given filename, linenumber, column and show an error message. This is used
for correcting syntax errors. The current implementation only has special support for the VIM editor,
and falls back on the ‘editor’ hook if VIM is not used.

Call ip.set_hook(‘fix_error_editor’,youfunc) to use your own function,

IPython.core.hooks.generate_prompt(self, is_continuation)
calculate and return a string with the prompt to display

IPython.core.hooks.input_prefilter(self, line)
Default input prefilter

This returns the line as unchanged, so that the interpreter knows that nothing was done and proceeds
with “classic” prefiltering (%magics, !shell commands etc.).

Note that leading whitespace is not passed to this hook. Prefilter can’t alter indentation.

IPython.core.hooks.late_startup_hook(self)
Executed after ipython has been constructed and configured

IPython.core.hooks.pre_prompt_hook(self)
Run before displaying the next prompt

8.22. core.hooks 367

IPython Documentation, Release 0.11

Use this e.g. to display output from asynchronous operations (in order to not mess up text entry)

IPython.core.hooks.pre_run_code_hook(self)
Executed before running the (prefiltered) code in IPython

IPython.core.hooks.show_in_pager(self, s)
Run a string through pager

IPython.core.hooks.shutdown_hook(self)
default shutdown hook

Typically, shotdown hooks should raise TryNext so all shutdown ops are done

IPython.core.hooks.synchronize_with_editor(self, filename, linenum, column)

8.23 core.inputsplitter

8.23.1 Module: core.inputsplitter

Inheritance diagram for IPython.core.inputsplitter:

core.inputsplitter.IPythonInputSplittercore.inputsplitter.InputSplitter

core.inputsplitter.EscapedTransformer

core.inputsplitter.LineInfo

Analysis of text input into executable blocks.

The main class in this module, InputSplitter, is designed to break input from either interactive, line-
by-line environments or block-based ones, into standalone blocks that can be executed by Python as ‘single’
statements (thus triggering sys.displayhook).

A companion, IPythonInputSplitter, provides the same functionality but with full support for the
extended IPython syntax (magics, system calls, etc).

For more details, see the class docstring below.

Syntax Transformations

One of the main jobs of the code in this file is to apply all syntax transformations that make up ‘the IPython
language’, i.e. magics, shell escapes, etc. All transformations should be implemented as fully stateless
entities, that simply take one line as their input and return a line. Internally for implementation purposes

368 Chapter 8. The IPython API

IPython Documentation, Release 0.11

they may be a normal function or a callable object, but the only input they receive will be a single line and
they should only return a line, without holding any data-dependent state between calls.

As an example, the EscapedTransformer is a class so we can more clearly group together the functionality
of dispatching to individual functions based on the starting escape character, but the only method for public
use is its call method.

ToDo

• Should we make push() actually raise an exception once push_accepts_more() returns False?

• Naming cleanups. The tr_* names aren’t the most elegant, though now they are at least just attributes
of a class so not really very exposed.

• Think about the best way to support dynamic things: automagic, autocall, macros, etc.

• Think of a better heuristic for the application of the transforms in IPythonInputSplitter.push() than
looking at the buffer ending in ‘:’. Idea: track indentation change events (indent, dedent, nothing) and
apply them only if the indentation went up, but not otherwise.

• Think of the cleanest way for supporting user-specified transformations (the user prefilters we had
before).

Authors

• Fernando Perez

• Brian Granger

8.23.2 Classes

EscapedTransformer

class IPython.core.inputsplitter.EscapedTransformer
Bases: object

Class to transform lines that are explicitly escaped out.

__init__()

IPythonInputSplitter

class IPython.core.inputsplitter.IPythonInputSplitter(input_mode=None)
Bases: IPython.core.inputsplitter.InputSplitter

An input splitter that recognizes all of IPython’s special syntax.

__init__(input_mode=None)

code = None

8.23. core.inputsplitter 369

IPython Documentation, Release 0.11

encoding = ‘’

indent_spaces = 0

input_mode = ‘line’

push(lines)
Push one or more lines of IPython input.

push_accepts_more()
Return whether a block of interactive input can accept more input.

This method is meant to be used by line-oriented frontends, who need to guess whether a block
is complete or not based solely on prior and current input lines. The InputSplitter considers it
has a complete interactive block and will not accept more input only when either a SyntaxError
is raised, or all of the following are true:

1.The input compiles to a complete statement.

2.The indentation level is flush-left (because if we are indented, like inside a function defini-
tion or for loop, we need to keep reading new input).

3.There is one extra line consisting only of whitespace.

Because of condition #3, this method should be used only by line-oriented frontends, since it
means that intermediate blank lines are not allowed in function definitions (or any other indented
block).

If the current input produces a syntax error, this method immediately returns False but does
not raise the syntax error exception, as typically clients will want to send invalid syntax to
an execution backend which might convert the invalid syntax into valid Python via one of the
dynamic IPython mechanisms.

reset()
Reset the input buffer and associated state.

source = ‘’

source_raw = ‘’

source_raw_reset()
Return input and raw source and perform a full reset.

source_reset()
Return the input source and perform a full reset.

InputSplitter

class IPython.core.inputsplitter.InputSplitter(input_mode=None)
Bases: object

An object that can accumulate lines of Python source before execution.

This object is designed to be fed python source line-by-line, using push(). It will re-
turn on each push whether the currently pushed code could be executed already. In

370 Chapter 8. The IPython API

IPython Documentation, Release 0.11

addition, it provides a method called push_accepts_more() that can be used to
query whether more input can be pushed into a single interactive block.

This is a simple example of how an interactive terminal-based client can use this tool:

isp = InputSplitter()
while isp.push_accepts_more():

indent = ’ ’*isp.indent_spaces
prompt = ’>>> ’ + indent
line = indent + raw_input(prompt)
isp.push(line)

print ’Input source was:

‘, isp.source_reset(),

__init__(input_mode=None)
Create a new InputSplitter instance.

Parameters input_mode : str

One of [’line’, ‘cell’]; default is ‘line’.

The input_mode parameter controls how new inputs are used when fed via :

the :meth:‘push‘ method: :

- ‘line’: meant for line-oriented clients, inputs are appended one at a :

time to the internal buffer and the whole buffer is compiled.

- ‘cell’: meant for clients that can edit multi-line ‘cells’ of text at :

a time. A cell can contain one or more blocks that can be compile in ‘single’
mode by Python. In this mode, each new input new input completely replaces
all prior inputs. Cell mode is thus equivalent to prepending a full reset() to
every push() call.

code = None

encoding = ‘’

indent_spaces = 0

input_mode = ‘line’

push(lines)
Push one or more lines of input.

This stores the given lines and returns a status code indicating whether the code forms a complete
Python block or not.

Any exceptions generated in compilation are swallowed, but if an exception was produced, the
method returns True.

Parameters lines : string

One or more lines of Python input.

Returns is_complete : boolean

8.23. core.inputsplitter 371

IPython Documentation, Release 0.11

True if the current input source (the result of the current input

plus prior inputs) forms a complete Python execution block. Note that :

this value is also stored as a private attribute (_is_complete), so it :

can be queried at any time. :

push_accepts_more()
Return whether a block of interactive input can accept more input.

This method is meant to be used by line-oriented frontends, who need to guess whether a block
is complete or not based solely on prior and current input lines. The InputSplitter considers it
has a complete interactive block and will not accept more input only when either a SyntaxError
is raised, or all of the following are true:

1.The input compiles to a complete statement.

2.The indentation level is flush-left (because if we are indented, like inside a function defini-
tion or for loop, we need to keep reading new input).

3.There is one extra line consisting only of whitespace.

Because of condition #3, this method should be used only by line-oriented frontends, since it
means that intermediate blank lines are not allowed in function definitions (or any other indented
block).

If the current input produces a syntax error, this method immediately returns False but does
not raise the syntax error exception, as typically clients will want to send invalid syntax to
an execution backend which might convert the invalid syntax into valid Python via one of the
dynamic IPython mechanisms.

reset()
Reset the input buffer and associated state.

source = ‘’

source_reset()
Return the input source and perform a full reset.

LineInfo

class IPython.core.inputsplitter.LineInfo(line)
Bases: object

A single line of input and associated info.

This is a utility class that mostly wraps the output of split_user_input() into a convenient
object to be passed around during input transformations.

Includes the following as properties:

line The original, raw line

lspace Any early whitespace before actual text starts.

372 Chapter 8. The IPython API

IPython Documentation, Release 0.11

esc The initial esc character (or characters, for double-char escapes like ‘??’ or ‘!!’).

fpart The ‘function part’, which is basically the maximal initial sequence of valid python identifiers
and the ‘.’ character. This is what is checked for alias and magic transformations, used for
auto-calling, etc.

rest Everything else on the line.

__init__(line)

8.23.3 Functions

IPython.core.inputsplitter.get_input_encoding()
Return the default standard input encoding.

If sys.stdin has no encoding, ‘ascii’ is returned.

IPython.core.inputsplitter.has_comment(src)
Indicate whether an input line has (i.e. ends in, or is) a comment.

This uses tokenize, so it can distinguish comments from # inside strings.

Parameters src : string

A single line input string.

Returns Boolean: True if source has a comment. :

IPython.core.inputsplitter.num_ini_spaces(s)
Return the number of initial spaces in a string.

Note that tabs are counted as a single space. For now, we do not support mixing of tabs and spaces in
the user’s input.

Parameters s : string

Returns n : int

IPython.core.inputsplitter.remove_comments(src)
Remove all comments from input source.

Note: comments are NOT recognized inside of strings!

Parameters src : string

A single or multiline input string.

Returns String with all Python comments removed. :

IPython.core.inputsplitter.split_user_input(line)
Split user input into early whitespace, esc-char, function part and rest.

This is currently handles lines with ‘=’ in them in a very inconsistent manner.

8.23. core.inputsplitter 373

IPython Documentation, Release 0.11

Examples

>>> split_user_input(’x=1’)
(’’, ’’, ’x=1’, ’’)
>>> split_user_input(’?’)
(’’, ’?’, ’’, ’’)
>>> split_user_input(’??’)
(’’, ’??’, ’’, ’’)
>>> split_user_input(’ ?’)
(’ ’, ’?’, ’’, ’’)
>>> split_user_input(’ ??’)
(’ ’, ’??’, ’’, ’’)
>>> split_user_input(’??x’)
(’’, ’??’, ’x’, ’’)
>>> split_user_input(’?x=1’)
(’’, ’’, ’?x=1’, ’’)
>>> split_user_input(’!ls’)
(’’, ’!’, ’ls’, ’’)
>>> split_user_input(’ !ls’)
(’ ’, ’!’, ’ls’, ’’)
>>> split_user_input(’!!ls’)
(’’, ’!!’, ’ls’, ’’)
>>> split_user_input(’ !!ls’)
(’ ’, ’!!’, ’ls’, ’’)
>>> split_user_input(’,ls’)
(’’, ’,’, ’ls’, ’’)
>>> split_user_input(’;ls’)
(’’, ’;’, ’ls’, ’’)
>>> split_user_input(’ ;ls’)
(’ ’, ’;’, ’ls’, ’’)
>>> split_user_input(’f.g(x)’)
(’’, ’’, ’f.g(x)’, ’’)
>>> split_user_input(’f.g (x)’)
(’’, ’’, ’f.g’, ’(x)’)
>>> split_user_input(’?%hist’)
(’’, ’?’, ’%hist’, ’’)
>>> split_user_input(’?x*’)
(’’, ’?’, ’x*’, ’’)

IPython.core.inputsplitter.transform_assign_magic(line)
Handle the a = %who syntax.

IPython.core.inputsplitter.transform_assign_system(line)
Handle the files = !ls syntax.

IPython.core.inputsplitter.transform_classic_prompt(line)
Handle inputs that start with ‘>>> ‘ syntax.

IPython.core.inputsplitter.transform_help_end(line)
Translate lines with ?/?? at the end

IPython.core.inputsplitter.transform_ipy_prompt(line)
Handle inputs that start classic IPython prompt syntax.

374 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.24 core.interactiveshell

8.24.1 Module: core.interactiveshell

Inheritance diagram for IPython.core.interactiveshell:

utils.traitlets.Unicode core.interactiveshell.SeparateUnicodeutils.traitlets.TraitType

core.interactiveshell.InteractiveShell

config.configurable.SingletonConfigurable

core.magic.Magic

config.configurable.Configurable

core.interactiveshell.InteractiveShellABC

core.interactiveshell.Bunch

core.interactiveshell.ReadlineNoRecord

utils.traitlets.HasTraits

core.interactiveshell.SpaceInInput

Main IPython class.

8.24.2 Classes

Bunch

class IPython.core.interactiveshell.Bunch

InteractiveShell

class IPython.core.interactiveshell.InteractiveShell(config=None,
ipython_dir=None,
profile_dir=None,
user_ns=None,
user_global_ns=None,
custom_exceptions=((),
None))

Bases: IPython.config.configurable.SingletonConfigurable,
IPython.core.magic.Magic

An enhanced, interactive shell for Python.

__init__(config=None, ipython_dir=None, profile_dir=None, user_ns=None,
user_global_ns=None, custom_exceptions=((), None))

alias_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

8.24. core.interactiveshell 375

IPython Documentation, Release 0.11

arg_err(func)
Print docstring if incorrect arguments were passed

ask_yes_no(prompt, default=True)

atexit_operations()
This will be executed at the time of exit.

Cleanup operations and saving of persistent data that is done unconditionally by IPython should
be performed here.

For things that may depend on startup flags or platform specifics (such as having readline or
not), register a separate atexit function in the code that has the appropriate information, rather
than trying to clutter

auto_rewrite_input(cmd)
Print to the screen the rewritten form of the user’s command.

This shows visual feedback by rewriting input lines that cause automatic calling to kick in, like:

/f x

into:

------> f(x)

after the user’s input prompt. This helps the user understand that the input line was transformed
automatically by IPython.

auto_status = [’Automagic is OFF, % prefix IS needed for magic functions.’, ‘Automagic is ON, % prefix NOT needed for magic functions.’]

autocall
An enum that whose value must be in a given sequence.

autoindent
A casting version of the boolean trait.

automagic
A casting version of the boolean trait.

builtin_trap
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

cache_main_mod(ns, fname)
Cache a main module’s namespace.

When scripts are executed via %run, we must keep a reference to the namespace of their
__main__ module (a FakeModule instance) around so that Python doesn’t clear it, rendering
objects defined therein useless.

This method keeps said reference in a private dict, keyed by the absolute path of the module
object (which corresponds to the script path). This way, for multiple executions of the same
script we only keep one copy of the namespace (the last one), thus preventing memory leaks
from old references while allowing the objects from the last execution to be accessible.

376 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Note: we can not allow the actual FakeModule instances to be deleted, because of how Python
tears down modules (it hard-sets all their references to None without regard for reference counts).
This method must therefore make a copy of the given namespace, to allow the original module’s
__dict__ to be cleared and reused.

Parameters ns : a namespace (a dict, typically)

fname [str] Filename associated with the namespace.

Examples

In [10]: import IPython

In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)

In [12]: IPython.__file__ in _ip._main_ns_cache Out[12]: True

cache_size
A integer trait.

call_pdb
Control auto-activation of pdb at exceptions

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cleanup()

classmethod clear_instance()
unset _instance for this class and singleton parents.

8.24. core.interactiveshell 377

IPython Documentation, Release 0.11

clear_main_mod_cache()
Clear the cache of main modules.

Mainly for use by utilities like %reset.

Examples

In [15]: import IPython

In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)

In [17]: len(_ip._main_ns_cache) > 0 Out[17]: True

In [18]: _ip.clear_main_mod_cache()

In [19]: len(_ip._main_ns_cache) == 0 Out[19]: True

color_info
A casting version of the boolean trait.

colors
An enum of strings that are caseless in validate.

complete(text, line=None, cursor_pos=None)
Return the completed text and a list of completions.

Parameters text : string

A string of text to be completed on. It can be given as empty and instead
a line/position pair are given. In this case, the completer itself will split
the line like readline does.

line [string, optional] The complete line that text is part of.

cursor_pos [int, optional] The position of the cursor on the input line.

Returns text : string

The actual text that was completed.

matches [list] A sorted list with all possible completions.

The optional arguments allow the completion to take more context into :

account, and are part of the low-level completion API. :

This is a wrapper around the completion mechanism, similar to what :

readline does at the command line when the TAB key is hit. By :

exposing it as a method, it can be used by other non-readline :

environments (such as GUIs) for text completion. :

Simple usage example: :

378 Chapter 8. The IPython API

IPython Documentation, Release 0.11

In [1]: x = ‘hello’ :

In [2]: _ip.complete(‘x.l’) :

Out[2]: (‘x.l’, [’x.ljust’, ‘x.lower’, ‘x.lstrip’]) :

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

debug
A casting version of the boolean trait.

debugger(force=False)
Call the pydb/pdb debugger.

Keywords:

•force(False): by default, this routine checks the instance call_pdb

flag and does not actually invoke the debugger if the flag is false. The ‘force’ option
forces the debugger to activate even if the flag is false.

deep_reload
A casting version of the boolean trait.

default_option(fn, optstr)
Make an entry in the options_table for fn, with value optstr

define_macro(name, themacro)
Define a new macro

Parameters name : str

The name of the macro.

themacro : str or Macro

The action to do upon invoking the macro. If a string, a new Macro object is
created by passing the string to it.

define_magic(magicname, func)
Expose own function as magic function for ipython

def foo_impl(self,parameter_s=’‘): ‘My very own magic!. (Use docstrings, IPython reads
them).’ print ‘Magic function. Passed parameter is between < >:’ print ‘<%s>’ % pa-
rameter_s print ‘The self object is:’,self

self.define_magic(‘foo’,foo_impl)

del_var(varname, by_name=False)
Delete a variable from the various namespaces, so that, as far as possible, we’re not keeping any
hidden references to it.

Parameters varname : str

8.24. core.interactiveshell 379

IPython Documentation, Release 0.11

The name of the variable to delete.

by_name : bool

If True, delete variables with the given name in each namespace. If False
(default), find the variable in the user namespace, and delete references to it.

display_formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

display_pub_class
A trait whose value must be a subclass of a specified class.

display_trap
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

displayhook_class
A trait whose value must be a subclass of a specified class.

enable_pylab(gui=None, import_all=True)

ev(expr)
Evaluate python expression expr in user namespace.

Returns the result of evaluation

ex(cmd)
Execute a normal python statement in user namespace.

excepthook(etype, value, tb)
One more defense for GUI apps that call sys.excepthook.

GUI frameworks like wxPython trap exceptions and call sys.excepthook themselves. I guess
this is a feature that enables them to keep running after exceptions that would otherwise kill their
mainloop. This is a bother for IPython which excepts to catch all of the program exceptions with
a try: except: statement.

Normally, IPython sets sys.excepthook to a CrashHandler instance, so if any app directly invokes
sys.excepthook, it will look to the user like IPython crashed. In order to work around this, we
can disable the CrashHandler and replace it with this excepthook instead, which prints a regular
traceback using our InteractiveTB. In this fashion, apps which call sys.excepthook will generate
a regular-looking exception from IPython, and the CrashHandler will only be triggered by real
IPython crashes.

This hook should be used sparingly, only in places which are not likely to be true IPython errors.

execution_count
A integer trait.

exit_now
A casting version of the boolean trait.

380 Chapter 8. The IPython API

IPython Documentation, Release 0.11

exiter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

extension_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

extract_input_lines(range_str, raw=False)
Return as a string a set of input history slices.

Inputs:

•range_str: the set of slices is given as a string, like

“~5/6-~4/2 4:8 9”, since this function is for use by magic functions which get their
arguments as strings. The number before the / is the session number: ~n goes n back
from the current session.

Optional inputs:

•raw(False): by default, the processed input is used. If this is

true, the raw input history is used instead.

Note that slices can be called with two notations:

N:M -> standard python form, means including items N...(M-1).

N-M -> include items N..M (closed endpoint).

filename
A trait for unicode strings.

find_user_code(target, raw=True)
Get a code string from history, file, or a string or macro.

This is mainly used by magic functions.

Parameters target : str

A string specifying code to retrieve. This will be tried respectively as: ranges
of input history (see %history for syntax), a filename, or an expression evalu-
ating to a string or Macro in the user namespace.

raw : bool

If true (default), retrieve raw history. Has no effect on the other retrieval
mechanisms.

Returns A string of code. :

ValueError is raised if nothing is found, and TypeError if it evaluates :

to an object of another type. In each case, .args[0] is a printable :

message. :

8.24. core.interactiveshell 381

IPython Documentation, Release 0.11

format_latex(strng)
Format a string for latex inclusion.

get_ipython()
Return the currently running IPython instance.

getoutput(cmd, split=True)
Get output (possibly including stderr) from a subprocess.

Parameters cmd : str

Command to execute (can not end in ‘&’, as background processes are not
supported.

split : bool, optional

If True, split the output into an IPython SList. Otherwise, an IPython
LSString is returned. These are objects similar to normal lists and strings,
with a few convenience attributes for easier manipulation of line-based out-
put. You can use ‘?’ on them for details.

history_length
A integer trait.

history_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

init_alias()

init_builtins()

init_completer()
Initialize the completion machinery.

This creates completion machinery that can be used by client code, either interactively in-process
(typically triggered by the readline library), programatically (such as in test suites) or out-of-
prcess (typically over the network by remote frontends).

init_create_namespaces(user_ns=None, user_global_ns=None)

init_display_formatter()

init_display_pub()

init_displayhook()

init_encoding()

init_environment()
Any changes we need to make to the user’s environment.

init_extension_manager()

init_history()
Sets up the command history, and starts regular autosaves.

init_hooks()

382 Chapter 8. The IPython API

IPython Documentation, Release 0.11

init_inspector()

init_instance_attrs()

init_io()

init_ipython_dir(ipython_dir)

init_logger()

init_logstart()
Initialize logging in case it was requested at the command line.

init_magics()

init_payload()

init_pdb()

init_plugin_manager()

init_prefilter()

init_profile_dir(profile_dir)

init_prompts()

init_pushd_popd_magic()

init_readline()
Command history completion/saving/reloading.

init_reload_doctest()

init_syntax_highlighting()

init_sys_modules()

init_traceback_handlers(custom_exceptions)

init_user_ns()
Initialize all user-visible namespaces to their minimum defaults.

Certain history lists are also initialized here, as they effectively act as user namespaces.

Notes

All data structures here are only filled in, they are NOT reset by this method. If they were not
empty before, data will simply be added to therm.

classmethod initialized()
Has an instance been created?

input_splitter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

8.24. core.interactiveshell 383

IPython Documentation, Release 0.11

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

logappend
A trait for unicode strings.

logfile
A trait for unicode strings.

logstart
A casting version of the boolean trait.

lsmagic()
Return a list of currently available magic functions.

Gives a list of the bare names after mangling ([’ls’,’cd’, ...], not [’magic_ls’,’magic_cd’,...]

magic(arg_s, next_input=None)
Call a magic function by name.

Input: a string containing the name of the magic function to call and any additional arguments
to be passed to the magic.

magic(‘name -opt foo bar’) is equivalent to typing at the ipython prompt:

In[1]: %name -opt foo bar

To call a magic without arguments, simply use magic(‘name’).

384 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This provides a proper Python function to call IPython’s magics in any valid Python code you
can type at the interpreter, including loops and compound statements.

magic_alias(parameter_s=’‘)
Define an alias for a system command.

‘%alias alias_name cmd’ defines ‘alias_name’ as an alias for ‘cmd’

Then, typing ‘alias_name params’ will execute the system command ‘cmd params’ (from your
underlying operating system).

Aliases have lower precedence than magic functions and Python normal variables, so if ‘foo’ is
both a Python variable and an alias, the alias can not be executed until ‘del foo’ removes the
Python variable.

You can use the %l specifier in an alias definition to represent the whole line when the alias is
called. For example:

In [2]: alias bracket echo “Input in brackets: <%l>” In [3]: bracket hello world Input
in brackets: <hello world>

You can also define aliases with parameters using %s specifiers (one per parameter):

In [1]: alias parts echo first %s second %s In [2]: %parts A B first A second B In [3]:
%parts A Incorrect number of arguments: 2 expected. parts is an alias to: ‘echo first
%s second %s’

Note that %l and %s are mutually exclusive. You can only use one or the other in your aliases.

Aliases expand Python variables just like system calls using ! or !! do: all expres-
sions prefixed with ‘$’ get expanded. For details of the semantic rules, see PEP-215:
http://www.python.org/peps/pep-0215.html. This is the library used by IPython for variable
expansion. If you want to access a true shell variable, an extra $ is necessary to prevent its
expansion by IPython:

In [6]: alias show echo In [7]: PATH=’A Python string’ In [8]: show $PATH A Python string In
[9]: show $$PATH /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...

You can use the alias facility to acess all of $PATH. See the %rehash and %rehashx functions,
which automatically create aliases for the contents of your $PATH.

If called with no parameters, %alias prints the current alias table.

magic_autocall(parameter_s=’‘)
Make functions callable without having to type parentheses.

Usage:

%autocall [mode]

The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the value is toggled on and
off (remembering the previous state).

In more detail, these values mean:

0 -> fully disabled

1 -> active, but do not apply if there are no arguments on the line.

8.24. core.interactiveshell 385

http://www.python.org/peps/pep-0215.html

IPython Documentation, Release 0.11

In this mode, you get:

In [1]: callable Out[1]: <built-in function callable>

In [2]: callable ‘hello’ ——> callable(‘hello’) Out[2]: False

2 -> Active always. Even if no arguments are present, the callable object is called:

In [2]: float ——> float() Out[2]: 0.0

Note that even with autocall off, you can still use ‘/’ at the start of a line to treat the first argument
on the command line as a function and add parentheses to it:

In [8]: /str 43 ——> str(43) Out[8]: ‘43’

all-random (note for auto-testing)

magic_automagic(parameter_s=’‘)
Make magic functions callable without having to type the initial %.

Without argumentsl toggles on/off (when off, you must call it as %automagic, of course). With
arguments it sets the value, and you can use any of (case insensitive):

•on,1,True: to activate

•off,0,False: to deactivate.

Note that magic functions have lowest priority, so if there’s a variable whose name collides
with that of a magic fn, automagic won’t work for that function (you get the variable instead).
However, if you delete the variable (del var), the previously shadowed magic function becomes
visible to automagic again.

magic_bookmark(parameter_s=’‘)
Manage IPython’s bookmark system.

%bookmark <name> - set bookmark to current dir %bookmark <name> <dir> - set bookmark
to <dir> %bookmark -l - list all bookmarks %bookmark -d <name> - remove bookmark %book-
mark -r - remove all bookmarks

You can later on access a bookmarked folder with: %cd -b <name>

or simply ‘%cd <name>’ if there is no directory called <name> AND there is such a bookmark
defined.

Your bookmarks persist through IPython sessions, but they are associated with each profile.

magic_cd(parameter_s=’‘)
Change the current working directory.

This command automatically maintains an internal list of directories you visit during your
IPython session, in the variable _dh. The command %dhist shows this history nicely format-
ted. You can also do ‘cd -<tab>’ to see directory history conveniently.

Usage:

cd ‘dir’: changes to directory ‘dir’.

cd -: changes to the last visited directory.

386 Chapter 8. The IPython API

IPython Documentation, Release 0.11

cd -<n>: changes to the n-th directory in the directory history.

cd –foo: change to directory that matches ‘foo’ in history

cd -b <bookmark_name>: jump to a bookmark set by %bookmark

(note: cd <bookmark_name> is enough if there is no directory <book-
mark_name>, but a bookmark with the name exists.) ‘cd -b <tab>’ allows you
to tab-complete bookmark names.

Options:

-q: quiet. Do not print the working directory after the cd command is executed. By default
IPython’s cd command does print this directory, since the default prompts do not display path
information.

Note that !cd doesn’t work for this purpose because the shell where !command runs is immedi-
ately discarded after executing ‘command’.

Examples

In [10]: cd parent/child
/home/tsuser/parent/child

magic_colors(parameter_s=’‘)
Switch color scheme for prompts, info system and exception handlers.

Currently implemented schemes: NoColor, Linux, LightBG.

Color scheme names are not case-sensitive.

Examples

To get a plain black and white terminal:

%colors nocolor

magic_debug(parameter_s=’‘)
Activate the interactive debugger in post-mortem mode.

If an exception has just occurred, this lets you inspect its stack frames interactively. Note that
this will always work only on the last traceback that occurred, so you must call this quickly after
an exception that you wish to inspect has fired, because if another one occurs, it clobbers the
previous one.

If you want IPython to automatically do this on every exception, see the %pdb magic for more
details.

magic_dhist(parameter_s=’‘)
Print your history of visited directories.

%dhist -> print full history%dhist n -> print last n entries only%dhist n1 n2 -> print entries
between n1 and n2 (n1 not included)

8.24. core.interactiveshell 387

IPython Documentation, Release 0.11

This history is automatically maintained by the %cd command, and always available as the
global list variable _dh. You can use %cd -<n> to go to directory number <n>.

Note that most of time, you should view directory history by entering cd -<TAB>.

magic_dirs(parameter_s=’‘)
Return the current directory stack.

magic_doctest_mode(parameter_s=’‘)
Toggle doctest mode on and off.

This mode is intended to make IPython behave as much as possible like a plain Python shell,
from the perspective of how its prompts, exceptions and output look. This makes it easy to copy
and paste parts of a session into doctests. It does so by:

•Changing the prompts to the classic >>> ones.

•Changing the exception reporting mode to ‘Plain’.

•Disabling pretty-printing of output.

Note that IPython also supports the pasting of code snippets that have leading ‘>>>’ and ‘...’
prompts in them. This means that you can paste doctests from files or docstrings (even if they
have leading whitespace), and the code will execute correctly. You can then use ‘%history -t’ to
see the translated history; this will give you the input after removal of all the leading prompts
and whitespace, which can be pasted back into an editor.

With these features, you can switch into this mode easily whenever you need to do testing and
changes to doctests, without having to leave your existing IPython session.

magic_ed(parameter_s=’‘)
Alias to %edit.

magic_edit(parameter_s=’‘, last_call=[’‘, ‘’])
Bring up an editor and execute the resulting code.

Usage: %edit [options] [args]

%edit runs IPython’s editor hook. The default version of this hook is set to call the
__IPYTHON__.rc.editor command. This is read from your environment variable $EDITOR.
If this isn’t found, it will default to vi under Linux/Unix and to notepad under Windows. See the
end of this docstring for how to change the editor hook.

You can also set the value of this editor via the command line option ‘-editor’ or in your ipythonrc
file. This is useful if you wish to use specifically for IPython an editor different from your typical
default (and for Windows users who typically don’t set environment variables).

This command allows you to conveniently edit multi-line code right in your IPython session.

If called without arguments, %edit opens up an empty editor with a temporary file and will
execute the contents of this file when you close it (don’t forget to save it!).

Options:

-n <number>: open the editor at a specified line number. By default, the IPython editor hook uses
the unix syntax ‘editor +N filename’, but you can configure this by providing your own modified
hook if your favorite editor supports line-number specifications with a different syntax.

388 Chapter 8. The IPython API

IPython Documentation, Release 0.11

-p: this will call the editor with the same data as the previous time it was used, regardless of how
long ago (in your current session) it was.

-r: use ‘raw’ input. This option only applies to input taken from the user’s history. By default,
the ‘processed’ history is used, so that magics are loaded in their transformed version to valid
Python. If this option is given, the raw input as typed as the command line is used instead. When
you exit the editor, it will be executed by IPython’s own processor.

-x: do not execute the edited code immediately upon exit. This is mainly useful if you are editing
programs which need to be called with command line arguments, which you can then do using
%run.

Arguments:

If arguments are given, the following possibilites exist:

•If the argument is a filename, IPython will load that into the

editor. It will execute its contents with execfile() when you exit, loading any code in the file into
your interactive namespace.

•The arguments are ranges of input history, e.g. “7 ~1/4-6”.

The syntax is the same as in the %history magic.

•If the argument is a string variable, its contents are loaded

into the editor. You can thus edit any string which contains python code (including the result of
previous edits).

•If the argument is the name of an object (other than a string),

IPython will try to locate the file where it was defined and open the editor at the point where it
is defined. You can use %edit function to load an editor exactly at the point where ‘function’ is
defined, edit it and have the file be executed automatically.

If the object is a macro (see %macro for details), this opens up your specified editor with a
temporary file containing the macro’s data. Upon exit, the macro is reloaded with the contents
of the file.

Note: opening at an exact line is only supported under Unix, and some editors (like kedit and
gedit up to Gnome 2.8) do not understand the ‘+NUMBER’ parameter necessary for this feature.
Good editors like (X)Emacs, vi, jed, pico and joe all do.

After executing your code, %edit will return as output the code you typed in the editor (except
when it was an existing file). This way you can reload the code in further invocations of %edit as
a variable, via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number
of the output.

Note that %edit is also available through the alias %ed.

This is an example of creating a simple function inside the editor and then modifying it. First,
start up the editor:

In [1]: ed Editing... done. Executing edited code... Out[1]: ‘def foo():n print “foo() was defined
in an editing session”n’

8.24. core.interactiveshell 389

IPython Documentation, Release 0.11

We can then call the function foo():

In [2]: foo() foo() was defined in an editing session

Now we edit foo. IPython automatically loads the editor with the (temporary) file where foo()
was previously defined:

In [3]: ed foo Editing... done. Executing edited code...

And if we call foo() again we get the modified version:

In [4]: foo() foo() has now been changed!

Here is an example of how to edit a code snippet successive times. First we call the editor:

In [5]: ed Editing... done. Executing edited code... hello Out[5]: “print ‘hello’n”

Now we call it again with the previous output (stored in _):

In [6]: ed _ Editing... done. Executing edited code... hello world Out[6]: “print ‘hello world’n”

Now we call it with the output #8 (stored in _8, also as Out[8]):

In [7]: ed _8 Editing... done. Executing edited code... hello again Out[7]: “print ‘hello again’n”

Changing the default editor hook:

If you wish to write your own editor hook, you can put it in a configuration file which you load
at startup time. The default hook is defined in the IPython.core.hooks module, and you can use
that as a starting example for further modifications. That file also has general instructions on
how to set a new hook for use once you’ve defined it.

magic_env(parameter_s=’‘)
List environment variables.

magic_gui(parameter_s=’‘)
Enable or disable IPython GUI event loop integration.

%gui [GUINAME]

This magic replaces IPython’s threaded shells that were activated using the (pylab/wthread/etc.)
command line flags. GUI toolkits can now be enabled, disabled and changed at runtime and
keyboard interrupts should work without any problems. The following toolkits are supported:
wxPython, PyQt4, PyGTK, and Tk:

%gui wx # enable wxPython event loop integration
%gui qt4|qt # enable PyQt4 event loop integration
%gui gtk # enable PyGTK event loop integration
%gui tk # enable Tk event loop integration
%gui # disable all event loop integration

WARNING: after any of these has been called you can simply create an application object, but
DO NOT start the event loop yourself, as we have already handled that.

magic_install_default_config(s)
Install IPython’s default config file into the .ipython dir.

390 Chapter 8. The IPython API

IPython Documentation, Release 0.11

If the default config file (ipython_config.py) is already installed, it will not be overwritten.
You can force overwriting by using the -o option:

In [1]: %install_default_config

magic_install_profiles(s)
Install the default IPython profiles into the .ipython dir.

If the default profiles have already been installed, they will not be overwritten. You can force
overwriting them by using the -o option:

In [1]: %install_profiles -o

magic_load_ext(module_str)
Load an IPython extension by its module name.

magic_loadpy(arg_s)
Load a .py python script into the GUI console.

This magic command can either take a local filename or a url:

%loadpy myscript.py
%loadpy http://www.example.com/myscript.py

magic_logoff(parameter_s=’‘)
Temporarily stop logging.

You must have previously started logging.

magic_logon(parameter_s=’‘)
Restart logging.

This function is for restarting logging which you’ve temporarily stopped with %logoff. For
starting logging for the first time, you must use the %logstart function, which allows you to
specify an optional log filename.

magic_logstart(parameter_s=’‘)
Start logging anywhere in a session.

%logstart [-o|-r|-t] [log_name [log_mode]]

If no name is given, it defaults to a file named ‘ipython_log.py’ in your current directory, in
‘rotate’ mode (see below).

‘%logstart name’ saves to file ‘name’ in ‘backup’ mode. It saves your history up to that point
and then continues logging.

%logstart takes a second optional parameter: logging mode. This can be one of (note that the
modes are given unquoted):

append: well, that says it.backup: rename (if exists) to name~ and start name.global:
single logfile in your home dir, appended to.over : overwrite existing log.rotate: create
rotating logs name.1~, name.2~, etc.

Options:

8.24. core.interactiveshell 391

IPython Documentation, Release 0.11

-o: log also IPython’s output. In this mode, all commands which generate an Out[NN]
prompt are recorded to the logfile, right after their corresponding input line. The output
lines are always prepended with a ‘#[Out]# ‘ marker, so that the log remains valid
Python code.

Since this marker is always the same, filtering only the output from a log is very easy,
using for example a simple awk call:

awk -F’#[Out]# ‘ ‘{if($2) {print $2}}’ ipython_log.py

-r: log ‘raw’ input. Normally, IPython’s logs contain the processed input, so that user
lines are logged in their final form, converted into valid Python. For example, %Exit
is logged as ‘_ip.magic(“Exit”). If the -r flag is given, all input is logged exactly as
typed, with no transformations applied.

-t: put timestamps before each input line logged (these are put in comments).

magic_logstate(parameter_s=’‘)
Print the status of the logging system.

magic_logstop(parameter_s=’‘)
Fully stop logging and close log file.

In order to start logging again, a new %logstart call needs to be made, possibly (though not
necessarily) with a new filename, mode and other options.

magic_lsmagic(parameter_s=’‘)
List currently available magic functions.

magic_macro(parameter_s=’‘)
Define a macro for future re-execution. It accepts ranges of history, filenames or string objects.

Usage: %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...

Options:

-r: use ‘raw’ input. By default, the ‘processed’ history is used, so that magics are
loaded in their transformed version to valid Python. If this option is given, the raw
input as typed as the command line is used instead.

This will define a global variable called name which is a string made of joining the slices and
lines you specify (n1,n2,... numbers above) from your input history into a single string. This
variable acts like an automatic function which re-executes those lines as if you had typed them.
You just type ‘name’ at the prompt and the code executes.

The syntax for indicating input ranges is described in %history.

Note: as a ‘hidden’ feature, you can also use traditional python slice notation, where N:M means
numbers N through M-1.

For example, if your history contains (%hist prints it):

44: x=1 45: y=3 46: z=x+y 47: print x 48: a=5 49: print ‘x’,x,’y’,y

you can create a macro with lines 44 through 47 (included) and line 49 called my_macro with:

In [55]: %macro my_macro 44-47 49

392 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Now, typing my_macro (without quotes) will re-execute all this code in one pass.

You don’t need to give the line-numbers in order, and any given line number can appear multiple
times. You can assemble macros with any lines from your input history in any order.

The macro is a simple object which holds its value in an attribute, but IPython’s display system
checks for macros and executes them as code instead of printing them when you type their name.

You can view a macro’s contents by explicitly printing it with:

‘print macro_name’.

magic_magic(parameter_s=’‘)
Print information about the magic function system.

Supported formats: -latex, -brief, -rest

magic_page(parameter_s=’‘)
Pretty print the object and display it through a pager.

%page [options] OBJECT

If no object is given, use _ (last output).

Options:

-r: page str(object), don’t pretty-print it.

magic_pastebin(parameter_s=’‘)
Upload code to the ‘Lodge it’ paste bin, returning the URL.

magic_pdb(parameter_s=’‘)
Control the automatic calling of the pdb interactive debugger.

Call as ‘%pdb on’, ‘%pdb 1’, ‘%pdb off’ or ‘%pdb 0’. If called without argument it works as a
toggle.

When an exception is triggered, IPython can optionally call the interactive pdb debugger after
the traceback printout. %pdb toggles this feature on and off.

The initial state of this feature is set in your ipythonrc configuration file (the variable is called
‘pdb’).

If you want to just activate the debugger AFTER an exception has fired, without having to type
‘%pdb on’ and rerunning your code, you can use the %debug magic.

magic_pdef(parameter_s=’‘, namespaces=None)
Print the definition header for any callable object.

If the object is a class, print the constructor information.

Examples

In [3]: %pdef urllib.urlopen
urllib.urlopen(url, data=None, proxies=None)

8.24. core.interactiveshell 393

IPython Documentation, Release 0.11

magic_pdoc(parameter_s=’‘, namespaces=None)
Print the docstring for an object.

If the given object is a class, it will print both the class and the constructor docstrings.

magic_pfile(parameter_s=’‘)
Print (or run through pager) the file where an object is defined.

The file opens at the line where the object definition begins. IPython will honor the environment
variable PAGER if set, and otherwise will do its best to print the file in a convenient form.

If the given argument is not an object currently defined, IPython will try to interpret it as a
filename (automatically adding a .py extension if needed). You can thus use %pfile as a syntax
highlighting code viewer.

magic_pinfo(parameter_s=’‘, namespaces=None)
Provide detailed information about an object.

‘%pinfo object’ is just a synonym for object? or ?object.

magic_pinfo2(parameter_s=’‘, namespaces=None)
Provide extra detailed information about an object.

‘%pinfo2 object’ is just a synonym for object?? or ??object.

magic_popd(parameter_s=’‘)
Change to directory popped off the top of the stack.

magic_pprint(parameter_s=’‘)
Toggle pretty printing on/off.

magic_precision(s=’‘)
Set floating point precision for pretty printing.

Can set either integer precision or a format string.

If numpy has been imported and precision is an int, numpy display precision will also be set, via
numpy.set_printoptions.

If no argument is given, defaults will be restored.

Examples

In [1]: from math import pi

In [2]: %precision 3
Out[2]: u’%.3f’

In [3]: pi
Out[3]: 3.142

In [4]: %precision %i
Out[4]: u’%i’

In [5]: pi

394 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Out[5]: 3

In [6]: %precision %e
Out[6]: u’%e’

In [7]: pi**10
Out[7]: 9.364805e+04

In [8]: %precision
Out[8]: u’%r’

In [9]: pi**10
Out[9]: 93648.047476082982

magic_profile(parameter_s=’‘)
Print your currently active IPython profile.

magic_prun(parameter_s=’‘, user_mode=1, opts=None, arg_lst=None, prog_ns=None)
Run a statement through the python code profiler.

Usage: %prun [options] statement

The given statement (which doesn’t require quote marks) is run via the python profiler
in a manner similar to the profile.run() function. Namespaces are internally managed
to work correctly; profile.run cannot be used in IPython because it makes certain as-
sumptions about namespaces which do not hold under IPython.

Options:

-l <limit>: you can place restrictions on what or how much of the profile gets printed.
The limit value can be:

•A string: only information for function names containing this string

is printed.

•An integer: only these many lines are printed.

•A float (between 0 and 1): this fraction of the report is printed

(for example, use a limit of 0.4 to see the topmost 40% only).

You can combine several limits with repeated use of the option. For example, ‘-l
__init__ -l 5’ will print only the topmost 5 lines of information about class constructors.

-r: return the pstats.Stats object generated by the profiling. This object has all the
information about the profile in it, and you can later use it for further analysis or in
other functions.

-s <key>: sort profile by given key. You can provide more than one key by using the option
several times: ‘-s key1 -s key2 -s key3...’. The default sorting key is ‘time’.

The following is copied verbatim from the profile documentation referenced below:

When more than one key is provided, additional keys are used as secondary criteria when
the there is equality in all keys selected before them.

8.24. core.interactiveshell 395

IPython Documentation, Release 0.11

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous.
The following are the keys currently defined:

Valid Arg Meaning “calls” call count “cumulative” cumulative time “file” file
name “module” file name “pcalls” primitive call count “line” line number
“name” function name “nfl” name/file/line “stdname” standard name “time” in-
ternal time

Note that all sorts on statistics are in descending order (placing most time consuming items
first), where as name, file, and line number searches are in ascending order (i.e., alphabeti-
cal). The subtle distinction between “nfl” and “stdname” is that the standard name is a sort
of the name as printed, which means that the embedded line numbers get compared in an
odd way. For example, lines 3, 20, and 40 would (if the file names were the same) appear
in the string order “20” “3” and “40”. In contrast, “nfl” does a numeric compare of the line
numbers. In fact, sort_stats(“nfl”) is the same as sort_stats(“name”, “file”, “line”).

-T <filename>: save profile results as shown on screen to a text file. The profile is still
shown on screen.

-D <filename>: save (via dump_stats) profile statistics to given filename. This data is in
a format understod by the pstats module, and is generated by a call to the dump_stats()
method of profile objects. The profile is still shown on screen.

If you want to run complete programs under the profiler’s control, use ‘%run -p [prof_opts]
filename.py [args to program]’ where prof_opts contains profiler specific options as de-
scribed here.

You can read the complete documentation for the profile module with:

In [1]: import profile; profile.help()

magic_psearch(parameter_s=’‘)
Search for object in namespaces by wildcard.

%psearch [options] PATTERN [OBJECT TYPE]

Note: ? can be used as a synonym for %psearch, at the beginning or at the end: both a*? and ?a*
are equivalent to ‘%psearch a*’. Still, the rest of the command line must be unchanged (options
come first), so for example the following forms are equivalent

%psearch -i a* function -i a* function? ?-i a* function

Arguments:

PATTERN

where PATTERN is a string containing * as a wildcard similar to its use in a shell. The
pattern is matched in all namespaces on the search path. By default objects starting with
a single _ are not matched, many IPython generated objects have a single underscore.
The default is case insensitive matching. Matching is also done on the attributes of
objects and not only on the objects in a module.

[OBJECT TYPE]

396 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Is the name of a python type from the types module. The name is given in lowercase
without the ending type, ex. StringType is written string. By adding a type here only
objects matching the given type are matched. Using all here makes the pattern match
all types (this is the default).

Options:

-a: makes the pattern match even objects whose names start with a single underscore.
These names are normally ommitted from the search.

-i/-c: make the pattern case insensitive/sensitive. If neither of these options is given,
the default is read from your ipythonrc file. The option name which sets this value
is ‘wildcards_case_sensitive’. If this option is not specified in your ipythonrc file,
IPython’s internal default is to do a case sensitive search.

-e/-s NAMESPACE: exclude/search a given namespace. The pattern you speci-
fiy can be searched in any of the following namespaces: ‘builtin’, ‘user’,
‘user_global’,’internal’, ‘alias’, where ‘builtin’ and ‘user’ are the search defaults. Note
that you should not use quotes when specifying namespaces.

‘Builtin’ contains the python module builtin, ‘user’ contains all user data, ‘alias’ only
contain the shell aliases and no python objects, ‘internal’ contains objects used by
IPython. The ‘user_global’ namespace is only used by embedded IPython instances,
and it contains module-level globals. You can add namespaces to the search with -s or
exclude them with -e (these options can be given more than once).

Examples:

%psearch a* -> objects beginning with an a %psearch -e builtin a* -> objects NOT in the builtin
space starting in a %psearch a* function -> all functions beginning with an a %psearch re.e* ->
objects beginning with an e in module re %psearch r*.e* -> objects that start with e in modules
starting in r %psearch r*.* string -> all strings in modules beginning with r

Case sensitve search:

%psearch -c a* list all object beginning with lower case a

Show objects beginning with a single _:

%psearch -a _* list objects beginning with a single underscore

magic_psource(parameter_s=’‘, namespaces=None)
Print (or run through pager) the source code for an object.

magic_pushd(parameter_s=’‘)
Place the current dir on stack and change directory.

Usage: %pushd [’dirname’]

magic_pwd(parameter_s=’‘)
Return the current working directory path.

8.24. core.interactiveshell 397

IPython Documentation, Release 0.11

Examples

In [9]: pwd
Out[9]: ’/home/tsuser/sprint/ipython’

magic_pycat(parameter_s=’‘)
Show a syntax-highlighted file through a pager.

This magic is similar to the cat utility, but it will assume the file to be Python source and will
show it with syntax highlighting.

magic_pylab(s)
Load numpy and matplotlib to work interactively.

%pylab [GUINAME]

This function lets you activate pylab (matplotlib, numpy and interactive support) at any point
during an IPython session.

It will import at the top level numpy as np, pyplot as plt, matplotlib, pylab and mlab, as well as
all names from numpy and pylab.

Parameters guiname : optional

One of the valid arguments to the %gui magic (‘qt’, ‘wx’, ‘gtk’, ‘osx’ or ‘tk’).
If given, the corresponding Matplotlib backend is used, otherwise matplotlib’s
default (which you can override in your matplotlib config file) is used.

Examples

In this case, where the MPL default is TkAgg: In [2]: %pylab

Welcome to pylab, a matplotlib-based Python environment. Backend in use: TkAgg For more
information, type ‘help(pylab)’.

But you can explicitly request a different backend: In [3]: %pylab qt

Welcome to pylab, a matplotlib-based Python environment. Backend in use: Qt4Agg For more
information, type ‘help(pylab)’.

magic_quickref(arg)
Show a quick reference sheet

magic_rehashx(parameter_s=’‘)
Update the alias table with all executable files in $PATH.

This version explicitly checks that every entry in $PATH is a file with execute access (os.X_OK),
so it is much slower than %rehash.

Under Windows, it checks executability as a match agains a ‘|’-separated string of extensions,
stored in the IPython config variable win_exec_ext. This defaults to ‘exe|com|bat’.

This function also resets the root module cache of module completer, used on slow filesystems.

398 Chapter 8. The IPython API

IPython Documentation, Release 0.11

magic_reload_ext(module_str)
Reload an IPython extension by its module name.

magic_reset(parameter_s=’‘)
Resets the namespace by removing all names defined by the user.

Parameters -f : force reset without asking for confirmation.

-s : ‘Soft’ reset: Only clears your namespace, leaving history intact. Refer-
ences to objects may be kept. By default (without this option), we do a ‘hard’
reset, giving you a new session and removing all references to objects from
the current session.

Examples

In [6]: a = 1

In [7]: a Out[7]: 1

In [8]: ‘a’ in _ip.user_ns Out[8]: True

In [9]: %reset -f

In [1]: ‘a’ in _ip.user_ns Out[1]: False

magic_reset_selective(parameter_s=’‘)
Resets the namespace by removing names defined by the user.

Input/Output history are left around in case you need them.

%reset_selective [-f] regex

No action is taken if regex is not included

Options -f : force reset without asking for confirmation.

Examples

We first fully reset the namespace so your output looks identical to this example for pedagogical
reasons; in practice you do not need a full reset.

In [1]: %reset -f

Now, with a clean namespace we can make a few variables and use %reset_selective to only
delete names that match our regexp:

In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8

In [3]: who_ls Out[3]: [’a’, ‘b’, ‘b1m’, ‘b2m’, ‘b2s’, ‘b3m’, ‘b4m’, ‘c’]

In [4]: %reset_selective -f b[2-3]m

In [5]: who_ls Out[5]: [’a’, ‘b’, ‘b1m’, ‘b2s’, ‘b4m’, ‘c’]

In [6]: %reset_selective -f d

8.24. core.interactiveshell 399

IPython Documentation, Release 0.11

In [7]: who_ls Out[7]: [’a’, ‘b’, ‘b1m’, ‘b2s’, ‘b4m’, ‘c’]

In [8]: %reset_selective -f c

In [9]: who_ls Out[9]: [’a’, ‘b’, ‘b1m’, ‘b2s’, ‘b4m’]

In [10]: %reset_selective -f b

In [11]: who_ls Out[11]: [’a’]

magic_run(parameter_s=’‘, runner=None, file_finder=<function get_py_filename at
0x5164398>)

Run the named file inside IPython as a program.

Usage: %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]

Parameters after the filename are passed as command-line arguments to the program (put in
sys.argv). Then, control returns to IPython’s prompt.

This is similar to running at a system prompt: $ python file args

but with the advantage of giving you IPython’s tracebacks, and of loading all variables into your
interactive namespace for further use (unless -p is used, see below).

The file is executed in a namespace initially consisting only of __name__==’__main__’ and
sys.argv constructed as indicated. It thus sees its environment as if it were being run as a stand-
alone program (except for sharing global objects such as previously imported modules). But
after execution, the IPython interactive namespace gets updated with all variables defined in the
program (except for __name__ and sys.argv). This allows for very convenient loading of code
for interactive work, while giving each program a ‘clean sheet’ to run in.

Options:

-n: __name__ is NOT set to ‘__main__’, but to the running file’s name without extension (as
python does under import). This allows running scripts and reloading the definitions in them
without calling code protected by an ‘ if __name__ == “__main__” ‘ clause.

-i: run the file in IPython’s namespace instead of an empty one. This is useful if you are experi-
menting with code written in a text editor which depends on variables defined interactively.

-e: ignore sys.exit() calls or SystemExit exceptions in the script being run. This is particularly
useful if IPython is being used to run unittests, which always exit with a sys.exit() call. In such
cases you are interested in the output of the test results, not in seeing a traceback of the unittest
module.

-t: print timing information at the end of the run. IPython will give you an estimated CPU
time consumption for your script, which under Unix uses the resource module to avoid the
wraparound problems of time.clock(). Under Unix, an estimate of time spent on system tasks is
also given (for Windows platforms this is reported as 0.0).

If -t is given, an additional -N<N> option can be given, where <N> must be an integer indicating
how many times you want the script to run. The final timing report will include total and per run
results.

For example (testing the script uniq_stable.py):

In [1]: run -t uniq_stable

400 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython CPU timings (estimated): User : 0.19597 s.System: 0.0 s.

In [2]: run -t -N5 uniq_stable

IPython CPU timings (estimated):Total runs performed: 5

Times : Total Per runUser : 0.910862 s, 0.1821724 s.System: 0.0 s, 0.0 s.

-d: run your program under the control of pdb, the Python debugger. This allows you to execute
your program step by step, watch variables, etc. Internally, what IPython does is similar to
calling:

pdb.run(‘execfile(“YOURFILENAME”)’)

with a breakpoint set on line 1 of your file. You can change the line number for this automatic
breakpoint to be <N> by using the -bN option (where N must be an integer). For example:

%run -d -b40 myscript

will set the first breakpoint at line 40 in myscript.py. Note that the first breakpoint must be set
on a line which actually does something (not a comment or docstring) for it to stop execution.

When the pdb debugger starts, you will see a (Pdb) prompt. You must first enter ‘c’ (without
qoutes) to start execution up to the first breakpoint.

Entering ‘help’ gives information about the use of the debugger. You can easily see pdb’s full
documentation with “import pdb;pdb.help()” at a prompt.

-p: run program under the control of the Python profiler module (which prints a detailed report
of execution times, function calls, etc).

You can pass other options after -p which affect the behavior of the profiler itself. See the docs
for %prun for details.

In this mode, the program’s variables do NOT propagate back to the IPython interactive names-
pace (because they remain in the namespace where the profiler executes them).

Internally this triggers a call to %prun, see its documentation for details on the options available
specifically for profiling.

There is one special usage for which the text above doesn’t apply: if the filename ends with .ipy,
the file is run as ipython script, just as if the commands were written on IPython prompt.

magic_save(parameter_s=’‘)
Save a set of lines or a macro to a given filename.

Usage: %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...

Options:

-r: use ‘raw’ input. By default, the ‘processed’ history is used, so that magics are
loaded in their transformed version to valid Python. If this option is given, the raw
input as typed as the command line is used instead.

This function uses the same syntax as %history for input ranges, then saves the lines to the
filename you specify.

8.24. core.interactiveshell 401

IPython Documentation, Release 0.11

It adds a ‘.py’ extension to the file if you don’t do so yourself, and it asks for confirmation before
overwriting existing files.

magic_sc(parameter_s=’‘)
Shell capture - execute a shell command and capture its output.

DEPRECATED. Suboptimal, retained for backwards compatibility.

You should use the form ‘var = !command’ instead. Example:

“%sc -l myfiles = ls ~” should now be written as

“myfiles = !ls ~”

myfiles.s, myfiles.l and myfiles.n still apply as documented below.

– %sc [options] varname=command

IPython will run the given command using commands.getoutput(), and will then update the
user’s interactive namespace with a variable called varname, containing the value of the call.
Your command can contain shell wildcards, pipes, etc.

The ‘=’ sign in the syntax is mandatory, and the variable name you supply must follow Python’s
standard conventions for valid names.

(A special format without variable name exists for internal use)

Options:

-l: list output. Split the output on newlines into a list before assigning it to the given
variable. By default the output is stored as a single string.

-v: verbose. Print the contents of the variable.

In most cases you should not need to split as a list, because the returned value is a special type
of string which can automatically provide its contents either as a list (split on newlines) or as a
space-separated string. These are convenient, respectively, either for sequential processing or to
be passed to a shell command.

For example:

all-random

Capture into variable a In [1]: sc a=ls *py

a is a string with embedded newlines In [2]: a Out[2]:
‘setup.pynwin32_manual_post_install.py’

which can be seen as a list: In [3]: a.l Out[3]: [’setup.py’,
‘win32_manual_post_install.py’]

or as a whitespace-separated string: In [4]: a.s Out[4]: ‘setup.py
win32_manual_post_install.py’

a.s is useful to pass as a single command line: In [5]: !wc -l $a.s

146 setup.py 130 win32_manual_post_install.py 276 total

while the list form is useful to loop over: In [6]: for f in a.l:

402 Chapter 8. The IPython API

IPython Documentation, Release 0.11

...: !wc -l $f ...:

146 setup.py 130 win32_manual_post_install.py

Similiarly, the lists returned by the -l option are also special, in the sense that you can equally
invoke the .s attribute on them to automatically get a whitespace-separated string from their
contents:

In [7]: sc -l b=ls *py

In [8]: b Out[8]: [’setup.py’, ‘win32_manual_post_install.py’]

In [9]: b.s Out[9]: ‘setup.py win32_manual_post_install.py’

In summary, both the lists and strings used for ouptut capture have the following special at-
tributes:

.l (or .list) : value as list. .n (or .nlstr): value as newline-separated string. .s (or .spstr):
value as space-separated string.

magic_sx(parameter_s=’‘)
Shell execute - run a shell command and capture its output.

%sx command

IPython will run the given command using commands.getoutput(), and return the result format-
ted as a list (split on ‘n’). Since the output is _returned_, it will be stored in ipython’s regular
output cache Out[N] and in the ‘_N’ automatic variables.

Notes:

1) If an input line begins with ‘!!’, then %sx is automatically invoked. That is, while:

!ls

causes ipython to simply issue system(‘ls’), typing !!ls

is a shorthand equivalent to: %sx ls

2) %sx differs from %sc in that %sx automatically splits into a list, like ‘%sc -l’. The reason
for this is to make it as easy as possible to process line-oriented shell output via further python
commands. %sc is meant to provide much finer control, but requires more typing.

3.Just like %sc -l, this is a list with special attributes:

.l (or .list) : value as list. .n (or .nlstr): value as newline-separated string. .s (or .spstr):
value as whitespace-separated string.

This is very useful when trying to use such lists as arguments to system commands.

magic_tb(s)
Print the last traceback with the currently active exception mode.

See %xmode for changing exception reporting modes.

8.24. core.interactiveshell 403

IPython Documentation, Release 0.11

magic_time(parameter_s=’‘)
Time execution of a Python statement or expression.

The CPU and wall clock times are printed, and the value of the expression (if any) is returned.
Note that under Win32, system time is always reported as 0, since it can not be measured.

This function provides very basic timing functionality. In Python 2.3, the timeit module offers
more control and sophistication, so this could be rewritten to use it (patches welcome).

Some examples:

In [1]: time 2**128 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00
Out[1]: 340282366920938463463374607431768211456L

In [2]: n = 1000000

In [3]: time sum(range(n)) CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s Wall time:
1.37 Out[3]: 499999500000L

In [4]: time print ‘hello world’ hello world CPU times: user 0.00 s, sys: 0.00 s, total:
0.00 s Wall time: 0.00

Note that the time needed by Python to compile the given expression will be reported
if it is more than 0.1s. In this example, the actual exponentiation is done by Python
at compilation time, so while the expression can take a noticeable amount of time to
compute, that time is purely due to the compilation:

In [5]: time 3**9999; CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00
s

In [6]: time 3**999999; CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time:
0.00 s Compiler : 0.78 s

magic_timeit(parameter_s=’‘)
Time execution of a Python statement or expression

Usage: %timeit [-n<N> -r<R> [-t|-c]] statement

Time execution of a Python statement or expression using the timeit module.

Options: -n<N>: execute the given statement <N> times in a loop. If this value is not given, a
fitting value is chosen.

-r<R>: repeat the loop iteration <R> times and take the best result. Default: 3

-t: use time.time to measure the time, which is the default on Unix. This function measures wall
time.

-c: use time.clock to measure the time, which is the default on Windows and measures wall time.
On Unix, resource.getrusage is used instead and returns the CPU user time.

-p<P>: use a precision of <P> digits to display the timing result. Default: 3

Examples:

In [1]: %timeit pass 10000000 loops, best of 3: 53.3 ns per loop

In [2]: u = None

404 Chapter 8. The IPython API

IPython Documentation, Release 0.11

In [3]: %timeit u is None 10000000 loops, best of 3: 184 ns per loop

In [4]: %timeit -r 4 u == None 1000000 loops, best of 4: 242 ns per loop

In [5]: import time

In [6]: %timeit -n1 time.sleep(2) 1 loops, best of 3: 2 s per loop

The times reported by %timeit will be slightly higher than those reported by the timeit.py script
when variables are accessed. This is due to the fact that %timeit executes the statement in the
namespace of the shell, compared with timeit.py, which uses a single setup statement to import
function or create variables. Generally, the bias does not matter as long as results from timeit.py
are not mixed with those from %timeit.

magic_unalias(parameter_s=’‘)
Remove an alias

magic_unload_ext(module_str)
Unload an IPython extension by its module name.

magic_who(parameter_s=’‘)
Print all interactive variables, with some minimal formatting.

If any arguments are given, only variables whose type matches one of these are printed. For
example:

%who function str

will only list functions and strings, excluding all other types of variables. To find the proper
type names, simply use type(var) at a command line to see how python prints type names. For
example:

In [1]: type(‘hello’)Out[1]: <type ‘str’>

indicates that the type name for strings is ‘str’.

%who always excludes executed names loaded through your configuration file and things which
are internal to IPython.

This is deliberate, as typically you may load many modules and the purpose of %who is to show
you only what you’ve manually defined.

Examples

Define two variables and list them with who:

In [1]: alpha = 123

In [2]: beta = ’test’

In [3]: %who
alpha beta

In [4]: %who int
alpha

8.24. core.interactiveshell 405

IPython Documentation, Release 0.11

In [5]: %who str
beta

magic_who_ls(parameter_s=’‘)
Return a sorted list of all interactive variables.

If arguments are given, only variables of types matching these arguments are returned.

Examples

Define two variables and list them with who_ls:

In [1]: alpha = 123

In [2]: beta = ’test’

In [3]: %who_ls
Out[3]: [’alpha’, ’beta’]

In [4]: %who_ls int
Out[4]: [’alpha’]

In [5]: %who_ls str
Out[5]: [’beta’]

magic_whos(parameter_s=’‘)
Like %who, but gives some extra information about each variable.

The same type filtering of %who can be applied here.

For all variables, the type is printed. Additionally it prints:

•For {},[],(): their length.

•For numpy arrays, a summary with shape, number of

elements, typecode and size in memory.

•Everything else: a string representation, snipping their middle if

too long.

Examples

Define two variables and list them with whos:

In [1]: alpha = 123

In [2]: beta = ’test’

In [3]: %whos
Variable Type Data/Info

406 Chapter 8. The IPython API

IPython Documentation, Release 0.11

alpha int 123
beta str test

magic_xdel(parameter_s=’‘)
Delete a variable, trying to clear it from anywhere that IPython’s machinery has references to it.
By default, this uses the identity of the named object in the user namespace to remove references
held under other names. The object is also removed from the output history.

Options -n : Delete the specified name from all namespaces, without checking their identity.

magic_xmode(parameter_s=’‘)
Switch modes for the exception handlers.

Valid modes: Plain, Context and Verbose.

If called without arguments, acts as a toggle.

make_user_namespaces(user_ns=None, user_global_ns=None)
Return a valid local and global user interactive namespaces.

This builds a dict with the minimal information needed to operate as a valid IPython user names-
pace, which you can pass to the various embedding classes in ipython. The default implemen-
tation returns the same dict for both the locals and the globals to allow functions to refer to
variables in the namespace. Customized implementations can return different dicts. The locals
dictionary can actually be anything following the basic mapping protocol of a dict, but the glob-
als dict must be a true dict, not even a subclass. It is recommended that any custom object for
the locals namespace synchronize with the globals dict somehow.

Raises TypeError if the provided globals namespace is not a true dict.

Parameters user_ns : dict-like, optional

The current user namespace. The items in this namespace should be included
in the output. If None, an appropriate blank namespace should be created.

user_global_ns : dict, optional

The current user global namespace. The items in this namespace should be
included in the output. If None, an appropriate blank namespace should be
created.

Returns A pair of dictionary-like object to be used as the local namespace :

of the interpreter and a dict to be used as the global namespace.

mktempfile(data=None, prefix=’ipython_edit_’)
Make a new tempfile and return its filename.

This makes a call to tempfile.mktemp, but it registers the created filename internally so ipython
cleans it up at exit time.

Optional inputs:

•data(None): if data is given, it gets written out to the temp file

immediately, and the file is closed again.

8.24. core.interactiveshell 407

IPython Documentation, Release 0.11

new_main_mod(ns=None)
Return a new ‘main’ module object for user code execution.

object_info_string_level
An enum that whose value must be in a given sequence.

object_inspect(oname)

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_options(arg_str, opt_str, *long_opts, **kw)
Parse options passed to an argument string.

The interface is similar to that of getopt(), but it returns back a Struct with the options as keys
and the stripped argument string still as a string.

arg_str is quoted as a true sys.argv vector by using shlex.split. This allows us to easily expand
variables, glob files, quote arguments, etc.

Options: -mode: default ‘string’. If given as ‘list’, the argument string is returned as a list (split
on whitespace) instead of a string.

-list_all: put all option values in lists. Normally only options appearing more than once are
put in a list.

-posix (True): whether to split the input line in POSIX mode or not, as per the conventions
outlined in the shlex module from the standard library.

payload_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

pdb
A casting version of the boolean trait.

408 Chapter 8. The IPython API

IPython Documentation, Release 0.11

plugin_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

pre_readline()
readline hook to be used at the start of each line.

Currently it handles auto-indent only.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

profile

profile_dir
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

profile_missing_notice(*args, **kwargs)

prompt_in1
A trait for unicode strings.

prompt_in2
A trait for unicode strings.

prompt_out
A trait for unicode strings.

prompts_pad_left
A casting version of the boolean trait.

push(variables, interactive=True)
Inject a group of variables into the IPython user namespace.

Parameters variables : dict, str or list/tuple of str

The variables to inject into the user’s namespace. If a dict, a simple update
is done. If a str, the string is assumed to have variable names separated by
spaces. A list/tuple of str can also be used to give the variable names. If just
the variable names are give (list/tuple/str) then the variable values looked up
in the callers frame.

interactive : bool

If True (default), the variables will be listed with the who magic.

quiet
A casting version of the boolean trait.

readline_merge_completions
A casting version of the boolean trait.

8.24. core.interactiveshell 409

IPython Documentation, Release 0.11

readline_omit__names
An enum that whose value must be in a given sequence.

readline_parse_and_bind
An instance of a Python list.

readline_remove_delims
A trait for unicode strings.

readline_use
A casting version of the boolean trait.

refill_readline_hist()

register_post_execute(func)
Register a function for calling after code execution.

reset(new_session=True)
Clear all internal namespaces, and attempt to release references to user objects.

If new_session is True, a new history session will be opened.

reset_selective(regex=None)
Clear selective variables from internal namespaces based on a specified regular expression.

Parameters regex : string or compiled pattern, optional

A regular expression pattern that will be used in searching variable names in
the users namespaces.

restore_sys_module_state()
Restore the state of the sys module.

run_ast_nodes(nodelist, cell_name, interactivity=’last_expr’)
Run a sequence of AST nodes. The execution mode depends on the interactivity parameter.

Parameters nodelist : list

A sequence of AST nodes to run.

cell_name : str

Will be passed to the compiler as the filename of the cell. Typically the value
returned by ip.compile.cache(cell).

interactivity : str

‘all’, ‘last’, ‘last_expr’ or ‘none’, specifying which nodes should be run in-
teractively (displaying output from expressions). ‘last_expr’ will run the last
node interactively only if it is an expression (i.e. expressions in loops or other
blocks are not displayed. Other values for this parameter will raise a ValueEr-
ror.

run_cell(raw_cell, store_history=True)
Run a complete IPython cell.

Parameters raw_cell : str

410 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The code (including IPython code such as %magic functions) to run.

store_history : bool

If True, the raw and translated cell will be stored in IPython’s history. For
user code calling back into IPython’s machinery, this should be set to False.

run_code(code_obj)
Execute a code object.

When an exception occurs, self.showtraceback() is called to display a traceback.

Parameters code_obj : code object

A compiled code object, to be executed

post_execute : bool [default: True]

whether to call post_execute hooks after this particular execution.

Returns False : successful execution.

True : an error occurred.

runcode(code_obj)
Execute a code object.

When an exception occurs, self.showtraceback() is called to display a traceback.

Parameters code_obj : code object

A compiled code object, to be executed

post_execute : bool [default: True]

whether to call post_execute hooks after this particular execution.

Returns False : successful execution.

True : an error occurred.

safe_execfile(fname, *where, **kw)
A safe version of the builtin execfile().

This version will never throw an exception, but instead print helpful error messages to the screen.
This only works on pure Python files with the .py extension.

Parameters fname : string

The name of the file to be executed.

where : tuple

One or two namespaces, passed to execfile() as (globals,locals). If only one
is given, it is passed as both.

exit_ignore : bool (False)

If True, then silence SystemExit for non-zero status (it is always silenced for
zero status, as it is so common).

8.24. core.interactiveshell 411

IPython Documentation, Release 0.11

safe_execfile_ipy(fname)
Like safe_execfile, but for .ipy files with IPython syntax.

Parameters fname : str

The name of the file to execute. The filename must have a .ipy extension.

save_sys_module_state()
Save the state of hooks in the sys module.

This has to be called after self.user_ns is created.

separate_in
A Unicode subclass to validate separate_in, separate_out, etc.

This is a Unicode based trait that converts ‘0’->” and ‘n’->’

‘.

separate_out
A Unicode subclass to validate separate_in, separate_out, etc.

This is a Unicode based trait that converts ‘0’->” and ‘n’->’

‘.

separate_out2
A Unicode subclass to validate separate_in, separate_out, etc.

This is a Unicode based trait that converts ‘0’->” and ‘n’->’

‘.

set_autoindent(value=None)
Set the autoindent flag, checking for readline support.

If called with no arguments, it acts as a toggle.

set_completer_frame(frame=None)
Set the frame of the completer.

set_custom_completer(completer, pos=0)
Adds a new custom completer function.

The position argument (defaults to 0) is the index in the completers list where you want the
completer to be inserted.

set_custom_exc(exc_tuple, handler)
Set a custom exception handler, which will be called if any of the exceptions in exc_tuple occur
in the mainloop (specifically, in the run_code() method.

Inputs:

•exc_tuple: a tuple of valid exceptions to call the defined

handler for. It is very important that you use a tuple, and NOT A LIST here, because of
the way Python’s except statement works. If you only want to trap a single exception,
use a singleton tuple:

412 Chapter 8. The IPython API

IPython Documentation, Release 0.11

exc_tuple == (MyCustomException,)

•handler: this must be defined as a function with the following

basic interface:

def my_handler(self, etype, value, tb, tb_offset=None)
...
The return value must be
return structured_traceback

This will be made into an instance method (via types.MethodType) of IPython itself,
and it will be called if any of the exceptions listed in the exc_tuple are caught. If the
handler is None, an internal basic one is used, which just prints basic info.

WARNING: by putting in your own exception handler into IPython’s main execution loop, you
run a very good chance of nasty crashes. This facility should only be used if you really know
what you are doing.

set_hook(name, hook)→ sets an internal IPython hook.
IPython exposes some of its internal API as user-modifiable hooks. By adding your function to
one of these hooks, you can modify IPython’s behavior to call at runtime your own routines.

set_next_input(s)
Sets the ‘default’ input string for the next command line.

Requires readline.

Example:

[D:ipython]|1> _ip.set_next_input(“Hello Word”) [D:ipython]|2> Hello Word_ # cursor is here

set_readline_completer()
Reset readline’s completer to be our own.

show_usage()
Show a usage message

showindentationerror()
Called by run_cell when there’s an IndentationError in code entered at the prompt.

This is overridden in TerminalInteractiveShell to show a message about the %paste magic.

showsyntaxerror(filename=None)
Display the syntax error that just occurred.

This doesn’t display a stack trace because there isn’t one.

If a filename is given, it is stuffed in the exception instead of what was there before (because
Python’s parser always uses “<string>” when reading from a string).

showtraceback(exc_tuple=None, filename=None, tb_offset=None, exception_only=False)
Display the exception that just occurred.

If nothing is known about the exception, this is the method which should be used throughout the
code for presenting user tracebacks, rather than directly invoking the InteractiveTB object.

8.24. core.interactiveshell 413

IPython Documentation, Release 0.11

A specific showsyntaxerror() also exists, but this method can take care of calling it if needed,
so unless you are explicitly catching a SyntaxError exception, don’t try to analyze the stack
manually and simply call this method.

system(cmd)
Call the given cmd in a subprocess, piping stdout/err

Parameters cmd : str

Command to execute (can not end in ‘&’, as background processes are not
supported. Should not be a command that expects input other than simple
text.

system_piped(cmd)
Call the given cmd in a subprocess, piping stdout/err

Parameters cmd : str

Command to execute (can not end in ‘&’, as background processes are not
supported. Should not be a command that expects input other than simple
text.

system_raw(cmd)
Call the given cmd in a subprocess using os.system

Parameters cmd : str

Command to execute.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

user_expressions(expressions)
Evaluate a dict of expressions in the user’s namespace.

Parameters expressions : dict

A dict with string keys and string values. The expression values should be
valid Python expressions, each of which will be evaluated in the user names-
pace.

Returns A dict, keyed like the input expressions dict, with the repr() of each :

value. :

414 Chapter 8. The IPython API

IPython Documentation, Release 0.11

user_variables(names)
Get a list of variable names from the user’s namespace.

Parameters names : list of strings

A list of names of variables to be read from the user namespace.

Returns A dict, keyed by the input names and with the repr() of each value. :

var_expand(cmd, depth=0)
Expand python variables in a string.

The depth argument indicates how many frames above the caller should be walked to look for
the local namespace where to expand variables.

The global namespace for expansion is always the user’s interactive namespace.

wildcards_case_sensitive
A casting version of the boolean trait.

write(data)
Write a string to the default output

write_err(data)
Write a string to the default error output

xmode
An enum of strings that are caseless in validate.

InteractiveShellABC

class IPython.core.interactiveshell.InteractiveShellABC
Bases: object

An abstract base class for InteractiveShell.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

ReadlineNoRecord

class IPython.core.interactiveshell.ReadlineNoRecord(shell)
Bases: object

Context manager to execute some code, then reload readline history so that interactive input to the
code doesn’t appear when pressing up.

__init__(shell)

current_length()

get_readline_tail(n=10)
Get the last n items in readline history.

8.24. core.interactiveshell 415

IPython Documentation, Release 0.11

SeparateUnicode

class IPython.core.interactiveshell.SeparateUnicode(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x5177f90>,
**metadata)

Bases: IPython.utils.traitlets.Unicode

A Unicode subclass to validate separate_in, separate_out, etc.

This is a Unicode based trait that converts ‘0’->” and ‘n’->’

‘.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x5177f90>,
**metadata)

Create a TraitType.

default_value = u’‘

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a unicode string’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

416 Chapter 8. The IPython API

IPython Documentation, Release 0.11

SpaceInInput

class IPython.core.interactiveshell.SpaceInInput
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.24.3 Functions

IPython.core.interactiveshell.get_default_colors()

IPython.core.interactiveshell.no_op(*a, **kw)

IPython.core.interactiveshell.softspace(file, newvalue)
Copied from code.py, to remove the dependency

8.25 core.ipapi

8.25.1 Module: core.ipapi

This module is completely deprecated and should no longer be used for any purpose. Currently, we have a
few parts of the core that have not been componentized and thus, still rely on this module. When everything
has been made into a component, this module will be sent to deathrow.

IPython.core.ipapi.get()
Get the global InteractiveShell instance.

8.26 core.logger

8.26.1 Module: core.logger

Inheritance diagram for IPython.core.logger:

core.logger.Logger

Logger class for IPython’s logging facilities.

8.25. core.ipapi 417

IPython Documentation, Release 0.11

8.26.2 Logger

class IPython.core.logger.Logger(home_dir, logfname=’Logger.log’, loghead=’‘, log-
mode=’over’)

Bases: object

A Logfile class with different policies for file creation

__init__(home_dir, logfname=’Logger.log’, loghead=’‘, logmode=’over’)

close_log()
Fully stop logging and close log file.

In order to start logging again, a new logstart() call needs to be made, possibly (though not
necessarily) with a new filename, mode and other options.

log(line_mod, line_ori)
Write the sources to a log.

Inputs:

•line_mod: possibly modified input, such as the transformations made

by input prefilters or input handlers of various kinds. This should always be valid Python.

•line_ori: unmodified input line from the user. This is not

necessarily valid Python.

log_write(data, kind=’input’)
Write data to the log file, if active

logmode

logstart(logfname=None, loghead=None, logmode=None, log_output=False, times-
tamp=False, log_raw_input=False)

Generate a new log-file with a default header.

Raises RuntimeError if the log has already been started

logstate()
Print a status message about the logger.

logstop()
Fully stop logging and close log file.

In order to start logging again, a new logstart() call needs to be made, possibly (though not
necessarily) with a new filename, mode and other options.

switch_log(val)
Switch logging on/off. val should be ONLY a boolean.

418 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.27 core.macro

8.27.1 Module: core.macro

Inheritance diagram for IPython.core.macro:

core.macro.Macro

Support for interactive macros in IPython

8.27.2 Macro

class IPython.core.macro.Macro(code)
Bases: object

Simple class to store the value of macros as strings.

Macro is just a callable that executes a string of IPython input when called.

Args to macro are available in _margv list if you need them.

__init__(code)
store the macro value, as a single string which can be executed

8.28 core.magic

8.28.1 Module: core.magic

Inheritance diagram for IPython.core.magic:

8.27. core.macro 419

IPython Documentation, Release 0.11

core.magic.MacroToEdit

core.magic.Bunch

core.magic.Magic

Magic functions for InteractiveShell.

8.28.2 Classes

Bunch

class IPython.core.magic.Bunch

MacroToEdit

class IPython.core.magic.MacroToEdit
Bases: exceptions.ValueError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

Magic

class IPython.core.magic.Magic(shell)
Magic functions for InteractiveShell.

Shell functions which can be reached as %function_name. All magic functions should accept a string,
which they can parse for their own needs. This can make some functions easier to type, eg %cd ../ vs.
%cd(”../”)

ALL definitions MUST begin with the prefix magic. The user won’t need it at the command line, but
it is is needed in the definition.

__init__(shell)

420 Chapter 8. The IPython API

IPython Documentation, Release 0.11

arg_err(func)
Print docstring if incorrect arguments were passed

auto_status = [’Automagic is OFF, % prefix IS needed for magic functions.’, ‘Automagic is ON, % prefix NOT needed for magic functions.’]

default_option(fn, optstr)
Make an entry in the options_table for fn, with value optstr

extract_input_lines(range_str, raw=False)
Return as a string a set of input history slices.

Inputs:

•range_str: the set of slices is given as a string, like

“~5/6-~4/2 4:8 9”, since this function is for use by magic functions which get their
arguments as strings. The number before the / is the session number: ~n goes n back
from the current session.

Optional inputs:

•raw(False): by default, the processed input is used. If this is

true, the raw input history is used instead.

Note that slices can be called with two notations:

N:M -> standard python form, means including items N...(M-1).

N-M -> include items N..M (closed endpoint).

format_latex(strng)
Format a string for latex inclusion.

lsmagic()
Return a list of currently available magic functions.

Gives a list of the bare names after mangling ([’ls’,’cd’, ...], not [’magic_ls’,’magic_cd’,...]

magic_alias(parameter_s=’‘)
Define an alias for a system command.

‘%alias alias_name cmd’ defines ‘alias_name’ as an alias for ‘cmd’

Then, typing ‘alias_name params’ will execute the system command ‘cmd params’ (from your
underlying operating system).

Aliases have lower precedence than magic functions and Python normal variables, so if ‘foo’ is
both a Python variable and an alias, the alias can not be executed until ‘del foo’ removes the
Python variable.

You can use the %l specifier in an alias definition to represent the whole line when the alias is
called. For example:

In [2]: alias bracket echo “Input in brackets: <%l>” In [3]: bracket hello world Input
in brackets: <hello world>

You can also define aliases with parameters using %s specifiers (one per parameter):

8.28. core.magic 421

IPython Documentation, Release 0.11

In [1]: alias parts echo first %s second %s In [2]: %parts A B first A second B In [3]:
%parts A Incorrect number of arguments: 2 expected. parts is an alias to: ‘echo first
%s second %s’

Note that %l and %s are mutually exclusive. You can only use one or the other in your aliases.

Aliases expand Python variables just like system calls using ! or !! do: all expres-
sions prefixed with ‘$’ get expanded. For details of the semantic rules, see PEP-215:
http://www.python.org/peps/pep-0215.html. This is the library used by IPython for variable
expansion. If you want to access a true shell variable, an extra $ is necessary to prevent its
expansion by IPython:

In [6]: alias show echo In [7]: PATH=’A Python string’ In [8]: show $PATH A Python string In
[9]: show $$PATH /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...

You can use the alias facility to acess all of $PATH. See the %rehash and %rehashx functions,
which automatically create aliases for the contents of your $PATH.

If called with no parameters, %alias prints the current alias table.

magic_autocall(parameter_s=’‘)
Make functions callable without having to type parentheses.

Usage:

%autocall [mode]

The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the value is toggled on and
off (remembering the previous state).

In more detail, these values mean:

0 -> fully disabled

1 -> active, but do not apply if there are no arguments on the line.

In this mode, you get:

In [1]: callable Out[1]: <built-in function callable>

In [2]: callable ‘hello’ ——> callable(‘hello’) Out[2]: False

2 -> Active always. Even if no arguments are present, the callable object is called:

In [2]: float ——> float() Out[2]: 0.0

Note that even with autocall off, you can still use ‘/’ at the start of a line to treat the first argument
on the command line as a function and add parentheses to it:

In [8]: /str 43 ——> str(43) Out[8]: ‘43’

all-random (note for auto-testing)

magic_automagic(parameter_s=’‘)
Make magic functions callable without having to type the initial %.

Without argumentsl toggles on/off (when off, you must call it as %automagic, of course). With
arguments it sets the value, and you can use any of (case insensitive):

422 Chapter 8. The IPython API

http://www.python.org/peps/pep-0215.html

IPython Documentation, Release 0.11

•on,1,True: to activate

•off,0,False: to deactivate.

Note that magic functions have lowest priority, so if there’s a variable whose name collides
with that of a magic fn, automagic won’t work for that function (you get the variable instead).
However, if you delete the variable (del var), the previously shadowed magic function becomes
visible to automagic again.

magic_bookmark(parameter_s=’‘)
Manage IPython’s bookmark system.

%bookmark <name> - set bookmark to current dir %bookmark <name> <dir> - set bookmark
to <dir> %bookmark -l - list all bookmarks %bookmark -d <name> - remove bookmark %book-
mark -r - remove all bookmarks

You can later on access a bookmarked folder with: %cd -b <name>

or simply ‘%cd <name>’ if there is no directory called <name> AND there is such a bookmark
defined.

Your bookmarks persist through IPython sessions, but they are associated with each profile.

magic_cd(parameter_s=’‘)
Change the current working directory.

This command automatically maintains an internal list of directories you visit during your
IPython session, in the variable _dh. The command %dhist shows this history nicely format-
ted. You can also do ‘cd -<tab>’ to see directory history conveniently.

Usage:

cd ‘dir’: changes to directory ‘dir’.

cd -: changes to the last visited directory.

cd -<n>: changes to the n-th directory in the directory history.

cd –foo: change to directory that matches ‘foo’ in history

cd -b <bookmark_name>: jump to a bookmark set by %bookmark

(note: cd <bookmark_name> is enough if there is no directory <book-
mark_name>, but a bookmark with the name exists.) ‘cd -b <tab>’ allows you
to tab-complete bookmark names.

Options:

-q: quiet. Do not print the working directory after the cd command is executed. By default
IPython’s cd command does print this directory, since the default prompts do not display path
information.

Note that !cd doesn’t work for this purpose because the shell where !command runs is immedi-
ately discarded after executing ‘command’.

8.28. core.magic 423

IPython Documentation, Release 0.11

Examples

In [10]: cd parent/child
/home/tsuser/parent/child

magic_colors(parameter_s=’‘)
Switch color scheme for prompts, info system and exception handlers.

Currently implemented schemes: NoColor, Linux, LightBG.

Color scheme names are not case-sensitive.

Examples

To get a plain black and white terminal:

%colors nocolor

magic_debug(parameter_s=’‘)
Activate the interactive debugger in post-mortem mode.

If an exception has just occurred, this lets you inspect its stack frames interactively. Note that
this will always work only on the last traceback that occurred, so you must call this quickly after
an exception that you wish to inspect has fired, because if another one occurs, it clobbers the
previous one.

If you want IPython to automatically do this on every exception, see the %pdb magic for more
details.

magic_dhist(parameter_s=’‘)
Print your history of visited directories.

%dhist -> print full history%dhist n -> print last n entries only%dhist n1 n2 -> print entries
between n1 and n2 (n1 not included)

This history is automatically maintained by the %cd command, and always available as the
global list variable _dh. You can use %cd -<n> to go to directory number <n>.

Note that most of time, you should view directory history by entering cd -<TAB>.

magic_dirs(parameter_s=’‘)
Return the current directory stack.

magic_doctest_mode(parameter_s=’‘)
Toggle doctest mode on and off.

This mode is intended to make IPython behave as much as possible like a plain Python shell,
from the perspective of how its prompts, exceptions and output look. This makes it easy to copy
and paste parts of a session into doctests. It does so by:

•Changing the prompts to the classic >>> ones.

•Changing the exception reporting mode to ‘Plain’.

•Disabling pretty-printing of output.

424 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Note that IPython also supports the pasting of code snippets that have leading ‘>>>’ and ‘...’
prompts in them. This means that you can paste doctests from files or docstrings (even if they
have leading whitespace), and the code will execute correctly. You can then use ‘%history -t’ to
see the translated history; this will give you the input after removal of all the leading prompts
and whitespace, which can be pasted back into an editor.

With these features, you can switch into this mode easily whenever you need to do testing and
changes to doctests, without having to leave your existing IPython session.

magic_ed(parameter_s=’‘)
Alias to %edit.

magic_edit(parameter_s=’‘, last_call=[’‘, ‘’])
Bring up an editor and execute the resulting code.

Usage: %edit [options] [args]

%edit runs IPython’s editor hook. The default version of this hook is set to call the
__IPYTHON__.rc.editor command. This is read from your environment variable $EDITOR.
If this isn’t found, it will default to vi under Linux/Unix and to notepad under Windows. See the
end of this docstring for how to change the editor hook.

You can also set the value of this editor via the command line option ‘-editor’ or in your ipythonrc
file. This is useful if you wish to use specifically for IPython an editor different from your typical
default (and for Windows users who typically don’t set environment variables).

This command allows you to conveniently edit multi-line code right in your IPython session.

If called without arguments, %edit opens up an empty editor with a temporary file and will
execute the contents of this file when you close it (don’t forget to save it!).

Options:

-n <number>: open the editor at a specified line number. By default, the IPython editor hook uses
the unix syntax ‘editor +N filename’, but you can configure this by providing your own modified
hook if your favorite editor supports line-number specifications with a different syntax.

-p: this will call the editor with the same data as the previous time it was used, regardless of how
long ago (in your current session) it was.

-r: use ‘raw’ input. This option only applies to input taken from the user’s history. By default,
the ‘processed’ history is used, so that magics are loaded in their transformed version to valid
Python. If this option is given, the raw input as typed as the command line is used instead. When
you exit the editor, it will be executed by IPython’s own processor.

-x: do not execute the edited code immediately upon exit. This is mainly useful if you are editing
programs which need to be called with command line arguments, which you can then do using
%run.

Arguments:

If arguments are given, the following possibilites exist:

•If the argument is a filename, IPython will load that into the

8.28. core.magic 425

IPython Documentation, Release 0.11

editor. It will execute its contents with execfile() when you exit, loading any code in the file into
your interactive namespace.

•The arguments are ranges of input history, e.g. “7 ~1/4-6”.

The syntax is the same as in the %history magic.

•If the argument is a string variable, its contents are loaded

into the editor. You can thus edit any string which contains python code (including the result of
previous edits).

•If the argument is the name of an object (other than a string),

IPython will try to locate the file where it was defined and open the editor at the point where it
is defined. You can use %edit function to load an editor exactly at the point where ‘function’ is
defined, edit it and have the file be executed automatically.

If the object is a macro (see %macro for details), this opens up your specified editor with a
temporary file containing the macro’s data. Upon exit, the macro is reloaded with the contents
of the file.

Note: opening at an exact line is only supported under Unix, and some editors (like kedit and
gedit up to Gnome 2.8) do not understand the ‘+NUMBER’ parameter necessary for this feature.
Good editors like (X)Emacs, vi, jed, pico and joe all do.

After executing your code, %edit will return as output the code you typed in the editor (except
when it was an existing file). This way you can reload the code in further invocations of %edit as
a variable, via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number
of the output.

Note that %edit is also available through the alias %ed.

This is an example of creating a simple function inside the editor and then modifying it. First,
start up the editor:

In [1]: ed Editing... done. Executing edited code... Out[1]: ‘def foo():n print “foo() was defined
in an editing session”n’

We can then call the function foo():

In [2]: foo() foo() was defined in an editing session

Now we edit foo. IPython automatically loads the editor with the (temporary) file where foo()
was previously defined:

In [3]: ed foo Editing... done. Executing edited code...

And if we call foo() again we get the modified version:

In [4]: foo() foo() has now been changed!

Here is an example of how to edit a code snippet successive times. First we call the editor:

In [5]: ed Editing... done. Executing edited code... hello Out[5]: “print ‘hello’n”

Now we call it again with the previous output (stored in _):

In [6]: ed _ Editing... done. Executing edited code... hello world Out[6]: “print ‘hello world’n”

426 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Now we call it with the output #8 (stored in _8, also as Out[8]):

In [7]: ed _8 Editing... done. Executing edited code... hello again Out[7]: “print ‘hello again’n”

Changing the default editor hook:

If you wish to write your own editor hook, you can put it in a configuration file which you load
at startup time. The default hook is defined in the IPython.core.hooks module, and you can use
that as a starting example for further modifications. That file also has general instructions on
how to set a new hook for use once you’ve defined it.

magic_env(parameter_s=’‘)
List environment variables.

magic_gui(parameter_s=’‘)
Enable or disable IPython GUI event loop integration.

%gui [GUINAME]

This magic replaces IPython’s threaded shells that were activated using the (pylab/wthread/etc.)
command line flags. GUI toolkits can now be enabled, disabled and changed at runtime and
keyboard interrupts should work without any problems. The following toolkits are supported:
wxPython, PyQt4, PyGTK, and Tk:

%gui wx # enable wxPython event loop integration
%gui qt4|qt # enable PyQt4 event loop integration
%gui gtk # enable PyGTK event loop integration
%gui tk # enable Tk event loop integration
%gui # disable all event loop integration

WARNING: after any of these has been called you can simply create an application object, but
DO NOT start the event loop yourself, as we have already handled that.

magic_install_default_config(s)
Install IPython’s default config file into the .ipython dir.

If the default config file (ipython_config.py) is already installed, it will not be overwritten.
You can force overwriting by using the -o option:

In [1]: %install_default_config

magic_install_profiles(s)
Install the default IPython profiles into the .ipython dir.

If the default profiles have already been installed, they will not be overwritten. You can force
overwriting them by using the -o option:

In [1]: %install_profiles -o

magic_load_ext(module_str)
Load an IPython extension by its module name.

magic_loadpy(arg_s)
Load a .py python script into the GUI console.

This magic command can either take a local filename or a url:

8.28. core.magic 427

IPython Documentation, Release 0.11

%loadpy myscript.py
%loadpy http://www.example.com/myscript.py

magic_logoff(parameter_s=’‘)
Temporarily stop logging.

You must have previously started logging.

magic_logon(parameter_s=’‘)
Restart logging.

This function is for restarting logging which you’ve temporarily stopped with %logoff. For
starting logging for the first time, you must use the %logstart function, which allows you to
specify an optional log filename.

magic_logstart(parameter_s=’‘)
Start logging anywhere in a session.

%logstart [-o|-r|-t] [log_name [log_mode]]

If no name is given, it defaults to a file named ‘ipython_log.py’ in your current directory, in
‘rotate’ mode (see below).

‘%logstart name’ saves to file ‘name’ in ‘backup’ mode. It saves your history up to that point
and then continues logging.

%logstart takes a second optional parameter: logging mode. This can be one of (note that the
modes are given unquoted):

append: well, that says it.backup: rename (if exists) to name~ and start name.global:
single logfile in your home dir, appended to.over : overwrite existing log.rotate: create
rotating logs name.1~, name.2~, etc.

Options:

-o: log also IPython’s output. In this mode, all commands which generate an Out[NN]
prompt are recorded to the logfile, right after their corresponding input line. The output
lines are always prepended with a ‘#[Out]# ‘ marker, so that the log remains valid
Python code.

Since this marker is always the same, filtering only the output from a log is very easy,
using for example a simple awk call:

awk -F’#[Out]# ‘ ‘{if($2) {print $2}}’ ipython_log.py

-r: log ‘raw’ input. Normally, IPython’s logs contain the processed input, so that user
lines are logged in their final form, converted into valid Python. For example, %Exit
is logged as ‘_ip.magic(“Exit”). If the -r flag is given, all input is logged exactly as
typed, with no transformations applied.

-t: put timestamps before each input line logged (these are put in comments).

magic_logstate(parameter_s=’‘)
Print the status of the logging system.

428 Chapter 8. The IPython API

IPython Documentation, Release 0.11

magic_logstop(parameter_s=’‘)
Fully stop logging and close log file.

In order to start logging again, a new %logstart call needs to be made, possibly (though not
necessarily) with a new filename, mode and other options.

magic_lsmagic(parameter_s=’‘)
List currently available magic functions.

magic_macro(parameter_s=’‘)
Define a macro for future re-execution. It accepts ranges of history, filenames or string objects.

Usage: %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...

Options:

-r: use ‘raw’ input. By default, the ‘processed’ history is used, so that magics are
loaded in their transformed version to valid Python. If this option is given, the raw
input as typed as the command line is used instead.

This will define a global variable called name which is a string made of joining the slices and
lines you specify (n1,n2,... numbers above) from your input history into a single string. This
variable acts like an automatic function which re-executes those lines as if you had typed them.
You just type ‘name’ at the prompt and the code executes.

The syntax for indicating input ranges is described in %history.

Note: as a ‘hidden’ feature, you can also use traditional python slice notation, where N:M means
numbers N through M-1.

For example, if your history contains (%hist prints it):

44: x=1 45: y=3 46: z=x+y 47: print x 48: a=5 49: print ‘x’,x,’y’,y

you can create a macro with lines 44 through 47 (included) and line 49 called my_macro with:

In [55]: %macro my_macro 44-47 49

Now, typing my_macro (without quotes) will re-execute all this code in one pass.

You don’t need to give the line-numbers in order, and any given line number can appear multiple
times. You can assemble macros with any lines from your input history in any order.

The macro is a simple object which holds its value in an attribute, but IPython’s display system
checks for macros and executes them as code instead of printing them when you type their name.

You can view a macro’s contents by explicitly printing it with:

‘print macro_name’.

magic_magic(parameter_s=’‘)
Print information about the magic function system.

Supported formats: -latex, -brief, -rest

magic_page(parameter_s=’‘)
Pretty print the object and display it through a pager.

%page [options] OBJECT

8.28. core.magic 429

IPython Documentation, Release 0.11

If no object is given, use _ (last output).

Options:

-r: page str(object), don’t pretty-print it.

magic_pastebin(parameter_s=’‘)
Upload code to the ‘Lodge it’ paste bin, returning the URL.

magic_pdb(parameter_s=’‘)
Control the automatic calling of the pdb interactive debugger.

Call as ‘%pdb on’, ‘%pdb 1’, ‘%pdb off’ or ‘%pdb 0’. If called without argument it works as a
toggle.

When an exception is triggered, IPython can optionally call the interactive pdb debugger after
the traceback printout. %pdb toggles this feature on and off.

The initial state of this feature is set in your ipythonrc configuration file (the variable is called
‘pdb’).

If you want to just activate the debugger AFTER an exception has fired, without having to type
‘%pdb on’ and rerunning your code, you can use the %debug magic.

magic_pdef(parameter_s=’‘, namespaces=None)
Print the definition header for any callable object.

If the object is a class, print the constructor information.

Examples

In [3]: %pdef urllib.urlopen
urllib.urlopen(url, data=None, proxies=None)

magic_pdoc(parameter_s=’‘, namespaces=None)
Print the docstring for an object.

If the given object is a class, it will print both the class and the constructor docstrings.

magic_pfile(parameter_s=’‘)
Print (or run through pager) the file where an object is defined.

The file opens at the line where the object definition begins. IPython will honor the environment
variable PAGER if set, and otherwise will do its best to print the file in a convenient form.

If the given argument is not an object currently defined, IPython will try to interpret it as a
filename (automatically adding a .py extension if needed). You can thus use %pfile as a syntax
highlighting code viewer.

magic_pinfo(parameter_s=’‘, namespaces=None)
Provide detailed information about an object.

‘%pinfo object’ is just a synonym for object? or ?object.

430 Chapter 8. The IPython API

IPython Documentation, Release 0.11

magic_pinfo2(parameter_s=’‘, namespaces=None)
Provide extra detailed information about an object.

‘%pinfo2 object’ is just a synonym for object?? or ??object.

magic_popd(parameter_s=’‘)
Change to directory popped off the top of the stack.

magic_pprint(parameter_s=’‘)
Toggle pretty printing on/off.

magic_precision(s=’‘)
Set floating point precision for pretty printing.

Can set either integer precision or a format string.

If numpy has been imported and precision is an int, numpy display precision will also be set, via
numpy.set_printoptions.

If no argument is given, defaults will be restored.

Examples

In [1]: from math import pi

In [2]: %precision 3
Out[2]: u’%.3f’

In [3]: pi
Out[3]: 3.142

In [4]: %precision %i
Out[4]: u’%i’

In [5]: pi
Out[5]: 3

In [6]: %precision %e
Out[6]: u’%e’

In [7]: pi**10
Out[7]: 9.364805e+04

In [8]: %precision
Out[8]: u’%r’

In [9]: pi**10
Out[9]: 93648.047476082982

magic_profile(parameter_s=’‘)
Print your currently active IPython profile.

magic_prun(parameter_s=’‘, user_mode=1, opts=None, arg_lst=None, prog_ns=None)
Run a statement through the python code profiler.

8.28. core.magic 431

IPython Documentation, Release 0.11

Usage: %prun [options] statement

The given statement (which doesn’t require quote marks) is run via the python profiler
in a manner similar to the profile.run() function. Namespaces are internally managed
to work correctly; profile.run cannot be used in IPython because it makes certain as-
sumptions about namespaces which do not hold under IPython.

Options:

-l <limit>: you can place restrictions on what or how much of the profile gets printed.
The limit value can be:

•A string: only information for function names containing this string

is printed.

•An integer: only these many lines are printed.

•A float (between 0 and 1): this fraction of the report is printed

(for example, use a limit of 0.4 to see the topmost 40% only).

You can combine several limits with repeated use of the option. For example, ‘-l
__init__ -l 5’ will print only the topmost 5 lines of information about class constructors.

-r: return the pstats.Stats object generated by the profiling. This object has all the
information about the profile in it, and you can later use it for further analysis or in
other functions.

-s <key>: sort profile by given key. You can provide more than one key by using the option
several times: ‘-s key1 -s key2 -s key3...’. The default sorting key is ‘time’.

The following is copied verbatim from the profile documentation referenced below:

When more than one key is provided, additional keys are used as secondary criteria when
the there is equality in all keys selected before them.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous.
The following are the keys currently defined:

Valid Arg Meaning “calls” call count “cumulative” cumulative time “file” file
name “module” file name “pcalls” primitive call count “line” line number
“name” function name “nfl” name/file/line “stdname” standard name “time” in-
ternal time

Note that all sorts on statistics are in descending order (placing most time consuming items
first), where as name, file, and line number searches are in ascending order (i.e., alphabeti-
cal). The subtle distinction between “nfl” and “stdname” is that the standard name is a sort
of the name as printed, which means that the embedded line numbers get compared in an
odd way. For example, lines 3, 20, and 40 would (if the file names were the same) appear
in the string order “20” “3” and “40”. In contrast, “nfl” does a numeric compare of the line
numbers. In fact, sort_stats(“nfl”) is the same as sort_stats(“name”, “file”, “line”).

-T <filename>: save profile results as shown on screen to a text file. The profile is still
shown on screen.

432 Chapter 8. The IPython API

IPython Documentation, Release 0.11

-D <filename>: save (via dump_stats) profile statistics to given filename. This data is in
a format understod by the pstats module, and is generated by a call to the dump_stats()
method of profile objects. The profile is still shown on screen.

If you want to run complete programs under the profiler’s control, use ‘%run -p [prof_opts]
filename.py [args to program]’ where prof_opts contains profiler specific options as de-
scribed here.

You can read the complete documentation for the profile module with:

In [1]: import profile; profile.help()

magic_psearch(parameter_s=’‘)
Search for object in namespaces by wildcard.

%psearch [options] PATTERN [OBJECT TYPE]

Note: ? can be used as a synonym for %psearch, at the beginning or at the end: both a*? and ?a*
are equivalent to ‘%psearch a*’. Still, the rest of the command line must be unchanged (options
come first), so for example the following forms are equivalent

%psearch -i a* function -i a* function? ?-i a* function

Arguments:

PATTERN

where PATTERN is a string containing * as a wildcard similar to its use in a shell. The
pattern is matched in all namespaces on the search path. By default objects starting with
a single _ are not matched, many IPython generated objects have a single underscore.
The default is case insensitive matching. Matching is also done on the attributes of
objects and not only on the objects in a module.

[OBJECT TYPE]

Is the name of a python type from the types module. The name is given in lowercase
without the ending type, ex. StringType is written string. By adding a type here only
objects matching the given type are matched. Using all here makes the pattern match
all types (this is the default).

Options:

-a: makes the pattern match even objects whose names start with a single underscore.
These names are normally ommitted from the search.

-i/-c: make the pattern case insensitive/sensitive. If neither of these options is given,
the default is read from your ipythonrc file. The option name which sets this value
is ‘wildcards_case_sensitive’. If this option is not specified in your ipythonrc file,
IPython’s internal default is to do a case sensitive search.

-e/-s NAMESPACE: exclude/search a given namespace. The pattern you speci-
fiy can be searched in any of the following namespaces: ‘builtin’, ‘user’,
‘user_global’,’internal’, ‘alias’, where ‘builtin’ and ‘user’ are the search defaults. Note
that you should not use quotes when specifying namespaces.

8.28. core.magic 433

IPython Documentation, Release 0.11

‘Builtin’ contains the python module builtin, ‘user’ contains all user data, ‘alias’ only
contain the shell aliases and no python objects, ‘internal’ contains objects used by
IPython. The ‘user_global’ namespace is only used by embedded IPython instances,
and it contains module-level globals. You can add namespaces to the search with -s or
exclude them with -e (these options can be given more than once).

Examples:

%psearch a* -> objects beginning with an a %psearch -e builtin a* -> objects NOT in the builtin
space starting in a %psearch a* function -> all functions beginning with an a %psearch re.e* ->
objects beginning with an e in module re %psearch r*.e* -> objects that start with e in modules
starting in r %psearch r*.* string -> all strings in modules beginning with r

Case sensitve search:

%psearch -c a* list all object beginning with lower case a

Show objects beginning with a single _:

%psearch -a _* list objects beginning with a single underscore

magic_psource(parameter_s=’‘, namespaces=None)
Print (or run through pager) the source code for an object.

magic_pushd(parameter_s=’‘)
Place the current dir on stack and change directory.

Usage: %pushd [’dirname’]

magic_pwd(parameter_s=’‘)
Return the current working directory path.

Examples

In [9]: pwd
Out[9]: ’/home/tsuser/sprint/ipython’

magic_pycat(parameter_s=’‘)
Show a syntax-highlighted file through a pager.

This magic is similar to the cat utility, but it will assume the file to be Python source and will
show it with syntax highlighting.

magic_pylab(s)
Load numpy and matplotlib to work interactively.

%pylab [GUINAME]

This function lets you activate pylab (matplotlib, numpy and interactive support) at any point
during an IPython session.

It will import at the top level numpy as np, pyplot as plt, matplotlib, pylab and mlab, as well as
all names from numpy and pylab.

Parameters guiname : optional

434 Chapter 8. The IPython API

IPython Documentation, Release 0.11

One of the valid arguments to the %gui magic (‘qt’, ‘wx’, ‘gtk’, ‘osx’ or ‘tk’).
If given, the corresponding Matplotlib backend is used, otherwise matplotlib’s
default (which you can override in your matplotlib config file) is used.

Examples

In this case, where the MPL default is TkAgg: In [2]: %pylab

Welcome to pylab, a matplotlib-based Python environment. Backend in use: TkAgg For more
information, type ‘help(pylab)’.

But you can explicitly request a different backend: In [3]: %pylab qt

Welcome to pylab, a matplotlib-based Python environment. Backend in use: Qt4Agg For more
information, type ‘help(pylab)’.

magic_quickref(arg)
Show a quick reference sheet

magic_rehashx(parameter_s=’‘)
Update the alias table with all executable files in $PATH.

This version explicitly checks that every entry in $PATH is a file with execute access (os.X_OK),
so it is much slower than %rehash.

Under Windows, it checks executability as a match agains a ‘|’-separated string of extensions,
stored in the IPython config variable win_exec_ext. This defaults to ‘exe|com|bat’.

This function also resets the root module cache of module completer, used on slow filesystems.

magic_reload_ext(module_str)
Reload an IPython extension by its module name.

magic_reset(parameter_s=’‘)
Resets the namespace by removing all names defined by the user.

Parameters -f : force reset without asking for confirmation.

-s : ‘Soft’ reset: Only clears your namespace, leaving history intact. Refer-
ences to objects may be kept. By default (without this option), we do a ‘hard’
reset, giving you a new session and removing all references to objects from
the current session.

Examples

In [6]: a = 1

In [7]: a Out[7]: 1

In [8]: ‘a’ in _ip.user_ns Out[8]: True

In [9]: %reset -f

In [1]: ‘a’ in _ip.user_ns Out[1]: False

8.28. core.magic 435

IPython Documentation, Release 0.11

magic_reset_selective(parameter_s=’‘)
Resets the namespace by removing names defined by the user.

Input/Output history are left around in case you need them.

%reset_selective [-f] regex

No action is taken if regex is not included

Options -f : force reset without asking for confirmation.

Examples

We first fully reset the namespace so your output looks identical to this example for pedagogical
reasons; in practice you do not need a full reset.

In [1]: %reset -f

Now, with a clean namespace we can make a few variables and use %reset_selective to only
delete names that match our regexp:

In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8

In [3]: who_ls Out[3]: [’a’, ‘b’, ‘b1m’, ‘b2m’, ‘b2s’, ‘b3m’, ‘b4m’, ‘c’]

In [4]: %reset_selective -f b[2-3]m

In [5]: who_ls Out[5]: [’a’, ‘b’, ‘b1m’, ‘b2s’, ‘b4m’, ‘c’]

In [6]: %reset_selective -f d

In [7]: who_ls Out[7]: [’a’, ‘b’, ‘b1m’, ‘b2s’, ‘b4m’, ‘c’]

In [8]: %reset_selective -f c

In [9]: who_ls Out[9]: [’a’, ‘b’, ‘b1m’, ‘b2s’, ‘b4m’]

In [10]: %reset_selective -f b

In [11]: who_ls Out[11]: [’a’]

magic_run(parameter_s=’‘, runner=None, file_finder=<function get_py_filename at
0x5164398>)

Run the named file inside IPython as a program.

Usage: %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]

Parameters after the filename are passed as command-line arguments to the program (put in
sys.argv). Then, control returns to IPython’s prompt.

This is similar to running at a system prompt: $ python file args

but with the advantage of giving you IPython’s tracebacks, and of loading all variables into your
interactive namespace for further use (unless -p is used, see below).

The file is executed in a namespace initially consisting only of __name__==’__main__’ and
sys.argv constructed as indicated. It thus sees its environment as if it were being run as a stand-
alone program (except for sharing global objects such as previously imported modules). But

436 Chapter 8. The IPython API

IPython Documentation, Release 0.11

after execution, the IPython interactive namespace gets updated with all variables defined in the
program (except for __name__ and sys.argv). This allows for very convenient loading of code
for interactive work, while giving each program a ‘clean sheet’ to run in.

Options:

-n: __name__ is NOT set to ‘__main__’, but to the running file’s name without extension (as
python does under import). This allows running scripts and reloading the definitions in them
without calling code protected by an ‘ if __name__ == “__main__” ‘ clause.

-i: run the file in IPython’s namespace instead of an empty one. This is useful if you are experi-
menting with code written in a text editor which depends on variables defined interactively.

-e: ignore sys.exit() calls or SystemExit exceptions in the script being run. This is particularly
useful if IPython is being used to run unittests, which always exit with a sys.exit() call. In such
cases you are interested in the output of the test results, not in seeing a traceback of the unittest
module.

-t: print timing information at the end of the run. IPython will give you an estimated CPU
time consumption for your script, which under Unix uses the resource module to avoid the
wraparound problems of time.clock(). Under Unix, an estimate of time spent on system tasks is
also given (for Windows platforms this is reported as 0.0).

If -t is given, an additional -N<N> option can be given, where <N> must be an integer indicating
how many times you want the script to run. The final timing report will include total and per run
results.

For example (testing the script uniq_stable.py):

In [1]: run -t uniq_stable

IPython CPU timings (estimated): User : 0.19597 s.System: 0.0 s.

In [2]: run -t -N5 uniq_stable

IPython CPU timings (estimated):Total runs performed: 5

Times : Total Per runUser : 0.910862 s, 0.1821724 s.System: 0.0 s, 0.0 s.

-d: run your program under the control of pdb, the Python debugger. This allows you to execute
your program step by step, watch variables, etc. Internally, what IPython does is similar to
calling:

pdb.run(‘execfile(“YOURFILENAME”)’)

with a breakpoint set on line 1 of your file. You can change the line number for this automatic
breakpoint to be <N> by using the -bN option (where N must be an integer). For example:

%run -d -b40 myscript

will set the first breakpoint at line 40 in myscript.py. Note that the first breakpoint must be set
on a line which actually does something (not a comment or docstring) for it to stop execution.

When the pdb debugger starts, you will see a (Pdb) prompt. You must first enter ‘c’ (without
qoutes) to start execution up to the first breakpoint.

8.28. core.magic 437

IPython Documentation, Release 0.11

Entering ‘help’ gives information about the use of the debugger. You can easily see pdb’s full
documentation with “import pdb;pdb.help()” at a prompt.

-p: run program under the control of the Python profiler module (which prints a detailed report
of execution times, function calls, etc).

You can pass other options after -p which affect the behavior of the profiler itself. See the docs
for %prun for details.

In this mode, the program’s variables do NOT propagate back to the IPython interactive names-
pace (because they remain in the namespace where the profiler executes them).

Internally this triggers a call to %prun, see its documentation for details on the options available
specifically for profiling.

There is one special usage for which the text above doesn’t apply: if the filename ends with .ipy,
the file is run as ipython script, just as if the commands were written on IPython prompt.

magic_save(parameter_s=’‘)
Save a set of lines or a macro to a given filename.

Usage: %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...

Options:

-r: use ‘raw’ input. By default, the ‘processed’ history is used, so that magics are
loaded in their transformed version to valid Python. If this option is given, the raw
input as typed as the command line is used instead.

This function uses the same syntax as %history for input ranges, then saves the lines to the
filename you specify.

It adds a ‘.py’ extension to the file if you don’t do so yourself, and it asks for confirmation before
overwriting existing files.

magic_sc(parameter_s=’‘)
Shell capture - execute a shell command and capture its output.

DEPRECATED. Suboptimal, retained for backwards compatibility.

You should use the form ‘var = !command’ instead. Example:

“%sc -l myfiles = ls ~” should now be written as

“myfiles = !ls ~”

myfiles.s, myfiles.l and myfiles.n still apply as documented below.

– %sc [options] varname=command

IPython will run the given command using commands.getoutput(), and will then update the
user’s interactive namespace with a variable called varname, containing the value of the call.
Your command can contain shell wildcards, pipes, etc.

The ‘=’ sign in the syntax is mandatory, and the variable name you supply must follow Python’s
standard conventions for valid names.

(A special format without variable name exists for internal use)

438 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Options:

-l: list output. Split the output on newlines into a list before assigning it to the given
variable. By default the output is stored as a single string.

-v: verbose. Print the contents of the variable.

In most cases you should not need to split as a list, because the returned value is a special type
of string which can automatically provide its contents either as a list (split on newlines) or as a
space-separated string. These are convenient, respectively, either for sequential processing or to
be passed to a shell command.

For example:

all-random

Capture into variable a In [1]: sc a=ls *py

a is a string with embedded newlines In [2]: a Out[2]:
‘setup.pynwin32_manual_post_install.py’

which can be seen as a list: In [3]: a.l Out[3]: [’setup.py’,
‘win32_manual_post_install.py’]

or as a whitespace-separated string: In [4]: a.s Out[4]: ‘setup.py
win32_manual_post_install.py’

a.s is useful to pass as a single command line: In [5]: !wc -l $a.s

146 setup.py 130 win32_manual_post_install.py 276 total

while the list form is useful to loop over: In [6]: for f in a.l:

...: !wc -l $f ...:

146 setup.py 130 win32_manual_post_install.py

Similiarly, the lists returned by the -l option are also special, in the sense that you can equally
invoke the .s attribute on them to automatically get a whitespace-separated string from their
contents:

In [7]: sc -l b=ls *py

In [8]: b Out[8]: [’setup.py’, ‘win32_manual_post_install.py’]

In [9]: b.s Out[9]: ‘setup.py win32_manual_post_install.py’

In summary, both the lists and strings used for ouptut capture have the following special at-
tributes:

.l (or .list) : value as list. .n (or .nlstr): value as newline-separated string. .s (or .spstr):
value as space-separated string.

magic_sx(parameter_s=’‘)
Shell execute - run a shell command and capture its output.

%sx command

8.28. core.magic 439

IPython Documentation, Release 0.11

IPython will run the given command using commands.getoutput(), and return the result format-
ted as a list (split on ‘n’). Since the output is _returned_, it will be stored in ipython’s regular
output cache Out[N] and in the ‘_N’ automatic variables.

Notes:

1) If an input line begins with ‘!!’, then %sx is automatically invoked. That is, while:

!ls

causes ipython to simply issue system(‘ls’), typing !!ls

is a shorthand equivalent to: %sx ls

2) %sx differs from %sc in that %sx automatically splits into a list, like ‘%sc -l’. The reason
for this is to make it as easy as possible to process line-oriented shell output via further python
commands. %sc is meant to provide much finer control, but requires more typing.

3.Just like %sc -l, this is a list with special attributes:

.l (or .list) : value as list. .n (or .nlstr): value as newline-separated string. .s (or .spstr):
value as whitespace-separated string.

This is very useful when trying to use such lists as arguments to system commands.

magic_tb(s)
Print the last traceback with the currently active exception mode.

See %xmode for changing exception reporting modes.

magic_time(parameter_s=’‘)
Time execution of a Python statement or expression.

The CPU and wall clock times are printed, and the value of the expression (if any) is returned.
Note that under Win32, system time is always reported as 0, since it can not be measured.

This function provides very basic timing functionality. In Python 2.3, the timeit module offers
more control and sophistication, so this could be rewritten to use it (patches welcome).

Some examples:

In [1]: time 2**128 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00
Out[1]: 340282366920938463463374607431768211456L

In [2]: n = 1000000

In [3]: time sum(range(n)) CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s Wall time:
1.37 Out[3]: 499999500000L

In [4]: time print ‘hello world’ hello world CPU times: user 0.00 s, sys: 0.00 s, total:
0.00 s Wall time: 0.00

Note that the time needed by Python to compile the given expression will be reported
if it is more than 0.1s. In this example, the actual exponentiation is done by Python
at compilation time, so while the expression can take a noticeable amount of time to
compute, that time is purely due to the compilation:

440 Chapter 8. The IPython API

IPython Documentation, Release 0.11

In [5]: time 3**9999; CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00
s

In [6]: time 3**999999; CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time:
0.00 s Compiler : 0.78 s

magic_timeit(parameter_s=’‘)
Time execution of a Python statement or expression

Usage: %timeit [-n<N> -r<R> [-t|-c]] statement

Time execution of a Python statement or expression using the timeit module.

Options: -n<N>: execute the given statement <N> times in a loop. If this value is not given, a
fitting value is chosen.

-r<R>: repeat the loop iteration <R> times and take the best result. Default: 3

-t: use time.time to measure the time, which is the default on Unix. This function measures wall
time.

-c: use time.clock to measure the time, which is the default on Windows and measures wall time.
On Unix, resource.getrusage is used instead and returns the CPU user time.

-p<P>: use a precision of <P> digits to display the timing result. Default: 3

Examples:

In [1]: %timeit pass 10000000 loops, best of 3: 53.3 ns per loop

In [2]: u = None

In [3]: %timeit u is None 10000000 loops, best of 3: 184 ns per loop

In [4]: %timeit -r 4 u == None 1000000 loops, best of 4: 242 ns per loop

In [5]: import time

In [6]: %timeit -n1 time.sleep(2) 1 loops, best of 3: 2 s per loop

The times reported by %timeit will be slightly higher than those reported by the timeit.py script
when variables are accessed. This is due to the fact that %timeit executes the statement in the
namespace of the shell, compared with timeit.py, which uses a single setup statement to import
function or create variables. Generally, the bias does not matter as long as results from timeit.py
are not mixed with those from %timeit.

magic_unalias(parameter_s=’‘)
Remove an alias

magic_unload_ext(module_str)
Unload an IPython extension by its module name.

magic_who(parameter_s=’‘)
Print all interactive variables, with some minimal formatting.

If any arguments are given, only variables whose type matches one of these are printed. For
example:

%who function str

8.28. core.magic 441

IPython Documentation, Release 0.11

will only list functions and strings, excluding all other types of variables. To find the proper
type names, simply use type(var) at a command line to see how python prints type names. For
example:

In [1]: type(‘hello’)Out[1]: <type ‘str’>

indicates that the type name for strings is ‘str’.

%who always excludes executed names loaded through your configuration file and things which
are internal to IPython.

This is deliberate, as typically you may load many modules and the purpose of %who is to show
you only what you’ve manually defined.

Examples

Define two variables and list them with who:

In [1]: alpha = 123

In [2]: beta = ’test’

In [3]: %who
alpha beta

In [4]: %who int
alpha

In [5]: %who str
beta

magic_who_ls(parameter_s=’‘)
Return a sorted list of all interactive variables.

If arguments are given, only variables of types matching these arguments are returned.

Examples

Define two variables and list them with who_ls:

In [1]: alpha = 123

In [2]: beta = ’test’

In [3]: %who_ls
Out[3]: [’alpha’, ’beta’]

In [4]: %who_ls int
Out[4]: [’alpha’]

In [5]: %who_ls str
Out[5]: [’beta’]

442 Chapter 8. The IPython API

IPython Documentation, Release 0.11

magic_whos(parameter_s=’‘)
Like %who, but gives some extra information about each variable.

The same type filtering of %who can be applied here.

For all variables, the type is printed. Additionally it prints:

•For {},[],(): their length.

•For numpy arrays, a summary with shape, number of

elements, typecode and size in memory.

•Everything else: a string representation, snipping their middle if

too long.

Examples

Define two variables and list them with whos:

In [1]: alpha = 123

In [2]: beta = ’test’

In [3]: %whos
Variable Type Data/Info

alpha int 123
beta str test

magic_xdel(parameter_s=’‘)
Delete a variable, trying to clear it from anywhere that IPython’s machinery has references to it.
By default, this uses the identity of the named object in the user namespace to remove references
held under other names. The object is also removed from the output history.

Options -n : Delete the specified name from all namespaces, without checking their identity.

magic_xmode(parameter_s=’‘)
Switch modes for the exception handlers.

Valid modes: Plain, Context and Verbose.

If called without arguments, acts as a toggle.

parse_options(arg_str, opt_str, *long_opts, **kw)
Parse options passed to an argument string.

The interface is similar to that of getopt(), but it returns back a Struct with the options as keys
and the stripped argument string still as a string.

arg_str is quoted as a true sys.argv vector by using shlex.split. This allows us to easily expand
variables, glob files, quote arguments, etc.

Options: -mode: default ‘string’. If given as ‘list’, the argument string is returned as a list (split
on whitespace) instead of a string.

8.28. core.magic 443

IPython Documentation, Release 0.11

-list_all: put all option values in lists. Normally only options appearing more than once are
put in a list.

-posix (True): whether to split the input line in POSIX mode or not, as per the conventions
outlined in the shlex module from the standard library.

profile_missing_notice(*args, **kwargs)

8.28.3 Functions

IPython.core.magic.compress_dhist(dh)

IPython.core.magic.needs_local_scope(func)
Decorator to mark magic functions which need to local scope to run.

IPython.core.magic.on_off(tag)
Return an ON/OFF string for a 1/0 input. Simple utility function.

8.29 core.magic_arguments

8.29.1 Module: core.magic_arguments

Inheritance diagram for IPython.core.magic_arguments:

core.magic_arguments.argument

core.magic_arguments.ArgDecorator

core.magic_arguments.argument_group

core.magic_arguments.kwds

core.magic_arguments.magic_arguments

argparse._ActionsContainer

argparse.ArgumentParser core.magic_arguments.MagicArgumentParser

argparse._AttributeHolder

A decorator-based method of constructing IPython magics with argparse option handling.

New magic functions can be defined like so:

from IPython.core.magic_arguments import (argument, magic_arguments,
parse_argstring)

@magic_arguments()
@argument(’-o’, ’--option’, help=’An optional argument.’)
@argument(’arg’, type=int, help=’An integer positional argument.’)
def magic_cool(self, arg):

""" A really cool magic command.

444 Chapter 8. The IPython API

IPython Documentation, Release 0.11

"""
args = parse_argstring(magic_cool, arg)
...

The @magic_arguments decorator marks the function as having argparse arguments. The @argument dec-
orator adds an argument using the same syntax as argparse’s add_argument() method. More sophisticated
uses may also require the @argument_group or @kwds decorator to customize the formatting and the pars-
ing.

Help text for the magic is automatically generated from the docstring and the arguments:

In[1]: %cool?
%cool [-o OPTION] arg

A really cool magic command.

positional arguments:
arg An integer positional argument.

optional arguments:
-o OPTION, --option OPTION

An optional argument.

8.29.2 Classes

ArgDecorator

class IPython.core.magic_arguments.ArgDecorator
Bases: object

Base class for decorators to add ArgumentParser information to a method.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

add_to_parser(parser, group)
Add this object’s information to the parser, if necessary.

8.29. core.magic_arguments 445

IPython Documentation, Release 0.11

MagicArgumentParser

class IPython.core.magic_arguments.MagicArgumentParser(prog=None, us-
age=None, de-
scription=None,
epilog=None, ver-
sion=None, par-
ents=None, format-
ter_class=<class
‘arg-
parse.HelpFormatter’>,
prefix_chars=’-
‘, argu-
ment_default=None,
con-
flict_handler=’error’,
add_help=False)

Bases: argparse.ArgumentParser

An ArgumentParser tweaked for use by IPython magics.

__init__(prog=None, usage=None, description=None, epilog=None, version=None, par-
ents=None, formatter_class=<class ‘argparse.HelpFormatter’>, prefix_chars=’-
‘, argument_default=None, conflict_handler=’error’, add_help=False)

add_argument(dest, ..., name=value, ...) add_argument(option_string, option_string, ...,
name=value, ...)

add_argument_group(*args, **kwargs)

add_mutually_exclusive_group(**kwargs)

add_subparsers(**kwargs)

error(message)
Raise a catchable error instead of exiting.

exit(status=0, message=None)

format_help()

format_usage()

format_version()

parse_args(args=None, namespace=None)

parse_argstring(argstring)
Split a string into an argument list and parse that argument list.

parse_known_args(args=None, namespace=None)

print_help(file=None)

print_usage(file=None)

print_version(file=None)

446 Chapter 8. The IPython API

IPython Documentation, Release 0.11

register(registry_name, value, object)

set_defaults(**kwargs)

argument

class IPython.core.magic_arguments.argument(*args, **kwds)
Bases: IPython.core.magic_arguments.ArgDecorator

Store arguments and keywords to pass to add_argument().

Instances also serve to decorate command methods.

__init__(*args, **kwds)

add_to_parser(parser, group)
Add this object’s information to the parser.

argument_group

class IPython.core.magic_arguments.argument_group(*args, **kwds)
Bases: IPython.core.magic_arguments.ArgDecorator

Store arguments and keywords to pass to add_argument_group().

Instances also serve to decorate command methods.

__init__(*args, **kwds)

add_to_parser(parser, group)
Add this object’s information to the parser.

kwds

class IPython.core.magic_arguments.kwds(**kwds)
Bases: IPython.core.magic_arguments.ArgDecorator

Provide other keywords to the sub-parser constructor.

__init__(**kwds)

add_to_parser(parser, group)
Add this object’s information to the parser, if necessary.

magic_arguments

class IPython.core.magic_arguments.magic_arguments(name=None)
Bases: IPython.core.magic_arguments.ArgDecorator

Mark the magic as having argparse arguments and possibly adjust the name.

__init__(name=None)

8.29. core.magic_arguments 447

IPython Documentation, Release 0.11

add_to_parser(parser, group)
Add this object’s information to the parser, if necessary.

8.29.3 Functions

IPython.core.magic_arguments.construct_parser(magic_func)
Construct an argument parser using the function decorations.

IPython.core.magic_arguments.parse_argstring(magic_func, argstring)
Parse the string of arguments for the given magic function.

IPython.core.magic_arguments.real_name(magic_func)
Find the real name of the magic.

8.30 core.oinspect

8.30.1 Module: core.oinspect

Inheritance diagram for IPython.core.oinspect:

core.oinspect.Inspector

Tools for inspecting Python objects.

Uses syntax highlighting for presenting the various information elements.

Similar in spirit to the inspect module, but all calls take a name argument to reference the name under which
an object is being read.

448 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.30.2 Class

8.30.3 Inspector

class IPython.core.oinspect.Inspector(color_table={‘’:
<IPython.utils.coloransi.ColorScheme
instance at 0x28c26c8>, ‘LightBG’:
<IPython.utils.coloransi.ColorScheme
instance at 0x28c2560>, ‘NoColor’:
<IPython.utils.coloransi.ColorScheme
instance at 0x28c2638>, ‘Linux’:
<IPython.utils.coloransi.ColorScheme in-
stance at 0x28c26c8>}, code_color_table={‘’:
<IPython.utils.coloransi.ColorScheme
instance at 0x2837518>, ‘LightBG’:
<IPython.utils.coloransi.ColorScheme
instance at 0x2837a70>, ‘NoColor’:
<IPython.utils.coloransi.ColorScheme
instance at 0x285ed88>, ‘Linux’:
<IPython.utils.coloransi.ColorScheme in-
stance at 0x2837518>}, scheme=’NoColor’,
str_detail_level=0)

__init__(color_table={‘’: <IPython.utils.coloransi.ColorScheme instance at 0x28c26c8>,
‘LightBG’: <IPython.utils.coloransi.ColorScheme instance at 0x28c2560>,
‘NoColor’: <IPython.utils.coloransi.ColorScheme instance at 0x28c2638>,
‘Linux’: <IPython.utils.coloransi.ColorScheme instance at 0x28c26c8>},
code_color_table={‘’: <IPython.utils.coloransi.ColorScheme instance at
0x2837518>, ‘LightBG’: <IPython.utils.coloransi.ColorScheme instance at
0x2837a70>, ‘NoColor’: <IPython.utils.coloransi.ColorScheme instance
at 0x285ed88>, ‘Linux’: <IPython.utils.coloransi.ColorScheme instance at
0x2837518>}, scheme=’NoColor’, str_detail_level=0)

info(obj, oname=’‘, formatter=None, info=None, detail_level=0)
Compute a dict with detailed information about an object.

Optional arguments:

•oname: name of the variable pointing to the object.

•formatter: special formatter for docstrings (see pdoc)

•info: a structure with some information fields which may have been

precomputed already.

•detail_level: if set to 1, more information is given.

noinfo(msg, oname)
Generic message when no information is found.

pdef(obj, oname=’‘)
Print the definition header for any callable object.

8.30. core.oinspect 449

IPython Documentation, Release 0.11

If the object is a class, print the constructor information.

pdoc(obj, oname=’‘, formatter=None)
Print the docstring for any object.

Optional: -formatter: a function to run the docstring through for specially formatted docstrings.

Examples

In [1]: class NoInit: ...: pass

In [2]: class NoDoc: ...: def __init__(self): ...: pass

In [3]: %pdoc NoDoc No documentation found for NoDoc

In [4]: %pdoc NoInit No documentation found for NoInit

In [5]: obj = NoInit()

In [6]: %pdoc obj No documentation found for obj

In [5]: obj2 = NoDoc()

In [6]: %pdoc obj2 No documentation found for obj2

pfile(obj, oname=’‘)
Show the whole file where an object was defined.

pinfo(obj, oname=’‘, formatter=None, info=None, detail_level=0)
Show detailed information about an object.

Optional arguments:

•oname: name of the variable pointing to the object.

•formatter: special formatter for docstrings (see pdoc)

•info: a structure with some information fields which may have been

precomputed already.

•detail_level: if set to 1, more information is given.

pinfo_fields1 = [(‘Type’, ‘type_name’), (‘Base Class’, ‘base_class’), (‘String Form’, ‘string_form’), (‘Namespace’, ‘namespace’), (‘Length’, ‘length’), (‘File’, ‘file’), (‘Definition’, ‘definition’)]

pinfo_fields_obj = [(‘Class Docstring’, ‘class_docstring’), (‘Constructor Docstring’, ‘init_docstring’), (‘Call def’, ‘call_def’), (‘Call docstring’, ‘call_docstring’)]

psearch(pattern, ns_table, ns_search=[], ignore_case=False, show_all=False)
Search namespaces with wildcards for objects.

Arguments:

•pattern: string containing shell-like wildcards to use in namespace

searches and optionally a type specification to narrow the search to objects of that type.

•ns_table: dict of name->namespaces for search.

Optional arguments:

450 Chapter 8. The IPython API

IPython Documentation, Release 0.11

•ns_search: list of namespace names to include in search.

•ignore_case(False): make the search case-insensitive.

•show_all(False): show all names, including those starting with

underscores.

psource(obj, oname=’‘)
Print the source code for an object.

set_active_scheme(scheme)

8.30.4 Functions

IPython.core.oinspect.call_tip(oinfo, format_call=True)
Extract call tip data from an oinfo dict.

Parameters oinfo : dict

format_call : bool, optional

If True, the call line is formatted and returned as a string. If not, a tuple of
(name, argspec) is returned.

Returns call_info : None, str or (str, dict) tuple.

When format_call is True, the whole call information is formattted as a single
string. Otherwise, the object’s name and its argspec dict are returned. If no
call information is available, None is returned.

docstring : str or None

The most relevant docstring for calling purposes is returned, if available. The
priority is: call docstring for callable instances, then constructor docstring for
classes, then main object’s docstring otherwise (regular functions).

IPython.core.oinspect.format_argspec(argspec)
Format argspect, convenience wrapper around inspect’s.

This takes a dict instead of ordered arguments and calls inspect.format_argspec with the arguments in
the necessary order.

IPython.core.oinspect.getargspec(obj)
Get the names and default values of a function’s arguments.

A tuple of four things is returned: (args, varargs, varkw, defaults). ‘args’ is a list of the argument
names (it may contain nested lists). ‘varargs’ and ‘varkw’ are the names of the * and ** arguments or
None. ‘defaults’ is an n-tuple of the default values of the last n arguments.

Modified version of inspect.getargspec from the Python Standard Library.

IPython.core.oinspect.getdoc(obj)
Stable wrapper around inspect.getdoc.

This can’t crash because of attribute problems.

8.30. core.oinspect 451

IPython Documentation, Release 0.11

It also attempts to call a getdoc() method on the given object. This allows objects which provide
their docstrings via non-standard mechanisms (like Pyro proxies) to still be inspected by ipython’s ?
system.

IPython.core.oinspect.getsource(obj, is_binary=False)
Wrapper around inspect.getsource.

This can be modified by other projects to provide customized source extraction.

Inputs:

•obj: an object whose source code we will attempt to extract.

Optional inputs:

•is_binary: whether the object is known to come from a binary source.

This implementation will skip returning any output for binary objects, but custom extractors may
know how to meaningfully process them.

IPython.core.oinspect.object_info(**kw)
Make an object info dict with all fields present.

8.31 core.page

8.31.1 Module: core.page

Paging capabilities for IPython.core

Authors:

• Brian Granger

• Fernando Perez

Notes

For now this uses ipapi, so it can’t be in IPython.utils. If we can get rid of that dependency, we could move
it there. —–

8.31.2 Functions

IPython.core.page.get_pager_cmd(pager_cmd=None)
Return a pager command.

Makes some attempts at finding an OS-correct one.

IPython.core.page.get_pager_start(pager, start)
Return the string for paging files with an offset.

This is the ‘+N’ argument which less and more (under Unix) accept.

452 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython.core.page.page(strng, start=0, screen_lines=0, pager_cmd=None)
Print a string, piping through a pager after a certain length.

The screen_lines parameter specifies the number of usable lines of your terminal screen (total lines
minus lines you need to reserve to show other information).

If you set screen_lines to a number <=0, page() will try to auto-determine your screen size and will
only use up to (screen_size+screen_lines) for printing, paging after that. That is, if you want auto-
detection but need to reserve the bottom 3 lines of the screen, use screen_lines = -3, and for auto-
detection without any lines reserved simply use screen_lines = 0.

If a string won’t fit in the allowed lines, it is sent through the specified pager command. If none given,
look for PAGER in the environment, and ultimately default to less.

If no system pager works, the string is sent through a ‘dumb pager’ written in python, very simplistic.

IPython.core.page.page_dumb(strng, start=0, screen_lines=25)
Very dumb ‘pager’ in Python, for when nothing else works.

Only moves forward, same interface as page(), except for pager_cmd and mode.

IPython.core.page.page_file(fname, start=0, pager_cmd=None)
Page a file, using an optional pager command and starting line.

IPython.core.page.snip_print(str, width=75, print_full=0, header=’‘)
Print a string snipping the midsection to fit in width.

print_full: mode control:

• 0: only snip long strings

• 1: send to page() directly.

• 2: snip long strings and ask for full length viewing with page()

Return 1 if snipping was necessary, 0 otherwise.

8.32 core.payload

8.32.1 Module: core.payload

Inheritance diagram for IPython.core.payload:

core.payload.PayloadManagerconfig.configurable.Configurableutils.traitlets.HasTraits

Payload system for IPython.

Authors:

8.32. core.payload 453

IPython Documentation, Release 0.11

• Fernando Perez

• Brian Granger

8.32.2 PayloadManager

class IPython.core.payload.PayloadManager(**kwargs)
Bases: IPython.config.configurable.Configurable

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

454 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

clear_payload()

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

read_payload()

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

write_payload(data)

8.32. core.payload 455

IPython Documentation, Release 0.11

8.33 core.payloadpage

8.33.1 Module: core.payloadpage

A payload based version of page.

Authors:

• Brian Granger

• Fernando Perez

8.33.2 Functions

IPython.core.payloadpage.install_payload_page()
Install this version of page as IPython.core.page.page.

IPython.core.payloadpage.page(strng, start=0, screen_lines=0, pager_cmd=None,
html=None, auto_html=False)

Print a string, piping through a pager.

This version ignores the screen_lines and pager_cmd arguments and uses IPython’s payload system
instead.

Parameters strng : str

Text to page.

start : int

Starting line at which to place the display.

html : str, optional

If given, an html string to send as well.

auto_html : bool, optional

If true, the input string is assumed to be valid reStructuredText and is con-
verted to HTML with docutils. Note that if docutils is not found, this option
is silently ignored.

8.34 core.plugin

8.34.1 Module: core.plugin

Inheritance diagram for IPython.core.plugin:

456 Chapter 8. The IPython API

IPython Documentation, Release 0.11

core.plugin.PluginManager

config.configurable.Configurable

core.plugin.Plugin

utils.traitlets.HasTraits

IPython plugins.

Authors:

• Brian Granger

8.34.2 Classes

Plugin

class IPython.core.plugin.Plugin(**kwargs)
Bases: IPython.config.configurable.Configurable

Base class for IPython plugins.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

8.34. core.plugin 457

IPython Documentation, Release 0.11

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

458 Chapter 8. The IPython API

IPython Documentation, Release 0.11

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

PluginManager

class IPython.core.plugin.PluginManager(config=None)
Bases: IPython.config.configurable.Configurable

A manager for IPython plugins.

__init__(config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

get_plugin(name, default=None)

8.34. core.plugin 459

IPython Documentation, Release 0.11

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

plugins
An instance of a Python dict.

register_plugin(name, plugin)

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unregister_plugin(name)

8.35 core.prefilter

8.35.1 Module: core.prefilter

Inheritance diagram for IPython.core.prefilter:

460 Chapter 8. The IPython API

IPython Documentation, Release 0.11

core.prefilter.PrefilterHandler

core.prefilter.MacroHandler

core.prefilter.AutoHandler

core.prefilter.MagicHandler

core.prefilter.HelpHandler

core.prefilter.EmacsHandler

core.prefilter.ShellEscapeHandler

core.prefilter.AliasHandler

config.configurable.Configurable

core.prefilter.PrefilterChecker

core.prefilter.PrefilterTransformer

core.prefilter.PrefilterManager

core.prefilter.AliasChecker

core.prefilter.PythonOpsChecker

core.prefilter.AutocallChecker

core.prefilter.IPyAutocallChecker

core.prefilter.MultiLineMagicChecker

core.prefilter.AutoMagicChecker

core.prefilter.MacroChecker

core.prefilter.EmacsChecker

core.prefilter.ShellEscapeChecker

core.prefilter.AssignmentChecker

core.prefilter.EscCharsChecker

core.prefilter.LineInfo

core.prefilter.PyPromptTransformer

core.prefilter.AssignMagicTransformer

core.prefilter.AssignSystemTransformer

core.prefilter.IPyPromptTransformer

core.prefilter.PrefilterError

utils.traitlets.HasTraits

Prefiltering components.

Prefilters transform user input before it is exec’d by Python. These transforms are used to implement addi-
tional syntax such as !ls and %magic.

Authors:

• Brian Granger

• Fernando Perez

• Dan Milstein

• Ville Vainio

8.35. core.prefilter 461

IPython Documentation, Release 0.11

8.35.2 Classes

AliasChecker

class IPython.core.prefilter.AliasChecker(shell=None, prefilter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterChecker

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
Check if the initital identifier on the line is an alias.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

462 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

AliasHandler

class IPython.core.prefilter.AliasHandler(shell=None, prefilter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterHandler

__init__(shell=None, prefilter_manager=None, config=None)

8.35. core.prefilter 463

IPython Documentation, Release 0.11

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

esc_strings
An instance of a Python list.

handle(line_info)
Handle alias input lines.

handler_name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

464 Chapter 8. The IPython API

IPython Documentation, Release 0.11

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

AssignMagicTransformer

class IPython.core.prefilter.AssignMagicTransformer(shell=None, pre-
filter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterTransformer

Handle the a = %who syntax.

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

8.35. core.prefilter 465

IPython Documentation, Release 0.11

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

466 Chapter 8. The IPython API

IPython Documentation, Release 0.11

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

transform(line, continue_prompt)

AssignSystemTransformer

class IPython.core.prefilter.AssignSystemTransformer(shell=None, pre-
filter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterTransformer

Handle the files = !ls syntax.

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

8.35. core.prefilter 467

IPython Documentation, Release 0.11

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

468 Chapter 8. The IPython API

IPython Documentation, Release 0.11

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

transform(line, continue_prompt)

AssignmentChecker

class IPython.core.prefilter.AssignmentChecker(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.core.prefilter.PrefilterChecker

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
Check to see if user is assigning to a var for the first time, in which case we want to avoid any
sort of automagic / autocall games.

This allows users to assign to either alias or magic names true python variables (the magic/alias
systems always take second seat to true python code). E.g. ls=’hi’, or ls,that=1,2

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

8.35. core.prefilter 469

IPython Documentation, Release 0.11

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

470 Chapter 8. The IPython API

IPython Documentation, Release 0.11

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

AutoHandler

class IPython.core.prefilter.AutoHandler(shell=None, prefilter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterHandler

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

esc_strings
An instance of a Python list.

8.35. core.prefilter 471

IPython Documentation, Release 0.11

handle(line_info)
Handle lines which can be auto-executed, quoting if requested.

handler_name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

472 Chapter 8. The IPython API

IPython Documentation, Release 0.11

AutoMagicChecker

class IPython.core.prefilter.AutoMagicChecker(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.core.prefilter.PrefilterChecker

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
If the ifun is magic, and automagic is on, run it. Note: normal, non-auto magic would already
have been triggered via ‘%’ in check_esc_chars. This just checks for automagic. Also, before
triggering the magic handler, make sure that there is nothing in the user namespace which could
shadow it.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

8.35. core.prefilter 473

IPython Documentation, Release 0.11

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

AutocallChecker

class IPython.core.prefilter.AutocallChecker(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.core.prefilter.PrefilterChecker

474 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
Check if the initial word/function is callable and autocall is on.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

8.35. core.prefilter 475

IPython Documentation, Release 0.11

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

EmacsChecker

class IPython.core.prefilter.EmacsChecker(shell=None, prefilter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterChecker

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
Emacs ipython-mode tags certain input lines.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

476 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

8.35. core.prefilter 477

IPython Documentation, Release 0.11

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

EmacsHandler

class IPython.core.prefilter.EmacsHandler(shell=None, prefilter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterHandler

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

478 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

esc_strings
An instance of a Python list.

handle(line_info)
Handle input lines marked by python-mode.

handler_name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

8.35. core.prefilter 479

IPython Documentation, Release 0.11

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

EscCharsChecker

class IPython.core.prefilter.EscCharsChecker(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.core.prefilter.PrefilterChecker

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
Check for escape character and return either a handler to handle it, or None if there is no escape
char.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

480 Chapter 8. The IPython API

IPython Documentation, Release 0.11

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

8.35. core.prefilter 481

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

HelpHandler

class IPython.core.prefilter.HelpHandler(shell=None, prefilter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterHandler

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

esc_strings
An instance of a Python list.

handle(line_info)
Try to get some help for the object.

obj? or ?obj -> basic information. obj?? or ??obj -> more details.

482 Chapter 8. The IPython API

IPython Documentation, Release 0.11

handler_name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.35. core.prefilter 483

IPython Documentation, Release 0.11

IPyAutocallChecker

class IPython.core.prefilter.IPyAutocallChecker(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.core.prefilter.PrefilterChecker

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
Instances of IPyAutocall in user_ns get autocalled immediately

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

484 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

IPyPromptTransformer

class IPython.core.prefilter.IPyPromptTransformer(shell=None, pre-
filter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterTransformer

Handle inputs that start classic IPython prompt syntax.

8.35. core.prefilter 485

IPython Documentation, Release 0.11

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

486 Chapter 8. The IPython API

IPython Documentation, Release 0.11

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

transform(line, continue_prompt)

LineInfo

class IPython.core.prefilter.LineInfo(line, continue_prompt)
Bases: object

A single line of input and associated info.

Includes the following as properties:

line The original, raw line

continue_prompt Is this line a continuation in a sequence of multiline input?

pre The initial esc character or whitespace.

pre_char The escape character(s) in pre or the empty string if there isn’t one. Note that ‘!!’ is a
possible value for pre_char. Otherwise it will always be a single character.

pre_whitespace The leading whitespace from pre if it exists. If there is a pre_char, this is just ‘’.

8.35. core.prefilter 487

IPython Documentation, Release 0.11

ifun The ‘function part’, which is basically the maximal initial sequence of valid python identifiers
and the ‘.’ character. This is what is checked for alias and magic transformations, used for
auto-calling, etc.

the_rest Everything else on the line.

__init__(line, continue_prompt)

ofind(ip)
Do a full, attribute-walking lookup of the ifun in the various namespaces for the given IPython
InteractiveShell instance.

Return a dict with keys: found,obj,ospace,ismagic

Note: can cause state changes because of calling getattr, but should only be run if autocall is on
and if the line hasn’t matched any other, less dangerous handlers.

Does cache the results of the call, so can be called multiple times without worrying about further
damaging state.

MacroChecker

class IPython.core.prefilter.MacroChecker(shell=None, prefilter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterChecker

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

488 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

8.35. core.prefilter 489

IPython Documentation, Release 0.11

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

MacroHandler

class IPython.core.prefilter.MacroHandler(shell=None, prefilter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterHandler

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

esc_strings
An instance of a Python list.

handle(line_info)

490 Chapter 8. The IPython API

IPython Documentation, Release 0.11

handler_name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.35. core.prefilter 491

IPython Documentation, Release 0.11

MagicHandler

class IPython.core.prefilter.MagicHandler(shell=None, prefilter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterHandler

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

esc_strings
An instance of a Python list.

handle(line_info)
Execute magic functions.

handler_name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

492 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

MultiLineMagicChecker

class IPython.core.prefilter.MultiLineMagicChecker(shell=None, pre-
filter_manager=None,
config=None)

Bases: IPython.core.prefilter.PrefilterChecker

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
Allow ! and !! in multi-line statements if multi_line_specials is on

8.35. core.prefilter 493

IPython Documentation, Release 0.11

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

494 Chapter 8. The IPython API

IPython Documentation, Release 0.11

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

PrefilterChecker

class IPython.core.prefilter.PrefilterChecker(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.config.configurable.Configurable

Inspect an input line and return a handler for that line.

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
Inspect line_info and return a handler instance or None.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

8.35. core.prefilter 495

IPython Documentation, Release 0.11

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

496 Chapter 8. The IPython API

IPython Documentation, Release 0.11

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

PrefilterError

class IPython.core.prefilter.PrefilterError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

PrefilterHandler

class IPython.core.prefilter.PrefilterHandler(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.config.configurable.Configurable

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

8.35. core.prefilter 497

IPython Documentation, Release 0.11

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

esc_strings
An instance of a Python list.

handle(line_info)
Handle normal input lines. Use as a template for handlers.

handler_name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

498 Chapter 8. The IPython API

IPython Documentation, Release 0.11

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

PrefilterManager

class IPython.core.prefilter.PrefilterManager(shell=None, config=None)
Bases: IPython.config.configurable.Configurable

Main prefilter component.

The IPython prefilter is run on all user input before it is run. The prefilter consumes lines of input and
produces transformed lines of input.

The iplementation consists of two phases:

1.Transformers

2.Checkers and handlers

Over time, we plan on deprecating the checkers and handlers and doing everything in the transformers.

The transformers are instances of PrefilterTransformer and have a single method
transform() that takes a line and returns a transformed line. The transformation can be ac-
complished using any tool, but our current ones use regular expressions for speed. We also ship
pyparsing in IPython.external for use in transformers.

After all the transformers have been run, the line is fed to the checkers, which are instances of
PrefilterChecker. The line is passed to the check() method, which either returns None
or a PrefilterHandler instance. If None is returned, the other checkers are tried. If an
PrefilterHandler instance is returned, the line is passed to the handle() method of the re-
turned handler and no further checkers are tried.

8.35. core.prefilter 499

IPython Documentation, Release 0.11

Both transformers and checkers have a priority attribute, that determines the order in which they are
called. Smaller priorities are tried first.

Both transformers and checkers also have enabled attribute, which is a boolean that determines if the
instance is used.

Users or developers can change the priority or enabled attribute of transformers or checkers, but
they must call the sort_checkers() or sort_transformers() method after changing the
priority.

__init__(shell=None, config=None)

checkers
Return a list of checkers, sorted by priority.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_handler(line_info)
Find a handler for the line_info by trying checkers.

get_handler_by_esc(esc_str)
Get a handler by its escape string.

500 Chapter 8. The IPython API

IPython Documentation, Release 0.11

get_handler_by_name(name)
Get a handler by its name.

handlers
Return a dict of all the handlers.

init_checkers()
Create the default checkers.

init_handlers()
Create the default handlers.

init_transformers()
Create the default transformers.

multi_line_specials
A casting version of the boolean trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_line(line, continue_prompt=False)
Prefilter a single input line as text.

This method prefilters a single line of text by calling the transformers and then the check-
ers/handlers.

prefilter_line_info(line_info)
Prefilter a line that has been converted to a LineInfo object.

This implements the checker/handler part of the prefilter pipe.

prefilter_lines(lines, continue_prompt=False)
Prefilter multiple input lines of text.

This is the main entry point for prefiltering multiple lines of input. This simply calls
prefilter_line() for each line of input.

8.35. core.prefilter 501

IPython Documentation, Release 0.11

This covers cases where there are multiple lines in the user entry, which is the case when the
user goes back to a multiline history entry and presses enter.

register_checker(checker)
Register a checker instance.

register_handler(name, handler, esc_strings)
Register a handler instance by name with esc_strings.

register_transformer(transformer)
Register a transformer instance.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

sort_checkers()
Sort the checkers by priority.

This must be called after the priority of a checker is changed. The register_checker()
method calls this automatically.

sort_transformers()
Sort the transformers by priority.

This must be called after the priority of a transformer is changed. The
register_transformer() method calls this automatically.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

transform_line(line, continue_prompt)
Calls the enabled transformers in order of increasing priority.

transformers
Return a list of checkers, sorted by priority.

unregister_checker(checker)
Unregister a checker instance.

unregister_handler(name, handler, esc_strings)
Unregister a handler instance by name with esc_strings.

502 Chapter 8. The IPython API

IPython Documentation, Release 0.11

unregister_transformer(transformer)
Unregister a transformer instance.

PrefilterTransformer

class IPython.core.prefilter.PrefilterTransformer(shell=None, pre-
filter_manager=None,
config=None)

Bases: IPython.config.configurable.Configurable

Transform a line of user input.

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

8.35. core.prefilter 503

IPython Documentation, Release 0.11

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

transform(line, continue_prompt)
Transform a line, returning the new one.

504 Chapter 8. The IPython API

IPython Documentation, Release 0.11

PyPromptTransformer

class IPython.core.prefilter.PyPromptTransformer(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.core.prefilter.PrefilterTransformer

Handle inputs that start with ‘>>> ‘ syntax.

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

8.35. core.prefilter 505

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

transform(line, continue_prompt)

PythonOpsChecker

class IPython.core.prefilter.PythonOpsChecker(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.core.prefilter.PrefilterChecker

506 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)
If the ‘rest’ of the line begins with a function call or pretty much any python operator, we should
simply execute the line (regardless of whether or not there’s a possible autocall expansion). This
avoids spurious (and very confusing) geattr() accesses.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

8.35. core.prefilter 507

IPython Documentation, Release 0.11

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

ShellEscapeChecker

class IPython.core.prefilter.ShellEscapeChecker(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.core.prefilter.PrefilterChecker

__init__(shell=None, prefilter_manager=None, config=None)

check(line_info)

classmethod class_config_section()
Get the config class config section

508 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

enabled
A boolean (True, False) trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

8.35. core.prefilter 509

IPython Documentation, Release 0.11

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

priority
A integer trait.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

ShellEscapeHandler

class IPython.core.prefilter.ShellEscapeHandler(shell=None, pre-
filter_manager=None, con-
fig=None)

Bases: IPython.core.prefilter.PrefilterHandler

__init__(shell=None, prefilter_manager=None, config=None)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

510 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

esc_strings
An instance of a Python list.

handle(line_info)
Execute the line in a shell, empty return value

handler_name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

prefilter_manager
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shell
A trait whose value must be an instance of a specified class.

8.35. core.prefilter 511

IPython Documentation, Release 0.11

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.35.3 Function

IPython.core.prefilter.is_shadowed(identifier, ip)
Is the given identifier defined in one of the namespaces which shadow the alias and magic names-
paces? Note that an identifier is different than ifun, because it can not contain a ‘.’ character.

8.36 core.profileapp

8.36.1 Module: core.profileapp

Inheritance diagram for IPython.core.profileapp:

core.profileapp.ProfileList

config.application.Application core.application.BaseIPythonApplication

core.profileapp.ProfileApp

utils.traitlets.HasTraits config.configurable.Configurable config.configurable.SingletonConfigurable core.profileapp.ProfileCreate

An application for managing IPython profiles.

To be invoked as the ipython profile subcommand.

Authors:

• Min RK

512 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.36.2 Classes

ProfileApp

class IPython.core.profileapp.ProfileApp(**kwargs)
Bases: IPython.config.application.Application

__init__(**kwargs)

aliases
An instance of a Python dict.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

description = “Manage IPython profiles\n\nProfile directories contain\nconfiguration, log and security related files and are named\nusing the convention ‘profile_<name>’. By default they are\nlocated in your ipython directory. You can create profiles\nwith ‘ipython profile create <name>‘, or see the profiles you\nalready have with ‘ipython profile list‘\n\nTo get started configuring IPython, simply do:\n\n$> ipython profile create\n\nand IPython will create the default profile in <ipython_dir>/profile_default,\nwhere you can edit ipython_config.py to start configuring IPython.\n\n”

examples = ‘\nipython profile create -h # show the help string for the create subcommand\nipython profile list -h # show the help string for the list subcommand\n’

8.36. core.profileapp 513

IPython Documentation, Release 0.11

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

initialize(argv=None)
Do the basic steps to configure me.

Override in subclasses.

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

514 Chapter 8. The IPython API

IPython Documentation, Release 0.11

keyvalue_description
A trait for unicode strings.

load_config_file(filename, path=None)
Load a .py based config file by filename and path.

log_level
An enum that whose value must be in a given sequence.

name = u’ipython-profile’

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

8.36. core.profileapp 515

IPython Documentation, Release 0.11

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

start()

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

version
A trait for unicode strings.

ProfileCreate

class IPython.core.profileapp.ProfileCreate(**kwargs)
Bases: IPython.core.application.BaseIPythonApplication

__init__(**kwargs)

aliases
An instance of a Python dict.

516 Chapter 8. The IPython API

IPython Documentation, Release 0.11

auto_create
A boolean (True, False) trait.

builtin_profile_dir
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes = [<class ‘IPython.core.profiledir.ProfileDir’>]

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config_file_name
A trait for unicode strings.

config_file_paths
An instance of a Python list.

config_file_specified
A boolean (True, False) trait.

config_files
An instance of a Python list.

8.36. core.profileapp 517

IPython Documentation, Release 0.11

copy_config_files
A boolean (True, False) trait.

crash_handler_class
A trait whose value must be a subclass of a specified class.

created = None

description = “Create an IPython profile by name\n\nCreate an ipython profile directory by its name or\nprofile directory path. Profile directories contain\nconfiguration, log and security related files and are named\nusing the convention ‘profile_<name>’. By default they are\nlocated in your ipython directory. Once created, you will\ncan edit the configuration files in the profile\ndirectory to configure IPython. Most users will create a\nprofile directory by name,\n‘ipython profile create myprofile‘, which will put the directory\nin ‘<ipython_dir>/profile_myprofile‘.\n”

examples = ‘\nipython profile create foo # create profile foo w/ default config files\nipython profile create foo –reset # restage default config files over current\nipython profile create foo –parallel # also stage parallel config files\n’

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

init_config_files()

init_crash_handler()
Create a crash handler, typically setting sys.excepthook to it.

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

init_profile_dir()
initialize the profile dir

initialize(argv=None)

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

518 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

keyvalue_description
A trait for unicode strings.

load_config_file(suppress_errors=True)
Load the config file.

By default, errors in loading config are handled, and a warning printed on screen. For testing,
the suppress_errors option is set to False, so errors will make tests fail.

log_level
An enum that whose value must be in a given sequence.

name = u’ipython-profile’

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

8.36. core.profileapp 519

IPython Documentation, Release 0.11

option_description
A trait for unicode strings.

overwrite
A boolean (True, False) trait.

parallel
A boolean (True, False) trait.

parse_command_line(argv)

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

profile
A trait for unicode strings.

stage_default_config_file()

start()
Start the app mainloop.

Override in subclasses.

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

520 Chapter 8. The IPython API

IPython Documentation, Release 0.11

subcommands
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

version
A trait for unicode strings.

ProfileList

class IPython.core.profileapp.ProfileList(**kwargs)
Bases: IPython.config.application.Application

__init__(**kwargs)

aliases
An instance of a Python dict.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

8.36. core.profileapp 521

IPython Documentation, Release 0.11

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

description = “List available IPython profiles\n\nList all available profiles, by profile location, that can\nbe found in the current working directly or in the ipython\ndirectory. Profile directories are named using the convention\n’profile_<profile>’.\n”

examples = ‘ipython profile list # list all profiles’

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

initialize(argv=None)
Do the basic steps to configure me.

Override in subclasses.

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

522 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

keyvalue_description
A trait for unicode strings.

list_profile_dirs()

load_config_file(filename, path=None)
Load a .py based config file by filename and path.

log_level
An enum that whose value must be in a given sequence.

name = u’ipython-profile’

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

8.36. core.profileapp 523

IPython Documentation, Release 0.11

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

start()

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

524 Chapter 8. The IPython API

IPython Documentation, Release 0.11

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

version
A trait for unicode strings.

8.37 core.profiledir

8.37.1 Module: core.profiledir

Inheritance diagram for IPython.core.profiledir:

core.profiledir.ProfileDirconfig.configurable.Configurable

core.profiledir.ProfileDirError

utils.traitlets.HasTraits

An object for managing IPython profile directories.

Authors:

• Brian Granger

• Fernando Perez

• Min RK

8.37.2 Classes

ProfileDir

class IPython.core.profiledir.ProfileDir(**kwargs)
Bases: IPython.config.configurable.Configurable

8.37. core.profiledir 525

IPython Documentation, Release 0.11

An object to manage the profile directory and its resources.

The profile directory is used by all IPython applications, to manage configuration, logging and secu-
rity.

This object knows how to find, create and manage these directories. This should be used by any code
that wants to handle profiles.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

check_dirs()

check_log_dir()

check_pid_dir()

check_security_dir()

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

526 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

copy_config_file(config_file, path=None, overwrite=False)
Copy a default config file into the active profile directory.

Default configuration files are kept in IPython.config.default. This function moves
these from that location to the working profile directory.

classmethod create_profile_dir(profile_dir, config=None)
Create a new profile directory given a full path.

Parameters profile_dir : str

The full path to the profile directory. If it does exist, it will be used. If not, it
will be created.

classmethod create_profile_dir_by_name(path, name=u’default’, config=None)
Create a profile dir by profile name and path.

Parameters path : unicode

The path (directory) to put the profile directory in.

name : unicode

The name of the profile. The name of the profile directory will be “pro-
file_<profile>”.

created = None

classmethod find_profile_dir(profile_dir, config=None)
Find/create a profile dir and return its ProfileDir.

This will create the profile directory if it doesn’t exist.

Parameters profile_dir : unicode or str

The path of the profile directory. This is expanded using
IPython.utils.genutils.expand_path().

classmethod find_profile_dir_by_name(ipython_dir, name=u’default’, con-
fig=None)

Find an existing profile dir by profile name, return its ProfileDir.

This searches through a sequence of paths for a profile dir. If it is not found, a
ProfileDirError exception will be raised.

8.37. core.profiledir 527

IPython Documentation, Release 0.11

The search path algorithm is: 1. os.getcwdu() 2. ipython_dir

Parameters ipython_dir : unicode or str

The IPython directory to use.

name : unicode or str

The name of the profile. The name of the profile directory will be “pro-
file_<profile>”.

location
A trait for unicode strings.

log_dir
A trait for unicode strings.

log_dir_name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

pid_dir
A trait for unicode strings.

pid_dir_name
A trait for unicode strings.

security_dir
A trait for unicode strings.

security_dir_name
A trait for unicode strings.

trait_metadata(traitname, key)
Get metadata values for trait by key.

528 Chapter 8. The IPython API

IPython Documentation, Release 0.11

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

ProfileDirError

class IPython.core.profiledir.ProfileDirError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.38 core.prompts

8.38.1 Module: core.prompts

Inheritance diagram for IPython.core.prompts:

core.prompts.BasePrompt

core.prompts.PromptOut

core.prompts.Prompt1

core.prompts.Prompt2

Classes for handling input/output prompts.

Authors:

• Fernando Perez

8.38. core.prompts 529

IPython Documentation, Release 0.11

• Brian Granger

8.38.2 Classes

BasePrompt

class IPython.core.prompts.BasePrompt(cache, sep, prompt, pad_left=False)
Bases: object

Interactive prompt similar to Mathematica’s.

__init__(cache, sep, prompt, pad_left=False)

cwd_filt(depth)
Return the last depth elements of the current working directory.

$HOME is always replaced with ‘~’. If depth==0, the full path is returned.

cwd_filt2(depth)
Return the last depth elements of the current working directory.

$HOME is always replaced with ‘~’. If depth==0, the full path is returned.

p_template
Template for prompt string creation

set_p_str()
Set the interpolating prompt strings.

This must be called every time the color settings change, because the prompt_specials global
may have changed.

write(msg)

Prompt1

class IPython.core.prompts.Prompt1(cache, sep=’n’, prompt=’In [\#]: ‘, pad_left=True)
Bases: IPython.core.prompts.BasePrompt

Input interactive prompt similar to Mathematica’s.

__init__(cache, sep=’n’, prompt=’In [\#]: ‘, pad_left=True)

auto_rewrite()
Return a string of the form ‘—>’ which lines up with the previous input string. Useful for
systems which re-write the user input when handling automatically special syntaxes.

cwd_filt(depth)
Return the last depth elements of the current working directory.

$HOME is always replaced with ‘~’. If depth==0, the full path is returned.

530 Chapter 8. The IPython API

IPython Documentation, Release 0.11

cwd_filt2(depth)
Return the last depth elements of the current working directory.

$HOME is always replaced with ‘~’. If depth==0, the full path is returned.

p_template
Template for prompt string creation

set_colors()

set_p_str()
Set the interpolating prompt strings.

This must be called every time the color settings change, because the prompt_specials global
may have changed.

write(msg)

Prompt2

class IPython.core.prompts.Prompt2(cache, prompt=’ .\D.: ‘, pad_left=True)
Bases: IPython.core.prompts.BasePrompt

Interactive continuation prompt.

__init__(cache, prompt=’ .\D.: ‘, pad_left=True)

cwd_filt(depth)
Return the last depth elements of the current working directory.

$HOME is always replaced with ‘~’. If depth==0, the full path is returned.

cwd_filt2(depth)
Return the last depth elements of the current working directory.

$HOME is always replaced with ‘~’. If depth==0, the full path is returned.

p_template
Template for prompt string creation

set_colors()

set_p_str()

write(msg)

PromptOut

class IPython.core.prompts.PromptOut(cache, sep=’‘, prompt=’Out[\#]: ‘,
pad_left=True)

Bases: IPython.core.prompts.BasePrompt

Output interactive prompt similar to Mathematica’s.

__init__(cache, sep=’‘, prompt=’Out[\#]: ‘, pad_left=True)

8.38. core.prompts 531

IPython Documentation, Release 0.11

cwd_filt(depth)
Return the last depth elements of the current working directory.

$HOME is always replaced with ‘~’. If depth==0, the full path is returned.

cwd_filt2(depth)
Return the last depth elements of the current working directory.

$HOME is always replaced with ‘~’. If depth==0, the full path is returned.

p_template
Template for prompt string creation

set_colors()

set_p_str()
Set the interpolating prompt strings.

This must be called every time the color settings change, because the prompt_specials global
may have changed.

write(msg)

8.38.3 Functions

IPython.core.prompts.multiple_replace(dict, text)
Replace in ‘text’ all occurences of any key in the given dictionary by its corresponding value. Returns
the new string.

IPython.core.prompts.str_safe(arg)
Convert to a string, without ever raising an exception.

If str(arg) fails, <ERROR: ... > is returned, where ... is the exception error message.

8.39 core.shellapp

8.39.1 Module: core.shellapp

Inheritance diagram for IPython.core.shellapp:

core.shellapp.InteractiveShellAppconfig.configurable.Configurableutils.traitlets.HasTraits

A mixin for Application classes that launch InteractiveShell instances, load extensions, etc.

532 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Authors

• Min Ragan-Kelley

8.39.2 InteractiveShellApp

class IPython.core.shellapp.InteractiveShellApp(**kwargs)
Bases: IPython.config.configurable.Configurable

A Mixin for applications that start InteractiveShell instances.

Provides configurables for loading extensions and executing files as part of configuring a Shell envi-
ronment.

Provides init_extensions() and init_code() methods, to be called after init_shell(), which must be
implemented by subclasses.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

8.39. core.shellapp 533

IPython Documentation, Release 0.11

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

code_to_run
A trait for unicode strings.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

exec_files
An instance of a Python list.

exec_lines
An instance of a Python list.

extensions
An instance of a Python list.

extra_extension
A trait for unicode strings.

file_to_run
A trait for unicode strings.

init_code()
run the pre-flight code, specified via exec_lines

init_extensions()
Load all IPython extensions in IPythonApp.extensions.

This uses the ExtensionManager.load_extensions() to load all the extensions listed
in self.extensions.

init_shell()

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

534 Chapter 8. The IPython API

IPython Documentation, Release 0.11

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

shell
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.40 core.splitinput

8.40.1 Module: core.splitinput

Simple utility for splitting user input.

Authors:

• Brian Granger

• Fernando Perez

IPython.core.splitinput.split_user_input(line, pattern=None)
Split user input into pre-char/whitespace, function part and rest.

This is currently handles lines with ‘=’ in them in a very inconsistent manner.

8.40. core.splitinput 535

IPython Documentation, Release 0.11

8.41 core.ultratb

8.41.1 Module: core.ultratb

Inheritance diagram for IPython.core.ultratb:

core.ultratb.FormattedTB

core.ultratb.ColorTB

core.ultratb.AutoFormattedTB

core.ultratb.VerboseTB

core.ultratb.ListTB core.ultratb.SyntaxTB

core.ultratb.TBTools

ultratb.py – Spice up your tracebacks!

• ColorTB

I’ve always found it a bit hard to visually parse tracebacks in Python. The ColorTB class is a solution to
that problem. It colors the different parts of a traceback in a manner similar to what you would expect from
a syntax-highlighting text editor.

Installation instructions for ColorTB: import sys,ultratb sys.excepthook = ultratb.ColorTB()

• VerboseTB

I’ve also included a port of Ka-Ping Yee’s “cgitb.py” that produces all kinds of useful info when a traceback
occurs. Ping originally had it spit out HTML and intended it for CGI programmers, but why should they
have all the fun? I altered it to spit out colored text to the terminal. It’s a bit overwhelming, but kind of neat,
and maybe useful for long-running programs that you believe are bug-free. If a crash does occur in that type
of program you want details. Give it a shot–you’ll love it or you’ll hate it.

Note:

The Verbose mode prints the variables currently visible where the exception happened (short-
ening their strings if too long). This can potentially be very slow, if you happen to have a huge
data structure whose string representation is complex to compute. Your computer may appear
to freeze for a while with cpu usage at 100%. If this occurs, you can cancel the traceback with
Ctrl-C (maybe hitting it more than once).

If you encounter this kind of situation often, you may want to use the Verbose_novars mode
instead of the regular Verbose, which avoids formatting variables (but otherwise includes the
information and context given by Verbose).

Installation instructions for ColorTB: import sys,ultratb sys.excepthook = ultratb.VerboseTB()

Note: Much of the code in this module was lifted verbatim from the standard library module ‘traceback.py’
and Ka-Ping Yee’s ‘cgitb.py’.

• Color schemes

536 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The colors are defined in the class TBTools through the use of the ColorSchemeTable class. Currently the
following exist:

• NoColor: allows all of this module to be used in any terminal (the color

escapes are just dummy blank strings).

• Linux: is meant to look good in a terminal like the Linux console (black

or very dark background).

• LightBG: similar to Linux but swaps dark/light colors to be more readable

in light background terminals.

You can implement other color schemes easily, the syntax is fairly self-explanatory. Please send back new
schemes you develop to the author for possible inclusion in future releases.

8.41.2 Classes

AutoFormattedTB

class IPython.core.ultratb.AutoFormattedTB(mode=’Plain’, color_scheme=’Linux’,
call_pdb=False, ostream=None,
tb_offset=0, long_header=False,
include_vars=False,
check_cache=None)

Bases: IPython.core.ultratb.FormattedTB

A traceback printer which can be called on the fly.

It will find out about exceptions by itself.

A brief example:

AutoTB = AutoFormattedTB(mode = ‘Verbose’,color_scheme=’Linux’) try:

...

except: AutoTB() # or AutoTB(out=logfile) where logfile is an open file object

__init__(mode=’Plain’, color_scheme=’Linux’, call_pdb=False, ostream=None,
tb_offset=0, long_header=False, include_vars=False, check_cache=None)

color_toggle()
Toggle between the currently active color scheme and NoColor.

context()

debugger(force=False)
Call up the pdb debugger if desired, always clean up the tb reference.

Keywords:

8.41. core.ultratb 537

IPython Documentation, Release 0.11

•force(False): by default, this routine checks the instance call_pdb

flag and does not actually invoke the debugger if the flag is false. The ‘force’ option
forces the debugger to activate even if the flag is false.

If the call_pdb flag is set, the pdb interactive debugger is invoked. In all cases, the self.tb refer-
ence to the current traceback is deleted to prevent lingering references which hamper memory
management.

Note that each call to pdb() does an ‘import readline’, so if your app requires a special setup for
the readline completers, you’ll have to fix that by hand after invoking the exception handler.

get_exception_only(etype, value)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

handler(info=None)

ostream
Output stream that exceptions are written to.

Valid values are:

•None: the default, which means that IPython will dynamically resolve

to io.stdout. This ensures compatibility with most tools, including Windows (where plain stdout
doesn’t recognize ANSI escapes).

•Any object with ‘write’ and ‘flush’ attributes.

plain()

set_colors(*args, **kw)
Shorthand access to the color table scheme selector method.

set_mode(mode=None)
Switch to the desired mode.

If mode is not specified, cycles through the available modes.

show_exception_only(etype, evalue)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

stb2text(stb)
Convert a structured traceback (a list) to a string.

structured_traceback(etype=None, value=None, tb=None, tb_offset=None, con-
text=5)

tb_offset = 0

538 Chapter 8. The IPython API

IPython Documentation, Release 0.11

text(etype, value, tb, tb_offset=None, context=5)
Return formatted traceback.

Subclasses may override this if they add extra arguments.

verbose()

ColorTB

class IPython.core.ultratb.ColorTB(color_scheme=’Linux’, call_pdb=0)
Bases: IPython.core.ultratb.FormattedTB

Shorthand to initialize a FormattedTB in Linux colors mode.

__init__(color_scheme=’Linux’, call_pdb=0)

color_toggle()
Toggle between the currently active color scheme and NoColor.

context()

debugger(force=False)
Call up the pdb debugger if desired, always clean up the tb reference.

Keywords:

•force(False): by default, this routine checks the instance call_pdb

flag and does not actually invoke the debugger if the flag is false. The ‘force’ option
forces the debugger to activate even if the flag is false.

If the call_pdb flag is set, the pdb interactive debugger is invoked. In all cases, the self.tb refer-
ence to the current traceback is deleted to prevent lingering references which hamper memory
management.

Note that each call to pdb() does an ‘import readline’, so if your app requires a special setup for
the readline completers, you’ll have to fix that by hand after invoking the exception handler.

get_exception_only(etype, value)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

handler(info=None)

ostream
Output stream that exceptions are written to.

Valid values are:

•None: the default, which means that IPython will dynamically resolve

to io.stdout. This ensures compatibility with most tools, including Windows (where plain stdout
doesn’t recognize ANSI escapes).

8.41. core.ultratb 539

IPython Documentation, Release 0.11

•Any object with ‘write’ and ‘flush’ attributes.

plain()

set_colors(*args, **kw)
Shorthand access to the color table scheme selector method.

set_mode(mode=None)
Switch to the desired mode.

If mode is not specified, cycles through the available modes.

show_exception_only(etype, evalue)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

stb2text(stb)
Convert a structured traceback (a list) to a string.

structured_traceback(etype, value, tb, tb_offset=None, context=5)

tb_offset = 0

text(etype, value, tb, tb_offset=None, context=5)
Return formatted traceback.

Subclasses may override this if they add extra arguments.

verbose()

FormattedTB

class IPython.core.ultratb.FormattedTB(mode=’Plain’, color_scheme=’Linux’,
call_pdb=False, ostream=None, tb_offset=0,
long_header=False, include_vars=False,
check_cache=None)

Bases: IPython.core.ultratb.VerboseTB, IPython.core.ultratb.ListTB

Subclass ListTB but allow calling with a traceback.

It can thus be used as a sys.excepthook for Python > 2.1.

Also adds ‘Context’ and ‘Verbose’ modes, not available in ListTB.

Allows a tb_offset to be specified. This is useful for situations where one needs to remove a number
of topmost frames from the traceback (such as occurs with python programs that themselves execute
other python code, like Python shells).

__init__(mode=’Plain’, color_scheme=’Linux’, call_pdb=False, ostream=None,
tb_offset=0, long_header=False, include_vars=False, check_cache=None)

color_toggle()
Toggle between the currently active color scheme and NoColor.

540 Chapter 8. The IPython API

IPython Documentation, Release 0.11

context()

debugger(force=False)
Call up the pdb debugger if desired, always clean up the tb reference.

Keywords:

•force(False): by default, this routine checks the instance call_pdb

flag and does not actually invoke the debugger if the flag is false. The ‘force’ option
forces the debugger to activate even if the flag is false.

If the call_pdb flag is set, the pdb interactive debugger is invoked. In all cases, the self.tb refer-
ence to the current traceback is deleted to prevent lingering references which hamper memory
management.

Note that each call to pdb() does an ‘import readline’, so if your app requires a special setup for
the readline completers, you’ll have to fix that by hand after invoking the exception handler.

get_exception_only(etype, value)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

handler(info=None)

ostream
Output stream that exceptions are written to.

Valid values are:

•None: the default, which means that IPython will dynamically resolve

to io.stdout. This ensures compatibility with most tools, including Windows (where plain stdout
doesn’t recognize ANSI escapes).

•Any object with ‘write’ and ‘flush’ attributes.

plain()

set_colors(*args, **kw)
Shorthand access to the color table scheme selector method.

set_mode(mode=None)
Switch to the desired mode.

If mode is not specified, cycles through the available modes.

show_exception_only(etype, evalue)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

stb2text(stb)
Convert a structured traceback (a list) to a string.

8.41. core.ultratb 541

IPython Documentation, Release 0.11

structured_traceback(etype, value, tb, tb_offset=None, context=5)

tb_offset = 0

text(etype, value, tb, tb_offset=None, context=5)
Return formatted traceback.

Subclasses may override this if they add extra arguments.

verbose()

ListTB

class IPython.core.ultratb.ListTB(color_scheme=’NoColor’, call_pdb=False, os-
tream=None)

Bases: IPython.core.ultratb.TBTools

Print traceback information from a traceback list, with optional color.

Calling: requires 3 arguments: (etype, evalue, elist)

as would be obtained by: etype, evalue, tb = sys.exc_info() if tb:

elist = traceback.extract_tb(tb)

else: elist = None

It can thus be used by programs which need to process the traceback before printing (such as console
replacements based on the code module from the standard library).

Because they are meant to be called without a full traceback (only a list), instances of this class can’t
call the interactive pdb debugger.

__init__(color_scheme=’NoColor’, call_pdb=False, ostream=None)

color_toggle()
Toggle between the currently active color scheme and NoColor.

get_exception_only(etype, value)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

ostream
Output stream that exceptions are written to.

Valid values are:

•None: the default, which means that IPython will dynamically resolve

to io.stdout. This ensures compatibility with most tools, including Windows (where plain stdout
doesn’t recognize ANSI escapes).

•Any object with ‘write’ and ‘flush’ attributes.

542 Chapter 8. The IPython API

IPython Documentation, Release 0.11

set_colors(*args, **kw)
Shorthand access to the color table scheme selector method.

show_exception_only(etype, evalue)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

stb2text(stb)
Convert a structured traceback (a list) to a string.

structured_traceback(etype, value, elist, tb_offset=None, context=5)
Return a color formatted string with the traceback info.

Parameters etype : exception type

Type of the exception raised.

value : object

Data stored in the exception

elist : list

List of frames, see class docstring for details.

tb_offset : int, optional

Number of frames in the traceback to skip. If not given, the instance value is
used (set in constructor).

context : int, optional

Number of lines of context information to print.

Returns String with formatted exception. :

tb_offset = 0

text(etype, value, tb, tb_offset=None, context=5)
Return formatted traceback.

Subclasses may override this if they add extra arguments.

SyntaxTB

class IPython.core.ultratb.SyntaxTB(color_scheme=’NoColor’)
Bases: IPython.core.ultratb.ListTB

Extension which holds some state: the last exception value

__init__(color_scheme=’NoColor’)

clear_err_state()
Return the current error state and clear it

8.41. core.ultratb 543

IPython Documentation, Release 0.11

color_toggle()
Toggle between the currently active color scheme and NoColor.

get_exception_only(etype, value)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

ostream
Output stream that exceptions are written to.

Valid values are:

•None: the default, which means that IPython will dynamically resolve

to io.stdout. This ensures compatibility with most tools, including Windows (where plain stdout
doesn’t recognize ANSI escapes).

•Any object with ‘write’ and ‘flush’ attributes.

set_colors(*args, **kw)
Shorthand access to the color table scheme selector method.

show_exception_only(etype, evalue)
Only print the exception type and message, without a traceback.

Parameters etype : exception type

value : exception value

stb2text(stb)
Convert a structured traceback (a list) to a string.

structured_traceback(etype, value, elist, tb_offset=None, context=5)
Return a color formatted string with the traceback info.

Parameters etype : exception type

Type of the exception raised.

value : object

Data stored in the exception

elist : list

List of frames, see class docstring for details.

tb_offset : int, optional

Number of frames in the traceback to skip. If not given, the instance value is
used (set in constructor).

context : int, optional

Number of lines of context information to print.

Returns String with formatted exception. :

544 Chapter 8. The IPython API

IPython Documentation, Release 0.11

tb_offset = 0

text(etype, value, tb, tb_offset=None, context=5)
Return formatted traceback.

Subclasses may override this if they add extra arguments.

TBTools

class IPython.core.ultratb.TBTools(color_scheme=’NoColor’, call_pdb=False, os-
tream=None)

Bases: object

Basic tools used by all traceback printer classes.

__init__(color_scheme=’NoColor’, call_pdb=False, ostream=None)

color_toggle()
Toggle between the currently active color scheme and NoColor.

ostream
Output stream that exceptions are written to.

Valid values are:

•None: the default, which means that IPython will dynamically resolve

to io.stdout. This ensures compatibility with most tools, including Windows (where plain stdout
doesn’t recognize ANSI escapes).

•Any object with ‘write’ and ‘flush’ attributes.

set_colors(*args, **kw)
Shorthand access to the color table scheme selector method.

stb2text(stb)
Convert a structured traceback (a list) to a string.

structured_traceback(etype, evalue, tb, tb_offset=None, context=5, mode=None)
Return a list of traceback frames.

Must be implemented by each class.

tb_offset = 0

text(etype, value, tb, tb_offset=None, context=5)
Return formatted traceback.

Subclasses may override this if they add extra arguments.

8.41. core.ultratb 545

IPython Documentation, Release 0.11

VerboseTB

class IPython.core.ultratb.VerboseTB(color_scheme=’Linux’, call_pdb=False, os-
tream=None, tb_offset=0, long_header=False,
include_vars=True, check_cache=None)

Bases: IPython.core.ultratb.TBTools

A port of Ka-Ping Yee’s cgitb.py module that outputs color text instead of HTML. Requires inspect
and pydoc. Crazy, man.

Modified version which optionally strips the topmost entries from the traceback, to be used with
alternate interpreters (because their own code would appear in the traceback).

__init__(color_scheme=’Linux’, call_pdb=False, ostream=None, tb_offset=0,
long_header=False, include_vars=True, check_cache=None)

Specify traceback offset, headers and color scheme.

Define how many frames to drop from the tracebacks. Calling it with tb_offset=1 allows use of
this handler in interpreters which will have their own code at the top of the traceback (VerboseTB
will first remove that frame before printing the traceback info).

color_toggle()
Toggle between the currently active color scheme and NoColor.

debugger(force=False)
Call up the pdb debugger if desired, always clean up the tb reference.

Keywords:

•force(False): by default, this routine checks the instance call_pdb

flag and does not actually invoke the debugger if the flag is false. The ‘force’ option
forces the debugger to activate even if the flag is false.

If the call_pdb flag is set, the pdb interactive debugger is invoked. In all cases, the self.tb refer-
ence to the current traceback is deleted to prevent lingering references which hamper memory
management.

Note that each call to pdb() does an ‘import readline’, so if your app requires a special setup for
the readline completers, you’ll have to fix that by hand after invoking the exception handler.

handler(info=None)

ostream
Output stream that exceptions are written to.

Valid values are:

•None: the default, which means that IPython will dynamically resolve

to io.stdout. This ensures compatibility with most tools, including Windows (where plain stdout
doesn’t recognize ANSI escapes).

•Any object with ‘write’ and ‘flush’ attributes.

set_colors(*args, **kw)
Shorthand access to the color table scheme selector method.

546 Chapter 8. The IPython API

IPython Documentation, Release 0.11

stb2text(stb)
Convert a structured traceback (a list) to a string.

structured_traceback(etype, evalue, etb, tb_offset=None, context=5)
Return a nice text document describing the traceback.

tb_offset = 0

text(etype, value, tb, tb_offset=None, context=5)
Return formatted traceback.

Subclasses may override this if they add extra arguments.

8.41.3 Functions

IPython.core.ultratb.findsource(object)
Return the entire source file and starting line number for an object.

The argument may be a module, class, method, function, traceback, frame, or code object. The source
code is returned as a list of all the lines in the file and the line number indexes a line in that list. An
IOError is raised if the source code cannot be retrieved.

FIXED version with which we monkeypatch the stdlib to work around a bug.

IPython.core.ultratb.fix_frame_records_filenames(records)
Try to fix the filenames in each record from inspect.getinnerframes().

Particularly, modules loaded from within zip files have useless filenames attached to their code object,
and inspect.getinnerframes() just uses it.

IPython.core.ultratb.inspect_error()
Print a message about internal inspect errors.

These are unfortunately quite common.

8.42 lib.backgroundjobs

8.42.1 Module: lib.backgroundjobs

Inheritance diagram for IPython.lib.backgroundjobs:

lib.backgroundjobs.BackgroundJobBase

lib.backgroundjobs.BackgroundJobFunc

lib.backgroundjobs.BackgroundJobExpr

threading.Thread

lib.backgroundjobs.BackgroundJobManager

threading._Verbose

Manage background (threaded) jobs conveniently from an interactive shell.

8.42. lib.backgroundjobs 547

IPython Documentation, Release 0.11

This module provides a BackgroundJobManager class. This is the main class meant for public usage, it
implements an object which can create and manage new background jobs.

It also provides the actual job classes managed by these BackgroundJobManager objects, see their docstrings
below.

This system was inspired by discussions with B. Granger and the BackgroundCommand class described in
the book Python Scripting for Computational Science, by H. P. Langtangen:

http://folk.uio.no/hpl/scripting

(although ultimately no code from this text was used, as IPython’s system is a separate implementation).

8.42.2 Classes

BackgroundJobBase

class IPython.lib.backgroundjobs.BackgroundJobBase
Bases: threading.Thread

Base class to build BackgroundJob classes.

The derived classes must implement:

•Their own __init__, since the one here raises NotImplementedError. The

derived constructor must call self._init() at the end, to provide common initialization.

•A strform attribute used in calls to __str__.

•A call() method, which will make the actual execution call and must

return a value to be held in the ‘result’ field of the job object.

__init__()

daemon

getName()

ident

isAlive()

isDaemon()

is_alive()

join(timeout=None)

name

run()

setDaemon(daemonic)

setName(name)

start()

548 Chapter 8. The IPython API

http://folk.uio.no/hpl/scripting

IPython Documentation, Release 0.11

stat_completed = ‘Completed’

stat_completed_c = 2

stat_created = ‘Created’

stat_created_c = 0

stat_dead = ‘Dead (Exception), call jobs.traceback() for details’

stat_dead_c = -1

stat_running = ‘Running’

stat_running_c = 1

traceback()

BackgroundJobExpr

class IPython.lib.backgroundjobs.BackgroundJobExpr(expression, glob=None,
loc=None)

Bases: IPython.lib.backgroundjobs.BackgroundJobBase

Evaluate an expression as a background job (uses a separate thread).

__init__(expression, glob=None, loc=None)
Create a new job from a string which can be fed to eval().

global/locals dicts can be provided, which will be passed to the eval call.

call()

daemon

getName()

ident

isAlive()

isDaemon()

is_alive()

join(timeout=None)

name

run()

setDaemon(daemonic)

setName(name)

start()

stat_completed = ‘Completed’

stat_completed_c = 2

8.42. lib.backgroundjobs 549

IPython Documentation, Release 0.11

stat_created = ‘Created’

stat_created_c = 0

stat_dead = ‘Dead (Exception), call jobs.traceback() for details’

stat_dead_c = -1

stat_running = ‘Running’

stat_running_c = 1

traceback()

BackgroundJobFunc

class IPython.lib.backgroundjobs.BackgroundJobFunc(func, *args, **kwargs)
Bases: IPython.lib.backgroundjobs.BackgroundJobBase

Run a function call as a background job (uses a separate thread).

__init__(func, *args, **kwargs)
Create a new job from a callable object.

Any positional arguments and keyword args given to this constructor after the initial callable are
passed directly to it.

call()

daemon

getName()

ident

isAlive()

isDaemon()

is_alive()

join(timeout=None)

name

run()

setDaemon(daemonic)

setName(name)

start()

stat_completed = ‘Completed’

stat_completed_c = 2

stat_created = ‘Created’

stat_created_c = 0

550 Chapter 8. The IPython API

IPython Documentation, Release 0.11

stat_dead = ‘Dead (Exception), call jobs.traceback() for details’

stat_dead_c = -1

stat_running = ‘Running’

stat_running_c = 1

traceback()

BackgroundJobManager

class IPython.lib.backgroundjobs.BackgroundJobManager
Class to manage a pool of backgrounded threaded jobs.

Below, we assume that ‘jobs’ is a BackgroundJobManager instance.

Usage summary (see the method docstrings for details):

jobs.new(...) -> start a new job

jobs() or jobs.status() -> print status summary of all jobs

jobs[N] -> returns job number N.

foo = jobs[N].result -> assign to variable foo the result of job N

jobs[N].traceback() -> print the traceback of dead job N

jobs.remove(N) -> remove (finished) job N

jobs.flush_finished() -> remove all finished jobs

As a convenience feature, BackgroundJobManager instances provide the utility result and traceback
methods which retrieve the corresponding information from the jobs list:

jobs.result(N) <–> jobs[N].result jobs.traceback(N) <–> jobs[N].traceback()

While this appears minor, it allows you to use tab completion interactively on the job manager in-
stance.

In interactive mode, IPython provides the magic fuction %bg for quick creation of backgrounded
expression-based jobs. Type bg? for details.

__init__()

flush_finished()
Flush all jobs finished (completed and dead) from lists.

Running jobs are never flushed.

It first calls _status_new(), to update info. If any jobs have completed since the last _status_new()
call, the flush operation aborts.

new(func_or_exp, *args, **kwargs)
Add a new background job and start it in a separate thread.

There are two types of jobs which can be created:

8.42. lib.backgroundjobs 551

IPython Documentation, Release 0.11

1. Jobs based on expressions which can be passed to an eval() call. The expression must be
given as a string. For example:

job_manager.new(‘myfunc(x,y,z=1)’[,glob[,loc]])

The given expression is passed to eval(), along with the optional global/local dicts provided. If
no dicts are given, they are extracted automatically from the caller’s frame.

A Python statement is NOT a valid eval() expression. Basically, you can only use as an eval()
argument something which can go on the right of an ‘=’ sign and be assigned to a variable.

For example,”print ‘hello”’ is not valid, but ‘2+3’ is.

2. Jobs given a function object, optionally passing additional positional arguments:

job_manager.new(myfunc,x,y)

The function is called with the given arguments.

If you need to pass keyword arguments to your function, you must supply them as a dict named
kw:

job_manager.new(myfunc,x,y,kw=dict(z=1))

The reason for this assymmetry is that the new() method needs to maintain access to its own
keywords, and this prevents name collisions between arguments to new() and arguments to your
own functions.

In both cases, the result is stored in the job.result field of the background job object.

Notes and caveats:

1. All threads running share the same standard output. Thus, if your background jobs generate
output, it will come out on top of whatever you are currently writing. For this reason, background
jobs are best used with silent functions which simply return their output.

2. Threads also all work within the same global namespace, and this system does not lock
interactive variables. So if you send job to the background which operates on a mutable ob-
ject for a long time, and start modifying that same mutable object interactively (or in another
backgrounded job), all sorts of bizarre behaviour will occur.

3. If a background job is spending a lot of time inside a C extension module which does not
release the Python Global Interpreter Lock (GIL), this will block the IPython prompt. This is
simply because the Python interpreter can only switch between threads at Python bytecodes.
While the execution is inside C code, the interpreter must simply wait unless the extension
module releases the GIL.

4. There is no way, due to limitations in the Python threads library, to kill a thread once it has
started.

remove(num)
Remove a finished (completed or dead) job.

result(N)→ return the result of job N.

status(verbose=0)
Print a status of all jobs currently being managed.

552 Chapter 8. The IPython API

IPython Documentation, Release 0.11

traceback(num)

8.43 lib.clipboard

8.43.1 Module: lib.clipboard

Utilities for accessing the platform’s clipboard.

8.43.2 Functions

IPython.lib.clipboard.osx_clipboard_get()
Get the clipboard’s text on OS X.

IPython.lib.clipboard.tkinter_clipboard_get()
Get the clipboard’s text using Tkinter.

This is the default on systems that are not Windows or OS X. It may interfere with other UI toolkits
and should be replaced with an implementation that uses that toolkit.

IPython.lib.clipboard.win32_clipboard_get()
Get the current clipboard’s text on Windows.

Requires Mark Hammond’s pywin32 extensions.

8.44 lib.deepreload

8.44.1 Module: lib.deepreload

A module to change reload() so that it acts recursively. To enable it type:

import __builtin__, deepreload
__builtin__.reload = deepreload.reload

You can then disable it with:

__builtin__.reload = deepreload.original_reload

Alternatively, you can add a dreload builtin alongside normal reload with:

__builtin__.dreload = deepreload.reload

This code is almost entirely based on knee.py from the standard library.

8.44.2 Functions

IPython.lib.deepreload.deep_import_hook(name, globals=None, locals=None,
fromlist=None, level=-1)

8.43. lib.clipboard 553

IPython Documentation, Release 0.11

IPython.lib.deepreload.deep_reload_hook(module)

IPython.lib.deepreload.determine_parent(globals)

IPython.lib.deepreload.ensure_fromlist(m, fromlist, recursive=0)

IPython.lib.deepreload.find_head_package(parent, name)

IPython.lib.deepreload.import_module(partname, fqname, parent)

IPython.lib.deepreload.load_tail(q, tail)

IPython.lib.deepreload.reload(module, exclude=[’sys’, ‘__builtin__’, ‘__main__’])
Recursively reload all modules used in the given module. Optionally takes a list of modules to exclude
from reloading. The default exclude list contains sys, __main__, and __builtin__, to prevent, e.g.,
resetting display, exception, and io hooks.

8.45 lib.demo

8.45.1 Module: lib.demo

Inheritance diagram for IPython.lib.demo:

lib.demo.ClearMixin

lib.demo.ClearDemo

lib.demo.ClearIPDemo

lib.demo.IPythonLineDemo

lib.demo.IPythonDemo

lib.demo.LineDemo

lib.demo.Demo

lib.demo.DemoError

Module for interactive demos using IPython.

This module implements a few classes for running Python scripts interactively in IPython for demonstra-
tions. With very simple markup (a few tags in comments), you can control points where the script stops
executing and returns control to IPython.

Provided classes

The classes are (see their docstrings for further details):

• Demo: pure python demos

554 Chapter 8. The IPython API

IPython Documentation, Release 0.11

• IPythonDemo: demos with input to be processed by IPython as if it had been

typed interactively (so magics work, as well as any other special syntax you may have added
via input prefilters).

• LineDemo: single-line version of the Demo class. These demos are executed

one line at a time, and require no markup.

• IPythonLineDemo: IPython version of the LineDemo class (the demo is

executed a line at a time, but processed via IPython).

• ClearMixin: mixin to make Demo classes with less visual clutter. It declares an empty
marquee and a pre_cmd that clears the screen before each block (see Subclassing below).

• ClearDemo, ClearIPDemo: mixin-enabled versions of the Demo and IPythonDemo
classes.

Subclassing

The classes here all include a few methods meant to make customization by subclassing more convenient.
Their docstrings below have some more details:

• marquee(): generates a marquee to provide visible on-screen markers at each block start and end.

• pre_cmd(): run right before the execution of each block.

• post_cmd(): run right after the execution of each block. If the block raises an exception, this is NOT
called.

Operation

The file is run in its own empty namespace (though you can pass it a string of arguments as if in a command
line environment, and it will see those as sys.argv). But at each stop, the global IPython namespace is
updated with the current internal demo namespace, so you can work interactively with the data accumulated
so far.

By default, each block of code is printed (with syntax highlighting) before executing it and you have to
confirm execution. This is intended to show the code to an audience first so you can discuss it, and only
proceed with execution once you agree. There are a few tags which allow you to modify this behavior.

The supported tags are:

<demo> stop

Defines block boundaries, the points where IPython stops execution of the file and returns to
the interactive prompt.

You can optionally mark the stop tag with extra dashes before and after the word ‘stop’, to help
visually distinguish the blocks in a text editor:

<demo> — stop —

<demo> silent

8.45. lib.demo 555

IPython Documentation, Release 0.11

Make a block execute silently (and hence automatically). Typically used in cases where you
have some boilerplate or initialization code which you need executed but do not want to be seen
in the demo.

<demo> auto

Make a block execute automatically, but still being printed. Useful for simple code which does
not warrant discussion, since it avoids the extra manual confirmation.

<demo> auto_all

This tag can _only_ be in the first block, and if given it overrides the individual auto tags to
make the whole demo fully automatic (no block asks for confirmation). It can also be given at
creation time (or the attribute set later) to override what’s in the file.

While _any_ python file can be run as a Demo instance, if there are no stop tags the whole file will run in a
single block (no different that calling first %pycat and then %run). The minimal markup to make this useful
is to place a set of stop tags; the other tags are only there to let you fine-tune the execution.

This is probably best explained with the simple example file below. You can copy this into a file named
ex_demo.py, and try running it via:

from IPython.demo import Demo d = Demo(‘ex_demo.py’) d() <— Call the d object (omit the parens if you
have autocall set to 2).

Each time you call the demo object, it runs the next block. The demo object has a few useful methods for
navigation, like again(), edit(), jump(), seek() and back(). It can be reset for a new run via reset() or reloaded
from disk (in case you’ve edited the source) via reload(). See their docstrings below.

Note: To make this simpler to explore, a file called “demo-exercizer.py” has been added to the
“docs/examples/core” directory. Just cd to this directory in an IPython session, and type:

%run demo-exercizer.py

and then follow the directions.

Example

The following is a very simple example of a valid demo file.

#################### EXAMPLE DEMO <ex_demo.py> ############################### ‘’‘A
simple interactive demo to illustrate the use of IPython’s Demo class.’‘’

print ‘Hello, welcome to an interactive IPython demo.’

The mark below defines a block boundary, which is a point where IPython will # stop execution and return
to the interactive prompt. The dashes are actually # optional and used only as a visual aid to clearly separate
blocks while # editing the demo code. # <demo> stop

x = 1 y = 2

<demo> stop

the mark below makes this block as silent # <demo> silent

print ‘This is a silent block, which gets executed but not printed.’

556 Chapter 8. The IPython API

IPython Documentation, Release 0.11

<demo> stop # <demo> auto print ‘This is an automatic block.’ print ‘It is executed without asking for
confirmation, but printed.’ z = x+y

print ‘z=’,x

<demo> stop # This is just another normal block. print ‘z is now:’, z

print ‘bye!’ ################### END EXAMPLE DEMO <ex_demo.py>
############################

8.45.2 Classes

ClearDemo

class IPython.lib.demo.ClearDemo(src, title=’‘, arg_str=’‘, auto_all=None)
Bases: IPython.lib.demo.ClearMixin, IPython.lib.demo.Demo

__init__(src, title=’‘, arg_str=’‘, auto_all=None)
Make a new demo object. To run the demo, simply call the object.

See the module docstring for full details and an example (you can use IPython.Demo? in IPython
to see it).

Inputs:

•src is either a file, or file-like object, or a string that can be resolved to a filename.

Optional inputs:

•title: a string to use as the demo name. Of most use when the demo

you are making comes from an object that has no filename, or if you want an alternate
denotation distinct from the filename.

•arg_str(‘’): a string of arguments, internally converted to a list

just like sys.argv, so the demo script can see a similar environment.

•auto_all(None): global flag to run all blocks automatically without

confirmation. This attribute overrides the block-level tags and applies to the whole
demo. It is an attribute of the object, and can be changed at runtime simply by reas-
signing it to a boolean value.

again()
Move the seek pointer back one block and re-execute.

back(num=1)
Move the seek pointer back num blocks (default is 1).

edit(index=None)
Edit a block.

If no number is given, use the last block executed.

8.45. lib.demo 557

IPython Documentation, Release 0.11

This edits the in-memory copy of the demo, it does NOT modify the original source file. If you
want to do that, simply open the file in an editor and use reload() when you make changes to
the file. This method is meant to let you change a block during a demonstration for explanatory
purposes, without damaging your original script.

fload()
Load file object.

jump(num=1)
Jump a given number of blocks relative to the current one.

The offset can be positive or negative, defaults to 1.

marquee(txt=’‘, width=78, mark=’*’)
Blank marquee that returns ‘’ no matter what the input.

post_cmd()
Method called after executing each block.

pre_cmd()
Method called before executing each block.

This one simply clears the screen.

re_auto = <_sre.SRE_Pattern object at 0x449de00>

re_auto_all = <_sre.SRE_Pattern object at 0x4258580>

re_silent = <_sre.SRE_Pattern object at 0x3027f10>

re_stop = <_sre.SRE_Pattern object at 0x3027d00>

reload()
Reload source from disk and initialize state.

reset()
Reset the namespace and seek pointer to restart the demo

run_cell(source)
Execute a string with one or more lines of code

seek(index)
Move the current seek pointer to the given block.

You can use negative indices to seek from the end, with identical semantics to those of Python
lists.

show(index=None)
Show a single block on screen

show_all()
Show entire demo on screen, block by block

558 Chapter 8. The IPython API

IPython Documentation, Release 0.11

ClearIPDemo

class IPython.lib.demo.ClearIPDemo(src, title=’‘, arg_str=’‘, auto_all=None)
Bases: IPython.lib.demo.ClearMixin, IPython.lib.demo.IPythonDemo

__init__(src, title=’‘, arg_str=’‘, auto_all=None)
Make a new demo object. To run the demo, simply call the object.

See the module docstring for full details and an example (you can use IPython.Demo? in IPython
to see it).

Inputs:

•src is either a file, or file-like object, or a string that can be resolved to a filename.

Optional inputs:

•title: a string to use as the demo name. Of most use when the demo

you are making comes from an object that has no filename, or if you want an alternate
denotation distinct from the filename.

•arg_str(‘’): a string of arguments, internally converted to a list

just like sys.argv, so the demo script can see a similar environment.

•auto_all(None): global flag to run all blocks automatically without

confirmation. This attribute overrides the block-level tags and applies to the whole
demo. It is an attribute of the object, and can be changed at runtime simply by reas-
signing it to a boolean value.

again()
Move the seek pointer back one block and re-execute.

back(num=1)
Move the seek pointer back num blocks (default is 1).

edit(index=None)
Edit a block.

If no number is given, use the last block executed.

This edits the in-memory copy of the demo, it does NOT modify the original source file. If you
want to do that, simply open the file in an editor and use reload() when you make changes to
the file. This method is meant to let you change a block during a demonstration for explanatory
purposes, without damaging your original script.

fload()
Load file object.

jump(num=1)
Jump a given number of blocks relative to the current one.

The offset can be positive or negative, defaults to 1.

8.45. lib.demo 559

IPython Documentation, Release 0.11

marquee(txt=’‘, width=78, mark=’*’)
Blank marquee that returns ‘’ no matter what the input.

post_cmd()
Method called after executing each block.

pre_cmd()
Method called before executing each block.

This one simply clears the screen.

re_auto = <_sre.SRE_Pattern object at 0x449de00>

re_auto_all = <_sre.SRE_Pattern object at 0x4258580>

re_silent = <_sre.SRE_Pattern object at 0x3027f10>

re_stop = <_sre.SRE_Pattern object at 0x3027d00>

reload()
Reload source from disk and initialize state.

reset()
Reset the namespace and seek pointer to restart the demo

run_cell(source)
Execute a string with one or more lines of code

seek(index)
Move the current seek pointer to the given block.

You can use negative indices to seek from the end, with identical semantics to those of Python
lists.

show(index=None)
Show a single block on screen

show_all()
Show entire demo on screen, block by block

ClearMixin

class IPython.lib.demo.ClearMixin
Bases: object

Use this mixin to make Demo classes with less visual clutter.

Demos using this mixin will clear the screen before every block and use blank marquees.

Note that in order for the methods defined here to actually override those of the classes it’s mixed
with, it must go /first/ in the inheritance tree. For example:

class ClearIPDemo(ClearMixin,IPythonDemo): pass

will provide an IPythonDemo class with the mixin’s features.

560 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

marquee(txt=’‘, width=78, mark=’*’)
Blank marquee that returns ‘’ no matter what the input.

pre_cmd()
Method called before executing each block.

This one simply clears the screen.

Demo

class IPython.lib.demo.Demo(src, title=’‘, arg_str=’‘, auto_all=None)
Bases: object

__init__(src, title=’‘, arg_str=’‘, auto_all=None)
Make a new demo object. To run the demo, simply call the object.

See the module docstring for full details and an example (you can use IPython.Demo? in IPython
to see it).

Inputs:

•src is either a file, or file-like object, or a string that can be resolved to a filename.

Optional inputs:

•title: a string to use as the demo name. Of most use when the demo

you are making comes from an object that has no filename, or if you want an alternate
denotation distinct from the filename.

•arg_str(‘’): a string of arguments, internally converted to a list

just like sys.argv, so the demo script can see a similar environment.

•auto_all(None): global flag to run all blocks automatically without

confirmation. This attribute overrides the block-level tags and applies to the whole
demo. It is an attribute of the object, and can be changed at runtime simply by reas-
signing it to a boolean value.

again()
Move the seek pointer back one block and re-execute.

back(num=1)
Move the seek pointer back num blocks (default is 1).

edit(index=None)
Edit a block.

If no number is given, use the last block executed.

This edits the in-memory copy of the demo, it does NOT modify the original source file. If you
want to do that, simply open the file in an editor and use reload() when you make changes to

8.45. lib.demo 561

IPython Documentation, Release 0.11

the file. This method is meant to let you change a block during a demonstration for explanatory
purposes, without damaging your original script.

fload()
Load file object.

jump(num=1)
Jump a given number of blocks relative to the current one.

The offset can be positive or negative, defaults to 1.

marquee(txt=’‘, width=78, mark=’*’)
Return the input string centered in a ‘marquee’.

post_cmd()
Method called after executing each block.

pre_cmd()
Method called before executing each block.

re_auto = <_sre.SRE_Pattern object at 0x449de00>

re_auto_all = <_sre.SRE_Pattern object at 0x4258580>

re_silent = <_sre.SRE_Pattern object at 0x3027f10>

re_stop = <_sre.SRE_Pattern object at 0x3027d00>

reload()
Reload source from disk and initialize state.

reset()
Reset the namespace and seek pointer to restart the demo

run_cell(source)
Execute a string with one or more lines of code

seek(index)
Move the current seek pointer to the given block.

You can use negative indices to seek from the end, with identical semantics to those of Python
lists.

show(index=None)
Show a single block on screen

show_all()
Show entire demo on screen, block by block

DemoError

class IPython.lib.demo.DemoError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

562 Chapter 8. The IPython API

IPython Documentation, Release 0.11

args

message

IPythonDemo

class IPython.lib.demo.IPythonDemo(src, title=’‘, arg_str=’‘, auto_all=None)
Bases: IPython.lib.demo.Demo

Class for interactive demos with IPython’s input processing applied.

This subclasses Demo, but instead of executing each block by the Python interpreter (via exec), it
actually calls IPython on it, so that any input filters which may be in place are applied to the input
block.

If you have an interactive environment which exposes special input processing, you can use this class
instead to write demo scripts which operate exactly as if you had typed them interactively. The default
Demo class requires the input to be valid, pure Python code.

__init__(src, title=’‘, arg_str=’‘, auto_all=None)
Make a new demo object. To run the demo, simply call the object.

See the module docstring for full details and an example (you can use IPython.Demo? in IPython
to see it).

Inputs:

•src is either a file, or file-like object, or a string that can be resolved to a filename.

Optional inputs:

•title: a string to use as the demo name. Of most use when the demo

you are making comes from an object that has no filename, or if you want an alternate
denotation distinct from the filename.

•arg_str(‘’): a string of arguments, internally converted to a list

just like sys.argv, so the demo script can see a similar environment.

•auto_all(None): global flag to run all blocks automatically without

confirmation. This attribute overrides the block-level tags and applies to the whole
demo. It is an attribute of the object, and can be changed at runtime simply by reas-
signing it to a boolean value.

again()
Move the seek pointer back one block and re-execute.

back(num=1)
Move the seek pointer back num blocks (default is 1).

edit(index=None)
Edit a block.

If no number is given, use the last block executed.

8.45. lib.demo 563

IPython Documentation, Release 0.11

This edits the in-memory copy of the demo, it does NOT modify the original source file. If you
want to do that, simply open the file in an editor and use reload() when you make changes to
the file. This method is meant to let you change a block during a demonstration for explanatory
purposes, without damaging your original script.

fload()
Load file object.

jump(num=1)
Jump a given number of blocks relative to the current one.

The offset can be positive or negative, defaults to 1.

marquee(txt=’‘, width=78, mark=’*’)
Return the input string centered in a ‘marquee’.

post_cmd()
Method called after executing each block.

pre_cmd()
Method called before executing each block.

re_auto = <_sre.SRE_Pattern object at 0x449de00>

re_auto_all = <_sre.SRE_Pattern object at 0x4258580>

re_silent = <_sre.SRE_Pattern object at 0x3027f10>

re_stop = <_sre.SRE_Pattern object at 0x3027d00>

reload()
Reload source from disk and initialize state.

reset()
Reset the namespace and seek pointer to restart the demo

run_cell(source)
Execute a string with one or more lines of code

seek(index)
Move the current seek pointer to the given block.

You can use negative indices to seek from the end, with identical semantics to those of Python
lists.

show(index=None)
Show a single block on screen

show_all()
Show entire demo on screen, block by block

IPythonLineDemo

class IPython.lib.demo.IPythonLineDemo(src, title=’‘, arg_str=’‘, auto_all=None)
Bases: IPython.lib.demo.IPythonDemo, IPython.lib.demo.LineDemo

564 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Variant of the LineDemo class whose input is processed by IPython.

__init__(src, title=’‘, arg_str=’‘, auto_all=None)
Make a new demo object. To run the demo, simply call the object.

See the module docstring for full details and an example (you can use IPython.Demo? in IPython
to see it).

Inputs:

•src is either a file, or file-like object, or a string that can be resolved to a filename.

Optional inputs:

•title: a string to use as the demo name. Of most use when the demo

you are making comes from an object that has no filename, or if you want an alternate
denotation distinct from the filename.

•arg_str(‘’): a string of arguments, internally converted to a list

just like sys.argv, so the demo script can see a similar environment.

•auto_all(None): global flag to run all blocks automatically without

confirmation. This attribute overrides the block-level tags and applies to the whole
demo. It is an attribute of the object, and can be changed at runtime simply by reas-
signing it to a boolean value.

again()
Move the seek pointer back one block and re-execute.

back(num=1)
Move the seek pointer back num blocks (default is 1).

edit(index=None)
Edit a block.

If no number is given, use the last block executed.

This edits the in-memory copy of the demo, it does NOT modify the original source file. If you
want to do that, simply open the file in an editor and use reload() when you make changes to
the file. This method is meant to let you change a block during a demonstration for explanatory
purposes, without damaging your original script.

fload()
Load file object.

jump(num=1)
Jump a given number of blocks relative to the current one.

The offset can be positive or negative, defaults to 1.

marquee(txt=’‘, width=78, mark=’*’)
Return the input string centered in a ‘marquee’.

post_cmd()
Method called after executing each block.

8.45. lib.demo 565

IPython Documentation, Release 0.11

pre_cmd()
Method called before executing each block.

re_auto = <_sre.SRE_Pattern object at 0x449de00>

re_auto_all = <_sre.SRE_Pattern object at 0x4258580>

re_silent = <_sre.SRE_Pattern object at 0x3027f10>

re_stop = <_sre.SRE_Pattern object at 0x3027d00>

reload()
Reload source from disk and initialize state.

reset()
Reset the namespace and seek pointer to restart the demo

run_cell(source)
Execute a string with one or more lines of code

seek(index)
Move the current seek pointer to the given block.

You can use negative indices to seek from the end, with identical semantics to those of Python
lists.

show(index=None)
Show a single block on screen

show_all()
Show entire demo on screen, block by block

LineDemo

class IPython.lib.demo.LineDemo(src, title=’‘, arg_str=’‘, auto_all=None)
Bases: IPython.lib.demo.Demo

Demo where each line is executed as a separate block.

The input script should be valid Python code.

This class doesn’t require any markup at all, and it’s meant for simple scripts (with no nesting or any
kind of indentation) which consist of multiple lines of input to be executed, one at a time, as if they
had been typed in the interactive prompt.

Note: the input can not have any indentation, which means that only single-lines of input are accepted,
not even function definitions are valid.

__init__(src, title=’‘, arg_str=’‘, auto_all=None)
Make a new demo object. To run the demo, simply call the object.

See the module docstring for full details and an example (you can use IPython.Demo? in IPython
to see it).

Inputs:

566 Chapter 8. The IPython API

IPython Documentation, Release 0.11

•src is either a file, or file-like object, or a string that can be resolved to a filename.

Optional inputs:

•title: a string to use as the demo name. Of most use when the demo

you are making comes from an object that has no filename, or if you want an alternate
denotation distinct from the filename.

•arg_str(‘’): a string of arguments, internally converted to a list

just like sys.argv, so the demo script can see a similar environment.

•auto_all(None): global flag to run all blocks automatically without

confirmation. This attribute overrides the block-level tags and applies to the whole
demo. It is an attribute of the object, and can be changed at runtime simply by reas-
signing it to a boolean value.

again()
Move the seek pointer back one block and re-execute.

back(num=1)
Move the seek pointer back num blocks (default is 1).

edit(index=None)
Edit a block.

If no number is given, use the last block executed.

This edits the in-memory copy of the demo, it does NOT modify the original source file. If you
want to do that, simply open the file in an editor and use reload() when you make changes to
the file. This method is meant to let you change a block during a demonstration for explanatory
purposes, without damaging your original script.

fload()
Load file object.

jump(num=1)
Jump a given number of blocks relative to the current one.

The offset can be positive or negative, defaults to 1.

marquee(txt=’‘, width=78, mark=’*’)
Return the input string centered in a ‘marquee’.

post_cmd()
Method called after executing each block.

pre_cmd()
Method called before executing each block.

re_auto = <_sre.SRE_Pattern object at 0x449de00>

re_auto_all = <_sre.SRE_Pattern object at 0x4258580>

re_silent = <_sre.SRE_Pattern object at 0x3027f10>

re_stop = <_sre.SRE_Pattern object at 0x3027d00>

8.45. lib.demo 567

IPython Documentation, Release 0.11

reload()
Reload source from disk and initialize state.

reset()
Reset the namespace and seek pointer to restart the demo

run_cell(source)
Execute a string with one or more lines of code

seek(index)
Move the current seek pointer to the given block.

You can use negative indices to seek from the end, with identical semantics to those of Python
lists.

show(index=None)
Show a single block on screen

show_all()
Show entire demo on screen, block by block

8.45.3 Function

IPython.lib.demo.re_mark(mark)

8.46 lib.guisupport

8.46.1 Module: lib.guisupport

Support for creating GUI apps and starting event loops.

IPython’s GUI integration allows interative plotting and GUI usage in IPython session. IPython has two
different types of GUI integration:

1. The terminal based IPython supports GUI event loops through Python’s PyOS_InputHook.
PyOS_InputHook is a hook that Python calls periodically whenever raw_input is waiting for a user to
type code. We implement GUI support in the terminal by setting PyOS_InputHook to a function that
iterates the event loop for a short while. It is important to note that in this situation, the real GUI event
loop is NOT run in the normal manner, so you can’t use the normal means to detect that it is running.

2. In the two process IPython kernel/frontend, the GUI event loop is run in the kernel. In this case, the
event loop is run in the normal manner by calling the function or method of the GUI toolkit that starts
the event loop.

In addition to starting the GUI event loops in one of these two ways, IPython will always create an appro-
priate GUI application object when GUi integration is enabled.

If you want your GUI apps to run in IPython you need to do two things:

1. Test to see if there is already an existing main application object. If there is, you should use it. If there
is not an existing application object you should create one.

568 Chapter 8. The IPython API

IPython Documentation, Release 0.11

2. Test to see if the GUI event loop is running. If it is, you should not start it. If the event loop is not
running you may start it.

This module contains functions for each toolkit that perform these things in a consistent manner. Because of
how PyOS_InputHook runs the event loop you cannot detect if the event loop is running using the traditional
calls (such as wx.GetApp.IsMainLoopRunning() in wxPython). If PyOS_InputHook is set These
methods will return a false negative. That is, they will say the event loop is not running, when is actually is.
To work around this limitation we proposed the following informal protocol:

• Whenever someone starts the event loop, they must set the _in_event_loop attribute of the main
application object to True. This should be done regardless of how the event loop is actually run.

• Whenever someone stops the event loop, they must set the _in_event_loop attribute of the main
application object to False.

• If you want to see if the event loop is running, you must use hasattr to see if _in_event_loop
attribute has been set. If it is set, you must use its value. If it has not been set, you can query the
toolkit in the normal manner.

• If you want GUI support and no one else has created an application or started the event loop you must
do this. We don’t want projects to attempt to defer these things to someone else if they themselves
need it.

The functions below implement this logic for each GUI toolkit. If you need to create custom application
subclasses, you will likely have to modify this code for your own purposes. This code can be copied into
your own project so you don’t have to depend on IPython.

8.46.2 Functions

IPython.lib.guisupport.get_app_qt4(*args, **kwargs)
Create a new qt4 app or return an existing one.

IPython.lib.guisupport.get_app_wx(*args, **kwargs)
Create a new wx app or return an exiting one.

IPython.lib.guisupport.is_event_loop_running_qt4(app=None)
Is the qt4 event loop running.

IPython.lib.guisupport.is_event_loop_running_wx(app=None)
Is the wx event loop running.

IPython.lib.guisupport.start_event_loop_qt4(app=None)
Start the qt4 event loop in a consistent manner.

IPython.lib.guisupport.start_event_loop_wx(app=None)
Start the wx event loop in a consistent manner.

8.46. lib.guisupport 569

IPython Documentation, Release 0.11

8.47 lib.inputhook

8.47.1 Module: lib.inputhook

Inheritance diagram for IPython.lib.inputhook:

lib.inputhook.InputHookManager

Inputhook management for GUI event loop integration.

8.47.2 InputHookManager

class IPython.lib.inputhook.InputHookManager
Bases: object

Manage PyOS_InputHook for different GUI toolkits.

This class installs various hooks under PyOSInputHook to handle GUI event loop integration.

__init__()

clear_app_refs(gui=None)
Clear IPython’s internal reference to an application instance.

Whenever we create an app for a user on qt4 or wx, we hold a reference to the app. This is needed
because in some cases bad things can happen if a user doesn’t hold a reference themselves. This
method is provided to clear the references we are holding.

Parameters gui : None or str

If None, clear all app references. If (‘wx’, ‘qt4’) clear the app for that toolkit.
References are not held for gtk or tk as those toolkits don’t have the notion of
an app.

clear_inputhook(app=None)
Set PyOS_InputHook to NULL and return the previous one.

Parameters app : optional, ignored

This parameter is allowed only so that clear_inputhook() can be called with a
similar interface as all the enable_* methods. But the actual value of the
parameter is ignored. This uniform interface makes it easier to have user-level
entry points in the main IPython app like enable_gui().

current_gui()
Return a string indicating the currently active GUI or None.

570 Chapter 8. The IPython API

IPython Documentation, Release 0.11

disable_gtk()
Disable event loop integration with PyGTK.

This merely sets PyOS_InputHook to NULL.

disable_qt4()
Disable event loop integration with PyQt4.

This merely sets PyOS_InputHook to NULL.

disable_tk()
Disable event loop integration with Tkinter.

This merely sets PyOS_InputHook to NULL.

disable_wx()
Disable event loop integration with wxPython.

This merely sets PyOS_InputHook to NULL.

enable_gtk(app=None)
Enable event loop integration with PyGTK.

Parameters app : ignored

Ignored, it’s only a placeholder to keep the call signature of all gui activation
methods consistent, which simplifies the logic of supporting magics.

Notes

This methods sets the PyOS_InputHook for PyGTK, which allows the PyGTK to integrate with
terminal based applications like IPython.

enable_qt4(app=None)
Enable event loop integration with PyQt4.

Parameters app : Qt Application, optional.

Running application to use. If not given, we probe Qt for an existing applica-
tion object, and create a new one if none is found.

Notes

This methods sets the PyOS_InputHook for PyQt4, which allows the PyQt4 to integrate with
terminal based applications like IPython.

If app is not given we probe for an existing one, and return it if found. If no existing app is
found, we create an QApplication as follows:

from PyQt4 import QtCore
app = QtGui.QApplication(sys.argv)

enable_tk(app=None)
Enable event loop integration with Tk.

8.47. lib.inputhook 571

IPython Documentation, Release 0.11

Parameters app : toplevel Tkinter.Tk widget, optional.

Running toplevel widget to use. If not given, we probe Tk for an existing one,
and create a new one if none is found.

Notes

If you have already created a Tkinter.Tk object, the only thing done by this method
is to register with the InputHookManager, since creating that object automatically sets
PyOS_InputHook.

enable_wx(app=None)
Enable event loop integration with wxPython.

Parameters app : WX Application, optional.

Running application to use. If not given, we probe WX for an existing appli-
cation object, and create a new one if none is found.

Notes

This methods sets the PyOS_InputHook for wxPython, which allows the wxPython to inte-
grate with terminal based applications like IPython.

If app is not given we probe for an existing one, and return it if found. If no existing app is
found, we create an wx.App as follows:

import wx
app = wx.App(redirect=False, clearSigInt=False)

get_pyos_inputhook()
Return the current PyOS_InputHook as a ctypes.c_void_p.

get_pyos_inputhook_as_func()
Return the current PyOS_InputHook as a ctypes.PYFUNCYPE.

set_inputhook(callback)
Set PyOS_InputHook to callback and return the previous one.

IPython.lib.inputhook.enable_gui(gui=None, app=None)
Switch amongst GUI input hooks by name.

This is just a utility wrapper around the methods of the InputHookManager object.

Parameters gui : optional, string or None

If None, clears input hook, otherwise it must be one of the recognized GUI
names (see GUI_* constants in module).

app : optional, existing application object.

For toolkits that have the concept of a global app, you can supply an existing
one. If not given, the toolkit will be probed for one, and if none is found,

572 Chapter 8. The IPython API

IPython Documentation, Release 0.11

a new one will be created. Note that GTK does not have this concept, and
passing an app if ‘gui‘==”GTK” will raise an error.

Returns The output of the underlying gui switch routine, typically the actual :

PyOS_InputHook wrapper object or the GUI toolkit app created, if there was :

one. :

8.48 lib.irunner

8.48.1 Module: lib.irunner

Inheritance diagram for IPython.lib.irunner:

lib.irunner.InteractiveRunner

lib.irunner.IPythonRunner

lib.irunner.PythonRunner

lib.irunner.SAGERunner

lib.irunner.RunnerFactory

Module for interactively running scripts.

This module implements classes for interactively running scripts written for any system with a prompt
which can be matched by a regexp suitable for pexpect. It can be used to run as if they had been typed up
interactively, an arbitrary series of commands for the target system.

The module includes classes ready for IPython (with the default prompts), plain Python and SAGE, but
making a new one is trivial. To see how to use it, simply run the module as a script:

./irunner.py –help

This is an extension of Ken Schutte <kschutte-AT-csail.mit.edu>’s script contributed on the ipython-user
list:

http://mail.scipy.org/pipermail/ipython-user/2006-May/003539.html

NOTES:

• This module requires pexpect, available in most linux distros, or which can

be downloaded from

http://pexpect.sourceforge.net

8.48. lib.irunner 573

http://mail.scipy.org/pipermail/ipython-user/2006-May/003539.html
http://pexpect.sourceforge.net

IPython Documentation, Release 0.11

• Because pexpect only works under Unix or Windows-Cygwin, this has the same

limitations. This means that it will NOT work under native windows Python.

8.48.2 Classes

IPythonRunner

class IPython.lib.irunner.IPythonRunner(program=’ipython’, args=None,
out=<open file ‘<stdout>’, mode ‘w’
at 0x2b718392d150>, echo=True)

Bases: IPython.lib.irunner.InteractiveRunner

Interactive IPython runner.

This initalizes IPython in ‘nocolor’ mode for simplicity. This lets us avoid having to write a regexp
that matches ANSI sequences, though pexpect does support them. If anyone contributes patches for
ANSI color support, they will be welcome.

It also sets the prompts manually, since the prompt regexps for pexpect need to be matched to the
actual prompts, so user-customized prompts would break this.

__init__(program=’ipython’, args=None, out=<open file ‘<stdout>’, mode ‘w’ at
0x2b718392d150>, echo=True)

New runner, optionally passing the ipython command to use.

close()
close child process

main(argv=None)
Run as a command-line script.

run_file(fname, interact=False, get_output=False)
Run the given file interactively.

Inputs:

-fname: name of the file to execute.

See the run_source docstring for the meaning of the optional arguments.

run_source(source, interact=False, get_output=False)
Run the given source code interactively.

Inputs:

•source: a string of code to be executed, or an open file object we

can iterate over.

Optional inputs:

•interact(False): if true, start to interact with the running

program at the end of the script. Otherwise, just exit.

•get_output(False): if true, capture the output of the child process

574 Chapter 8. The IPython API

IPython Documentation, Release 0.11

(filtering the input commands out) and return it as a string.

Returns: A string containing the process output, but only if requested.

InteractiveRunner

class IPython.lib.irunner.InteractiveRunner(program, prompts, args=None,
out=<open file ‘<stdout>’, mode ‘w’
at 0x2b718392d150>, echo=True)

Bases: object

Class to run a sequence of commands through an interactive program.

__init__(program, prompts, args=None, out=<open file ‘<stdout>’, mode ‘w’ at
0x2b718392d150>, echo=True)

Construct a runner.

Inputs:

•program: command to execute the given program.

•prompts: a list of patterns to match as valid prompts, in the

format used by pexpect. This basically means that it can be either a string (to be
compiled as a regular expression) or a list of such (it must be a true list, as pexpect
does type checks).

If more than one prompt is given, the first is treated as the main program prompt and the
others as ‘continuation’ prompts, like python’s. This means that blank lines in the input
source are ommitted when the first prompt is matched, but are NOT ommitted when the
continuation one matches, since this is how python signals the end of multiline input
interactively.

Optional inputs:

•args(None): optional list of strings to pass as arguments to the

child program.

•out(sys.stdout): if given, an output stream to be used when writing

output. The only requirement is that it must have a .write() method.

Public members not parameterized in the constructor:

•delaybeforesend(0): Newer versions of pexpect have a delay before

sending each new input. For our purposes here, it’s typically best to just set this to zero,
but if you encounter reliability problems or want an interactive run to pause briefly at
each prompt, just increase this value (it is measured in seconds). Note that this variable
is not honored at all by older versions of pexpect.

close()
close child process

8.48. lib.irunner 575

IPython Documentation, Release 0.11

main(argv=None)
Run as a command-line script.

run_file(fname, interact=False, get_output=False)
Run the given file interactively.

Inputs:

-fname: name of the file to execute.

See the run_source docstring for the meaning of the optional arguments.

run_source(source, interact=False, get_output=False)
Run the given source code interactively.

Inputs:

•source: a string of code to be executed, or an open file object we

can iterate over.

Optional inputs:

•interact(False): if true, start to interact with the running

program at the end of the script. Otherwise, just exit.

•get_output(False): if true, capture the output of the child process

(filtering the input commands out) and return it as a string.

Returns: A string containing the process output, but only if requested.

PythonRunner

class IPython.lib.irunner.PythonRunner(program=’python’, args=None,
out=<open file ‘<stdout>’, mode ‘w’ at
0x2b718392d150>, echo=True)

Bases: IPython.lib.irunner.InteractiveRunner

Interactive Python runner.

__init__(program=’python’, args=None, out=<open file ‘<stdout>’, mode ‘w’ at
0x2b718392d150>, echo=True)

New runner, optionally passing the python command to use.

close()
close child process

main(argv=None)
Run as a command-line script.

run_file(fname, interact=False, get_output=False)
Run the given file interactively.

Inputs:

576 Chapter 8. The IPython API

IPython Documentation, Release 0.11

-fname: name of the file to execute.

See the run_source docstring for the meaning of the optional arguments.

run_source(source, interact=False, get_output=False)
Run the given source code interactively.

Inputs:

•source: a string of code to be executed, or an open file object we

can iterate over.

Optional inputs:

•interact(False): if true, start to interact with the running

program at the end of the script. Otherwise, just exit.

•get_output(False): if true, capture the output of the child process

(filtering the input commands out) and return it as a string.

Returns: A string containing the process output, but only if requested.

RunnerFactory

class IPython.lib.irunner.RunnerFactory(out=<open file ‘<stdout>’, mode ‘w’ at
0x2b718392d150>)

Bases: object

Code runner factory.

This class provides an IPython code runner, but enforces that only one runner is ever instantiated. The
runner is created based on the extension of the first file to run, and it raises an exception if a runner is
later requested for a different extension type.

This ensures that we don’t generate example files for doctest with a mix of python and ipython syntax.

__init__(out=<open file ‘<stdout>’, mode ‘w’ at 0x2b718392d150>)
Instantiate a code runner.

SAGERunner

class IPython.lib.irunner.SAGERunner(program=’sage’, args=None, out=<open file
‘<stdout>’, mode ‘w’ at 0x2b718392d150>,
echo=True)

Bases: IPython.lib.irunner.InteractiveRunner

Interactive SAGE runner.

WARNING: this runner only works if you manually configure your SAGE copy to use ‘colors No-
Color’ in the ipythonrc config file, since currently the prompt matching regexp does not identify color
sequences.

8.48. lib.irunner 577

IPython Documentation, Release 0.11

__init__(program=’sage’, args=None, out=<open file ‘<stdout>’, mode ‘w’ at
0x2b718392d150>, echo=True)

New runner, optionally passing the sage command to use.

close()
close child process

main(argv=None)
Run as a command-line script.

run_file(fname, interact=False, get_output=False)
Run the given file interactively.

Inputs:

-fname: name of the file to execute.

See the run_source docstring for the meaning of the optional arguments.

run_source(source, interact=False, get_output=False)
Run the given source code interactively.

Inputs:

•source: a string of code to be executed, or an open file object we

can iterate over.

Optional inputs:

•interact(False): if true, start to interact with the running

program at the end of the script. Otherwise, just exit.

•get_output(False): if true, capture the output of the child process

(filtering the input commands out) and return it as a string.

Returns: A string containing the process output, but only if requested.

8.48.3 Functions

IPython.lib.irunner.main()
Run as a command-line script.

IPython.lib.irunner.pexpect_monkeypatch()
Patch pexpect to prevent unhandled exceptions at VM teardown.

Calling this function will monkeypatch the pexpect.spawn class and modify its __del__ method to
make it more robust in the face of failures that can occur if it is called when the Python VM is shutting
down.

Since Python may fire __del__ methods arbitrarily late, it’s possible for them to execute during the
teardown of the Python VM itself. At this point, various builtin modules have been reset to None.
Thus, the call to self.close() will trigger an exception because it tries to call os.close(), and os is now
None.

578 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.49 lib.latextools

8.49.1 Module: lib.latextools

Tools for handling LaTeX.

Authors:

• Brian Granger

8.49.2 Functions

IPython.lib.latextools.latex_to_html(s, alt=’image’)
Render LaTeX to HTML with embedded PNG data using data URIs.

Parameters s : str

The raw string containing valid inline LateX.

alt : str

The alt text to use for the HTML.

IPython.lib.latextools.latex_to_png(s, encode=False)
Render a LaTeX string to PNG using matplotlib.mathtext.

Parameters s : str

The raw string containing valid inline LaTeX.

encode : bool, optional

Should the PNG data bebase64 encoded to make it JSON’able.

IPython.lib.latextools.math_to_image(s, filename_or_obj, prop=None, dpi=None,
format=None)

Given a math expression, renders it in a closely-clipped bounding box to an image file.

s A math expression. The math portion should be enclosed in dollar signs.

filename_or_obj A filepath or writable file-like object to write the image data to.

prop If provided, a FontProperties() object describing the size and style of the text.

dpi Override the output dpi, otherwise use the default associated with the output format.

format The output format, eg. ‘svg’, ‘pdf’, ‘ps’ or ‘png’. If not provided, will be deduced from the
filename.

8.50 lib.pretty

8.50.1 Module: lib.pretty

Inheritance diagram for IPython.lib.pretty:

8.49. lib.latextools 579

IPython Documentation, Release 0.11

lib.pretty.Printable

lib.pretty.Group

lib.pretty.Breakable

lib.pretty.Text

lib.pretty.PrettyPrinter lib.pretty.RepresentationPrinterlib.pretty._PrettyPrinterBase

lib.pretty.GroupQueue

pretty ~~

Python advanced pretty printer. This pretty printer is intended to replace the old pprint python module which
does not allow developers to provide their own pretty print callbacks.

This module is based on ruby’s prettyprint.rb library by Tanaka Akira.

Example Usage

To directly print the representation of an object use pprint:

from pretty import pprint
pprint(complex_object)

To get a string of the output use pretty:

from pretty import pretty
string = pretty(complex_object)

Extending

The pretty library allows developers to add pretty printing rules for their own objects. This process is
straightforward. All you have to do is to add a _repr_pretty_ method to your object and call the methods on
the pretty printer passed:

class MyObject(object):

def _repr_pretty_(self, p, cycle):
...

Depending on the python version you want to support you have two possibilities. The following list shows
the python 2.5 version and the compatibility one.

580 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Here the example implementation of a _repr_pretty_ method for a list subclass for python 2.5 and higher
(python 2.5 requires the with statement __future__ import):

class MyList(list):

def _repr_pretty_(self, p, cycle):
if cycle:

p.text(’MyList(...)’)
else:

with p.group(8, ’MyList([’, ’])’):
for idx, item in enumerate(self):

if idx:
p.text(’,’)
p.breakable()

p.pretty(item)

The cycle parameter is True if pretty detected a cycle. You have to react to that or the result is an infinite
loop. p.text() just adds non breaking text to the output, p.breakable() either adds a whitespace or breaks
here. If you pass it an argument it’s used instead of the default space. p.pretty prettyprints another object
using the pretty print method.

The first parameter to the group function specifies the extra indentation of the next line. In this example
the next item will either be not breaked (if the items are short enough) or aligned with the right edge of the
opening bracked of MyList.

If you want to support python 2.4 and lower you can use this code:

class MyList(list):

def _repr_pretty_(self, p, cycle):
if cycle:

p.text(’MyList(...)’)
else:

p.begin_group(8, ’MyList([’)
for idx, item in enumerate(self):

if idx:
p.text(’,’)
p.breakable()

p.pretty(item)
p.end_group(8, ’])’)

If you just want to indent something you can use the group function without open / close parameters. Under
python 2.5 you can also use this code:

with p.indent(2):
...

Or under python2.4 you might want to modify p.indentation by hand but this is rather ugly.

copyright 2007 by Armin Ronacher. Portions (c) 2009 by Robert Kern.

license BSD License.

8.50. lib.pretty 581

IPython Documentation, Release 0.11

8.50.2 Classes

Breakable

class IPython.lib.pretty.Breakable(seq, width, pretty)
Bases: IPython.lib.pretty.Printable

__init__(seq, width, pretty)

output(stream, output_width)

Group

class IPython.lib.pretty.Group(depth)
Bases: IPython.lib.pretty.Printable

__init__(depth)

output(stream, output_width)

GroupQueue

class IPython.lib.pretty.GroupQueue(*groups)
Bases: object

__init__(*groups)

deq()

enq(group)

remove(group)

PrettyPrinter

class IPython.lib.pretty.PrettyPrinter(output, max_width=79, newline=’n’)
Bases: IPython.lib.pretty._PrettyPrinterBase

Baseclass for the RepresentationPrinter prettyprinter that is used to generate pretty reprs of objects.
Contrary to the RepresentationPrinter this printer knows nothing about the default pprinters or the
_repr_pretty_ callback method.

__init__(output, max_width=79, newline=’n’)

begin_group(indent=0, open=’‘)
Begin a group. If you want support for python < 2.5 which doesn’t has the with statement this is
the preferred way:

p.begin_group(1, ‘{‘) ... p.end_group(1, ‘}’)

The python 2.5 expression would be this:

with p.group(1, ‘{‘, ‘}’): ...

582 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The first parameter specifies the indentation for the next line (usually the width of the opening
text), the second the opening text. All parameters are optional.

breakable(sep=’ ‘)
Add a breakable separator to the output. This does not mean that it will automatically break
here. If no breaking on this position takes place the sep is inserted which default to one space.

end_group(dedent=0, close=’‘)
End a group. See begin_group for more details.

flush()
Flush data that is left in the buffer.

group(*args, **kwds)
like begin_group / end_group but for the with statement.

indent(*args, **kwds)
with statement support for indenting/dedenting.

text(obj)
Add literal text to the output.

Printable

class IPython.lib.pretty.Printable
Bases: object

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

output(stream, output_width)

RepresentationPrinter

class IPython.lib.pretty.RepresentationPrinter(output, verbose=False,
max_width=79, newline=’n’,
singleton_pprinters=None,
type_pprinters=None, de-
ferred_pprinters=None)

Bases: IPython.lib.pretty.PrettyPrinter

Special pretty printer that has a pretty method that calls the pretty printer for a python object.

This class stores processing data on self so you must never use this class in a threaded environment.
Always lock it or reinstanciate it.

Instances also have a verbose flag callbacks can access to control their output. For example the default
instance repr prints all attributes and methods that are not prefixed by an underscore if the printer is
in verbose mode.

__init__(output, verbose=False, max_width=79, newline=’n’, singleton_pprinters=None,
type_pprinters=None, deferred_pprinters=None)

8.50. lib.pretty 583

IPython Documentation, Release 0.11

begin_group(indent=0, open=’‘)
Begin a group. If you want support for python < 2.5 which doesn’t has the with statement this is
the preferred way:

p.begin_group(1, ‘{‘) ... p.end_group(1, ‘}’)

The python 2.5 expression would be this:

with p.group(1, ‘{‘, ‘}’): ...

The first parameter specifies the indentation for the next line (usually the width of the opening
text), the second the opening text. All parameters are optional.

breakable(sep=’ ‘)
Add a breakable separator to the output. This does not mean that it will automatically break
here. If no breaking on this position takes place the sep is inserted which default to one space.

end_group(dedent=0, close=’‘)
End a group. See begin_group for more details.

flush()
Flush data that is left in the buffer.

group(*args, **kwds)
like begin_group / end_group but for the with statement.

indent(*args, **kwds)
with statement support for indenting/dedenting.

pretty(obj)
Pretty print the given object.

text(obj)
Add literal text to the output.

Text

class IPython.lib.pretty.Text
Bases: IPython.lib.pretty.Printable

__init__()

add(obj, width)

output(stream, output_width)

8.50.3 Functions

IPython.lib.pretty.for_type(typ, func)
Add a pretty printer for a given type.

IPython.lib.pretty.for_type_by_name(type_module, type_name, func)
Add a pretty printer for a type specified by the module and name of a type rather than the type object
itself.

584 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython.lib.pretty.pprint(obj, verbose=False, max_width=79, newline=’\n’)
Like pretty but print to stdout.

IPython.lib.pretty.pretty(obj, verbose=False, max_width=79, newline=’\n’)
Pretty print the object’s representation.

8.51 lib.pylabtools

8.51.1 Module: lib.pylabtools

Pylab (matplotlib) support utilities.

Authors

• Fernando Perez.

• Brian Granger

8.51.2 Functions

IPython.lib.pylabtools.activate_matplotlib(backend)
Activate the given backend and set interactive to True.

IPython.lib.pylabtools.figsize(sizex, sizey)
Set the default figure size to be [sizex, sizey].

This is just an easy to remember, convenience wrapper that sets:

matplotlib.rcParams[’figure.figsize’] = [sizex, sizey]

IPython.lib.pylabtools.find_gui_and_backend(gui=None)
Given a gui string return the gui and mpl backend.

Parameters gui : str

Can be one of (‘tk’,’gtk’,’wx’,’qt’,’qt4’,’inline’).

Returns A tuple of (gui, backend) where backend is one of (‘TkAgg’,’GTKAgg’, :

‘WXAgg’,’Qt4Agg’,’module://IPython.zmq.pylab.backend_inline’). :

IPython.lib.pylabtools.getfigs(*fig_nums)
Get a list of matplotlib figures by figure numbers.

If no arguments are given, all available figures are returned. If the argument list contains references
to invalid figures, a warning is printed but the function continues pasting further figures.

Parameters figs : tuple

A tuple of ints giving the figure numbers of the figures to return.

8.51. lib.pylabtools 585

IPython Documentation, Release 0.11

IPython.lib.pylabtools.import_pylab(user_ns, backend, import_all=True,
shell=None)

Import the standard pylab symbols into user_ns.

IPython.lib.pylabtools.mpl_runner(safe_execfile)
Factory to return a matplotlib-enabled runner for %run.

Parameters safe_execfile : function

This must be a function with the same interface as the safe_execfile()
method of IPython.

Returns A function suitable for use as the ‘‘runner‘‘ argument of the %run magic :

function. :

IPython.lib.pylabtools.print_figure(fig, fmt=’png’)
Convert a figure to svg or png for inline display.

IPython.lib.pylabtools.pylab_activate(user_ns, gui=None, import_all=True)
Activate pylab mode in the user’s namespace.

Loads and initializes numpy, matplotlib and friends for interactive use.

Parameters user_ns : dict

Namespace where the imports will occur.

gui : optional, string

A valid gui name following the conventions of the %gui magic.

import_all : optional, boolean

If true, an ‘import *‘ is done from numpy and pylab.

Returns The actual gui used (if not given as input, it was obtained from matplotlib :

itself, and will be needed next to configure IPython’s gui integration. :

IPython.lib.pylabtools.select_figure_format(shell, fmt)
Select figure format for inline backend, either ‘png’ or ‘svg’.

Using this method ensures only one figure format is active at a time.

8.52 parallel.apps.baseapp

8.52.1 Module: parallel.apps.baseapp

Inheritance diagram for IPython.parallel.apps.baseapp:

586 Chapter 8. The IPython API

IPython Documentation, Release 0.11

apps.baseapp.BaseParallelApplicationcore.application.BaseIPythonApplicationconfig.application.Application

apps.baseapp.PIDFileError

config.configurable.SingletonConfigurable

apps.baseapp.ParallelCrashHandlercore.crashhandler.CrashHandler

config.configurable.Configurableutils.traitlets.HasTraits

The Base Application class for IPython.parallel apps

Authors:

• Brian Granger

• Min RK

8.52.2 Classes

BaseParallelApplication

class IPython.parallel.apps.baseapp.BaseParallelApplication(**kwargs)
Bases: IPython.core.application.BaseIPythonApplication

The base Application for IPython.parallel apps

Principle extensions to BaseIPyythonApplication:

•work_dir

•remote logging via pyzmq

•IOLoop instance

__init__(**kwargs)

aliases
An instance of a Python dict.

auto_create
A boolean (True, False) trait.

builtin_profile_dir
A trait for unicode strings.

check_pid(pid)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

8.52. parallel.apps.baseapp 587

IPython Documentation, Release 0.11

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

clean_logs
A boolean (True, False) trait.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config_file_name
A trait for unicode strings.

config_file_paths
An instance of a Python list.

config_file_specified
A boolean (True, False) trait.

config_files
An instance of a Python list.

copy_config_files
A boolean (True, False) trait.

crash_handler_class
alias of ParallelCrashHandler

created = None

description
A trait for unicode strings.

588 Chapter 8. The IPython API

IPython Documentation, Release 0.11

examples
A trait for unicode strings.

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

get_pid_from_file()
Get the pid from the pid file.

If the pid file doesn’t exist a PIDFileError is raised.

init_config_files()
[optionally] copy default config files into profile dir.

init_crash_handler()
Create a crash handler, typically setting sys.excepthook to it.

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

init_profile_dir()
initialize the profile dir

initialize(argv=None)
initialize the app

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

8.52. parallel.apps.baseapp 589

IPython Documentation, Release 0.11

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

keyvalue_description
A trait for unicode strings.

load_config_file(suppress_errors=True)
Load the config file.

By default, errors in loading config are handled, and a warning printed on screen. For testing,
the suppress_errors option is set to False, so errors will make tests fail.

log_level
An enum that whose value must be in a given sequence.

log_to_file
A boolean (True, False) trait.

log_url
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

590 Chapter 8. The IPython API

IPython Documentation, Release 0.11

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

overwrite
A boolean (True, False) trait.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

profile
A trait for unicode strings.

reinit_logging()

remove_pid_file()
Remove the pid file.

This should be called at shutdown by registering a callback with
reactor.addSystemEventTrigger(). This needs to return None.

8.52. parallel.apps.baseapp 591

IPython Documentation, Release 0.11

stage_default_config_file()
auto generate default config file, and stage it into the profile.

start()
Start the app mainloop.

Override in subclasses.

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

to_work_dir()

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

version
A trait for unicode strings.

work_dir
A trait for unicode strings.

write_pid_file(overwrite=False)
Create a .pid file in the pid_dir with my pid.

This must be called after pre_construct, which sets self.pid_dir. This raises PIDFileError if
the pid file exists already.

592 Chapter 8. The IPython API

IPython Documentation, Release 0.11

PIDFileError

class IPython.parallel.apps.baseapp.PIDFileError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

ParallelCrashHandler

class IPython.parallel.apps.baseapp.ParallelCrashHandler(app)
Bases: IPython.core.crashhandler.CrashHandler

sys.excepthook for IPython itself, leaves a detailed report on disk.

__init__(app)

make_report(traceback)
Return a string containing a crash report.

message_template = “Oops, {app_name} crashed. We do our best to make it stable, but...\n\nA crash report was automatically generated with the following information:\n - A verbatim copy of the crash traceback.\n - A copy of your input history during this session.\n - Data on your current {app_name} configuration.\n\nIt was left in the file named:\n\t’{crash_report_fname}’\nIf you can email this file to the developers, the information in it will help\nthem in understanding and correcting the problem.\n\nYou can mail it to: {contact_name} at {contact_email}\nwith the subject ‘{app_name} Crash Report’.\n\nIf you want to do it now, the following command will work (under Unix):\nmail -s ‘{app_name} Crash Report’ {contact_email} < {crash_report_fname}\n\nTo ensure accurate tracking of this issue, please file a report about it at:\n{bug_tracker}\n”

section_sep = ‘\n\n***\n\n’

8.53 parallel.apps.ipclusterapp

8.53.1 Module: parallel.apps.ipclusterapp

Inheritance diagram for IPython.parallel.apps.ipclusterapp:

apps.baseapp.BaseParallelApplication

apps.ipclusterapp.IPClusterEngines

apps.ipclusterapp.IPClusterStop

core.application.BaseIPythonApplication

config.application.Application

apps.ipclusterapp.IPClusterApp

config.configurable.SingletonConfigurableconfig.configurable.Configurable

apps.ipclusterapp.IPClusterStart

utils.traitlets.HasTraits

The ipcluster application.

Authors:

• Brian Granger

• MinRK

8.53. parallel.apps.ipclusterapp 593

IPython Documentation, Release 0.11

8.53.2 Classes

IPClusterApp

class IPython.parallel.apps.ipclusterapp.IPClusterApp(**kwargs)
Bases: IPython.config.application.Application

__init__(**kwargs)

aliases
An instance of a Python dict.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

description = “Start an IPython cluster for parallel computing.\n\nAn IPython cluster consists of 1 controller and 1 or more engines.\nThis command automates the startup of these processes using a wide\nrange of startup methods (SSH, local processes, PBS, mpiexec,\nWindows HPC Server 2008). To start a cluster with 4 engines on your\nlocal host simply do ‘ipcluster start –n=4’. For more complex usage\nyou will typically do ‘ipython profile create mycluster –parallel’, then edit\nconfiguration files, followed by ‘ipcluster start –profile=mycluster –n=4’.\n”

examples = ‘\nipcluster start –n=4 # start a 4 node cluster on localhost\nipcluster start -h # show the help string for the start subcmd\n\nipcluster stop -h # show the help string for the stop subcmd\nipcluster engines -h # show the help string for the engines subcmd\n’

594 Chapter 8. The IPython API

IPython Documentation, Release 0.11

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

initialize(argv=None)
Do the basic steps to configure me.

Override in subclasses.

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

8.53. parallel.apps.ipclusterapp 595

IPython Documentation, Release 0.11

keyvalue_description
A trait for unicode strings.

load_config_file(filename, path=None)
Load a .py based config file by filename and path.

log_level
An enum that whose value must be in a given sequence.

name = u’ipcluster’

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

596 Chapter 8. The IPython API

IPython Documentation, Release 0.11

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

start()

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands = {‘start’: (‘IPython.parallel.apps.ipclusterapp.IPClusterStart’, “Start an IPython cluster for parallel computing\n\nStart an ipython cluster by its profile name or cluster\ndirectory. Cluster directories contain configuration, log and\nsecurity related files and are named using the convention\n’profile_<name>’ and should be creating using the ‘start’\nsubcommand of ‘ipcluster’. If your cluster directory is in \nthe cwd or the ipython directory, you can simply refer to it\nusing its profile name, ‘ipcluster start –n=4 –profile=<profile>‘,\notherwise use the ‘profile-dir’ option.\n”), ‘stop’: (‘IPython.parallel.apps.ipclusterapp.IPClusterStop’, “Stop a running IPython cluster\n\nStop a running ipython cluster by its profile name or cluster\ndirectory. Cluster directories are named using the convention\n’profile_<name>’. If your cluster directory is in \nthe cwd or the ipython directory, you can simply refer to it\nusing its profile name, ‘ipcluster stop –profile=<profile>‘, otherwise\nuse the ‘–profile-dir’ option.\n”), ‘engines’: (‘IPython.parallel.apps.ipclusterapp.IPClusterEngines’, “Start engines connected to an existing IPython cluster\n\nStart one or more engines to connect to an existing Cluster\nby profile name or cluster directory.\nCluster directories contain configuration, log and\nsecurity related files and are named using the convention\n’profile_<name>’ and should be creating using the ‘start’\nsubcommand of ‘ipcluster’. If your cluster directory is in \nthe cwd or the ipython directory, you can simply refer to it\nusing its profile name, ‘ipcluster engines –n=4 –profile=<profile>‘,\notherwise use the ‘profile-dir’ option.\n”)}

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

version
A trait for unicode strings.

IPClusterEngines

class IPython.parallel.apps.ipclusterapp.IPClusterEngines(**kwargs)
Bases: IPython.parallel.apps.baseapp.BaseParallelApplication

__init__(**kwargs)

aliases
An instance of a Python dict.

auto_create
A boolean (True, False) trait.

8.53. parallel.apps.ipclusterapp 597

IPython Documentation, Release 0.11

build_launcher(clsname)
import and instantiate a Launcher based on importstring

builtin_profile_dir
A trait for unicode strings.

check_pid(pid)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

clean_logs
A boolean (True, False) trait.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config_file_name
A trait for unicode strings.

config_file_paths
An instance of a Python list.

598 Chapter 8. The IPython API

IPython Documentation, Release 0.11

config_file_specified
A boolean (True, False) trait.

config_files
An instance of a Python list.

copy_config_files
A boolean (True, False) trait.

crash_handler_class
alias of ParallelCrashHandler

created = None

daemonize
A boolean (True, False) trait.

default_log_level = 20

description = “Start engines connected to an existing IPython cluster\n\nStart one or more engines to connect to an existing Cluster\nby profile name or cluster directory.\nCluster directories contain configuration, log and\nsecurity related files and are named using the convention\n’profile_<name>’ and should be creating using the ‘start’\nsubcommand of ‘ipcluster’. If your cluster directory is in \nthe cwd or the ipython directory, you can simply refer to it\nusing its profile name, ‘ipcluster engines –n=4 –profile=<profile>‘,\notherwise use the ‘profile-dir’ option.\n”

engine_launcher_class
A string holding a valid dotted object name in Python, such as A.b3._c

examples = ‘\nipcluster engines –profile=mycluster –n=4 # start 4 engines only\n’

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

get_pid_from_file()
Get the pid from the pid file.

If the pid file doesn’t exist a PIDFileError is raised.

init_config_files()
[optionally] copy default config files into profile dir.

init_crash_handler()
Create a crash handler, typically setting sys.excepthook to it.

init_launchers()

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

init_profile_dir()
initialize the profile dir

8.53. parallel.apps.ipclusterapp 599

IPython Documentation, Release 0.11

init_signal()

initialize(argv=None)

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

keyvalue_description
A trait for unicode strings.

load_config_file(suppress_errors=True)
Load the config file.

By default, errors in loading config are handled, and a warning printed on screen. For testing,
the suppress_errors option is set to False, so errors will make tests fail.

log_level
An enum that whose value must be in a given sequence.

log_to_file
A boolean (True, False) trait.

600 Chapter 8. The IPython API

IPython Documentation, Release 0.11

log_url
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

n
A integer trait.

name = u’ipcluster’

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

overwrite
A boolean (True, False) trait.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

8.53. parallel.apps.ipclusterapp 601

IPython Documentation, Release 0.11

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

profile
A trait for unicode strings.

reinit_logging()

remove_pid_file()
Remove the pid file.

This should be called at shutdown by registering a callback with
reactor.addSystemEventTrigger(). This needs to return None.

sigint_handler(signum, frame)

stage_default_config_file()
auto generate default config file, and stage it into the profile.

start()
Start the app for the engines subcommand.

start_engines()

start_logging()

stop_engines()

stop_launchers(r=None)

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

to_work_dir()

trait_metadata(traitname, key)
Get metadata values for trait by key.

602 Chapter 8. The IPython API

IPython Documentation, Release 0.11

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

usage = None

version
A trait for unicode strings.

work_dir
A trait for unicode strings.

write_pid_file(overwrite=False)
Create a .pid file in the pid_dir with my pid.

This must be called after pre_construct, which sets self.pid_dir. This raises PIDFileError if
the pid file exists already.

IPClusterStart

class IPython.parallel.apps.ipclusterapp.IPClusterStart(**kwargs)
Bases: IPython.parallel.apps.ipclusterapp.IPClusterEngines

__init__(**kwargs)

aliases
An instance of a Python dict.

auto_create
A boolean (True, False) trait.

build_launcher(clsname)
import and instantiate a Launcher based on importstring

builtin_profile_dir
A trait for unicode strings.

check_pid(pid)

classmethod class_config_section()
Get the config class config section

8.53. parallel.apps.ipclusterapp 603

IPython Documentation, Release 0.11

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

clean_logs
A boolean (True, False) trait.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config_file_name
A trait for unicode strings.

config_file_paths
An instance of a Python list.

config_file_specified
A boolean (True, False) trait.

config_files
An instance of a Python list.

controller_launcher_class
A string holding a valid dotted object name in Python, such as A.b3._c

copy_config_files
A boolean (True, False) trait.

604 Chapter 8. The IPython API

IPython Documentation, Release 0.11

crash_handler_class
alias of ParallelCrashHandler

created = None

daemonize
A boolean (True, False) trait.

default_log_level = 20

delay
A casting version of the float trait.

description = “Start an IPython cluster for parallel computing\n\nStart an ipython cluster by its profile name or cluster\ndirectory. Cluster directories contain configuration, log and\nsecurity related files and are named using the convention\n’profile_<name>’ and should be creating using the ‘start’\nsubcommand of ‘ipcluster’. If your cluster directory is in \nthe cwd or the ipython directory, you can simply refer to it\nusing its profile name, ‘ipcluster start –n=4 –profile=<profile>‘,\notherwise use the ‘profile-dir’ option.\n”

engine_launcher_class
A string holding a valid dotted object name in Python, such as A.b3._c

examples = ‘\nipython profile create mycluster –parallel # create mycluster profile\nipcluster start –profile=mycluster –n=4 # start mycluster with 4 nodes\n’

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

get_pid_from_file()
Get the pid from the pid file.

If the pid file doesn’t exist a PIDFileError is raised.

init_config_files()
[optionally] copy default config files into profile dir.

init_crash_handler()
Create a crash handler, typically setting sys.excepthook to it.

init_launchers()

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

init_profile_dir()
initialize the profile dir

init_signal()

initialize(argv=None)

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

8.53. parallel.apps.ipclusterapp 605

IPython Documentation, Release 0.11

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

keyvalue_description
A trait for unicode strings.

load_config_file(suppress_errors=True)
Load the config file.

By default, errors in loading config are handled, and a warning printed on screen. For testing,
the suppress_errors option is set to False, so errors will make tests fail.

log_level
An enum that whose value must be in a given sequence.

log_to_file
A boolean (True, False) trait.

log_url
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

606 Chapter 8. The IPython API

IPython Documentation, Release 0.11

n
A integer trait.

name = u’ipcluster’

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

overwrite
A boolean (True, False) trait.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

8.53. parallel.apps.ipclusterapp 607

IPython Documentation, Release 0.11

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

profile
A trait for unicode strings.

reinit_logging()

remove_pid_file()
Remove the pid file.

This should be called at shutdown by registering a callback with
reactor.addSystemEventTrigger(). This needs to return None.

reset
A boolean (True, False) trait.

sigint_handler(signum, frame)

stage_default_config_file()
auto generate default config file, and stage it into the profile.

start()
Start the app for the start subcommand.

start_controller()

start_engines()

start_logging()

stop_controller()

stop_engines()

stop_launchers(r=None)

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

to_work_dir()

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

608 Chapter 8. The IPython API

IPython Documentation, Release 0.11

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

usage = None

version
A trait for unicode strings.

work_dir
A trait for unicode strings.

write_pid_file(overwrite=False)
Create a .pid file in the pid_dir with my pid.

This must be called after pre_construct, which sets self.pid_dir. This raises PIDFileError if
the pid file exists already.

IPClusterStop

class IPython.parallel.apps.ipclusterapp.IPClusterStop(**kwargs)
Bases: IPython.parallel.apps.baseapp.BaseParallelApplication

__init__(**kwargs)

aliases
An instance of a Python dict.

auto_create
A boolean (True, False) trait.

builtin_profile_dir
A trait for unicode strings.

check_pid(pid)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

8.53. parallel.apps.ipclusterapp 609

IPython Documentation, Release 0.11

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

clean_logs
A boolean (True, False) trait.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config_file_name
A trait for unicode strings.

config_file_paths
An instance of a Python list.

config_file_specified
A boolean (True, False) trait.

config_files
An instance of a Python list.

copy_config_files
A boolean (True, False) trait.

crash_handler_class
alias of ParallelCrashHandler

created = None

description = “Stop a running IPython cluster\n\nStop a running ipython cluster by its profile name or cluster\ndirectory. Cluster directories are named using the convention\n’profile_<name>’. If your cluster directory is in \nthe cwd or the ipython directory, you can simply refer to it\nusing its profile name, ‘ipcluster stop –profile=<profile>‘, otherwise\nuse the ‘–profile-dir’ option.\n”

examples = ‘\nipcluster stop –profile=mycluster # stop a running cluster by profile name\n’

610 Chapter 8. The IPython API

IPython Documentation, Release 0.11

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

generate_config_file()
generate default config file from Configurables

get_pid_from_file()
Get the pid from the pid file.

If the pid file doesn’t exist a PIDFileError is raised.

init_config_files()
[optionally] copy default config files into profile dir.

init_crash_handler()
Create a crash handler, typically setting sys.excepthook to it.

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

init_profile_dir()
initialize the profile dir

initialize(argv=None)
initialize the app

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

8.53. parallel.apps.ipclusterapp 611

IPython Documentation, Release 0.11

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

keyvalue_description
A trait for unicode strings.

load_config_file(suppress_errors=True)
Load the config file.

By default, errors in loading config are handled, and a warning printed on screen. For testing,
the suppress_errors option is set to False, so errors will make tests fail.

log_level
An enum that whose value must be in a given sequence.

log_to_file
A boolean (True, False) trait.

log_url
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

name = u’ipcluster’

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

612 Chapter 8. The IPython API

IPython Documentation, Release 0.11

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

overwrite
A boolean (True, False) trait.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

profile
A trait for unicode strings.

reinit_logging()

remove_pid_file()
Remove the pid file.

This should be called at shutdown by registering a callback with
reactor.addSystemEventTrigger(). This needs to return None.

signal
A integer trait.

8.53. parallel.apps.ipclusterapp 613

IPython Documentation, Release 0.11

stage_default_config_file()
auto generate default config file, and stage it into the profile.

start()
Start the app for the stop subcommand.

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

to_work_dir()

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

version
A trait for unicode strings.

work_dir
A trait for unicode strings.

write_pid_file(overwrite=False)
Create a .pid file in the pid_dir with my pid.

This must be called after pre_construct, which sets self.pid_dir. This raises PIDFileError if
the pid file exists already.

8.53.3 Function

IPython.parallel.apps.ipclusterapp.launch_new_instance()
Create and run the IPython cluster.

614 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.54 parallel.apps.ipcontrollerapp

8.54.1 Module: parallel.apps.ipcontrollerapp

Inheritance diagram for IPython.parallel.apps.ipcontrollerapp:

apps.ipcontrollerapp.IPControllerAppapps.baseapp.BaseParallelApplicationcore.application.BaseIPythonApplicationconfig.application.Applicationconfig.configurable.SingletonConfigurableconfig.configurable.Configurableutils.traitlets.HasTraits

The IPython controller application.

Authors:

• Brian Granger

• MinRK

8.54.2 IPControllerApp

class IPython.parallel.apps.ipcontrollerapp.IPControllerApp(**kwargs)
Bases: IPython.parallel.apps.baseapp.BaseParallelApplication

__init__(**kwargs)

aliases
An instance of a Python dict.

auto_create
A boolean (True, False) trait.

builtin_profile_dir
A trait for unicode strings.

check_pid(pid)

children
An instance of a Python list.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

8.54. parallel.apps.ipcontrollerapp 615

IPython Documentation, Release 0.11

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes = [<class ‘IPython.core.profiledir.ProfileDir’>, <class ‘IPython.zmq.session.Session’>, <class ‘IPython.parallel.controller.hub.HubFactory’>, <class ‘IPython.parallel.controller.scheduler.TaskScheduler’>, <class ‘IPython.parallel.controller.heartmonitor.HeartMonitor’>, <class ‘IPython.parallel.controller.sqlitedb.SQLiteDB’>, <class ‘IPython.parallel.controller.mongodb.MongoDB’>]

clean_logs
A boolean (True, False) trait.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config_file_name
A trait for unicode strings.

config_file_paths
An instance of a Python list.

config_file_specified
A boolean (True, False) trait.

config_files
An instance of a Python list.

copy_config_files
A boolean (True, False) trait.

crash_handler_class
alias of ParallelCrashHandler

created = None

description = ‘Start the IPython controller for parallel computing.\n\nThe IPython controller provides a gateway between the IPython engines and\nclients. The controller needs to be started before the engines and can be\nconfigured using command line options or using a cluster directory. Cluster\ndirectories contain config, log and security files and are usually located in\nyour ipython directory and named as “profile_name”. See the ‘profile‘\nand ‘profile-dir‘ options for details.\n’

do_import_statements()

examples = ‘\nipcontroller –ip=192.168.0.1 –port=1000 # listen on ip, port for engines\nipcontroller –scheme=pure # use the pure zeromq scheduler\n’

exit(exit_status=0)

616 Chapter 8. The IPython API

IPython Documentation, Release 0.11

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

forward_logging()

generate_config_file()
generate default config file from Configurables

get_pid_from_file()
Get the pid from the pid file.

If the pid file doesn’t exist a PIDFileError is raised.

import_statements
An instance of a Python list.

init_config_files()
[optionally] copy default config files into profile dir.

init_crash_handler()
Create a crash handler, typically setting sys.excepthook to it.

init_hub()

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

init_profile_dir()
initialize the profile dir

init_schedulers()

initialize(argv=None)

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

8.54. parallel.apps.ipcontrollerapp 617

IPython Documentation, Release 0.11

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

keyvalue_description
A trait for unicode strings.

load_config_file(suppress_errors=True)
Load the config file.

By default, errors in loading config are handled, and a warning printed on screen. For testing,
the suppress_errors option is set to False, so errors will make tests fail.

load_config_from_json()
load config from existing json connector files.

location
A trait for unicode strings.

log_level
An enum that whose value must be in a given sequence.

log_to_file
A boolean (True, False) trait.

log_url
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

mq_class
A trait for unicode strings.

name = u’ipcontroller’

618 Chapter 8. The IPython API

IPython Documentation, Release 0.11

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

overwrite
A boolean (True, False) trait.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

8.54. parallel.apps.ipcontrollerapp 619

IPython Documentation, Release 0.11

print_version()
Print the version string.

profile
A trait for unicode strings.

reinit_logging()

remove_pid_file()
Remove the pid file.

This should be called at shutdown by registering a callback with
reactor.addSystemEventTrigger(). This needs to return None.

reuse_files
A boolean (True, False) trait.

save_connection_dict(fname, cdict)
save a connection dict to json file.

save_urls()
save the registration urls to files.

secure
A boolean (True, False) trait.

ssh_server
A trait for unicode strings.

stage_default_config_file()
auto generate default config file, and stage it into the profile.

start()

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

to_work_dir()

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

620 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

use_threads
A boolean (True, False) trait.

version
A trait for unicode strings.

work_dir
A trait for unicode strings.

write_pid_file(overwrite=False)
Create a .pid file in the pid_dir with my pid.

This must be called after pre_construct, which sets self.pid_dir. This raises PIDFileError if
the pid file exists already.

IPython.parallel.apps.ipcontrollerapp.launch_new_instance()
Create and run the IPython controller

8.55 parallel.apps.ipengineapp

8.55.1 Module: parallel.apps.ipengineapp

Inheritance diagram for IPython.parallel.apps.ipengineapp:

apps.baseapp.BaseParallelApplication apps.ipengineapp.IPEngineAppcore.application.BaseIPythonApplicationconfig.application.Applicationconfig.configurable.SingletonConfigurable

config.configurable.Configurable

apps.ipengineapp.MPI

utils.traitlets.HasTraits

The IPython engine application

Authors:

• Brian Granger

• MinRK

8.55. parallel.apps.ipengineapp 621

IPython Documentation, Release 0.11

8.55.2 Classes

IPEngineApp

class IPython.parallel.apps.ipengineapp.IPEngineApp(**kwargs)
Bases: IPython.parallel.apps.baseapp.BaseParallelApplication

__init__(**kwargs)

aliases
An instance of a Python dict.

auto_create
A boolean (True, False) trait.

builtin_profile_dir
A trait for unicode strings.

check_pid(pid)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes
An instance of a Python list.

clean_logs
A boolean (True, False) trait.

622 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config_file_name
A trait for unicode strings.

config_file_paths
An instance of a Python list.

config_file_specified
A boolean (True, False) trait.

config_files
An instance of a Python list.

copy_config_files
A boolean (True, False) trait.

crash_handler_class
alias of ParallelCrashHandler

created = None

description
A trait for unicode strings.

examples = ‘\nipengine –ip=192.168.0.1 –port=1000 # connect to hub at ip and port\nipengine –log-to-file –log-level=DEBUG # log to a file with DEBUG verbosity\n’

exit(exit_status=0)

extra_args
An instance of a Python list.

find_url_file()
Set the url file.

Here we don’t try to actually see if it exists for is valid as that is hadled by the connection logic.

flags
An instance of a Python dict.

forward_logging()

generate_config_file()
generate default config file from Configurables

get_pid_from_file()
Get the pid from the pid file.

If the pid file doesn’t exist a PIDFileError is raised.

init_config_files()
[optionally] copy default config files into profile dir.

8.55. parallel.apps.ipengineapp 623

IPython Documentation, Release 0.11

init_crash_handler()
Create a crash handler, typically setting sys.excepthook to it.

init_engine()

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

init_mpi()

init_profile_dir()
initialize the profile dir

initialize(argv=None)

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

624 Chapter 8. The IPython API

IPython Documentation, Release 0.11

keyvalue_description
A trait for unicode strings.

load_config_file(suppress_errors=True)
Load the config file.

By default, errors in loading config are handled, and a warning printed on screen. For testing,
the suppress_errors option is set to False, so errors will make tests fail.

log_level
An enum that whose value must be in a given sequence.

log_to_file
A boolean (True, False) trait.

log_url
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

name
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

option_description
A trait for unicode strings.

overwrite
A boolean (True, False) trait.

parse_command_line(argv=None)
Parse the command line arguments.

8.55. parallel.apps.ipengineapp 625

IPython Documentation, Release 0.11

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

profile
A trait for unicode strings.

reinit_logging()

remove_pid_file()
Remove the pid file.

This should be called at shutdown by registering a callback with
reactor.addSystemEventTrigger(). This needs to return None.

stage_default_config_file()
auto generate default config file, and stage it into the profile.

start()

startup_command
A trait for unicode strings.

startup_script
A trait for unicode strings.

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subcommand_description
A trait for unicode strings.

626 Chapter 8. The IPython API

IPython Documentation, Release 0.11

subcommands
An instance of a Python dict.

to_work_dir()

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

url_file
A trait for unicode strings.

url_file_name
A trait for unicode strings.

version
A trait for unicode strings.

wait_for_url_file
A float trait.

work_dir
A trait for unicode strings.

write_pid_file(overwrite=False)
Create a .pid file in the pid_dir with my pid.

This must be called after pre_construct, which sets self.pid_dir. This raises PIDFileError if
the pid file exists already.

MPI

class IPython.parallel.apps.ipengineapp.MPI(**kwargs)
Bases: IPython.config.configurable.Configurable

Configurable for MPI initialization

__init__(**kwargs)
Create a configurable given a config config.

8.55. parallel.apps.ipengineapp 627

IPython Documentation, Release 0.11

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

default_inits
An instance of a Python dict.

628 Chapter 8. The IPython API

IPython Documentation, Release 0.11

init_script
A trait for unicode strings.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

use
A trait for unicode strings.

SimpleStruct

8.55.3 Function

IPython.parallel.apps.ipengineapp.launch_new_instance()
Create and run the IPython engine

8.55. parallel.apps.ipengineapp 629

IPython Documentation, Release 0.11

8.56 parallel.apps.iploggerapp

8.56.1 Module: parallel.apps.iploggerapp

Inheritance diagram for IPython.parallel.apps.iploggerapp:

apps.iploggerapp.IPLoggerAppapps.baseapp.BaseParallelApplicationcore.application.BaseIPythonApplicationconfig.application.Applicationconfig.configurable.SingletonConfigurableconfig.configurable.Configurableutils.traitlets.HasTraits

A simple IPython logger application

Authors:

• MinRK

8.56.2 IPLoggerApp

class IPython.parallel.apps.iploggerapp.IPLoggerApp(**kwargs)
Bases: IPython.parallel.apps.baseapp.BaseParallelApplication

__init__(**kwargs)

aliases
An instance of a Python dict.

auto_create
A boolean (True, False) trait.

builtin_profile_dir
A trait for unicode strings.

check_pid(pid)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

630 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

classes = [<class ‘IPython.parallel.apps.logwatcher.LogWatcher’>, <class ‘IPython.core.profiledir.ProfileDir’>]

clean_logs
A boolean (True, False) trait.

classmethod clear_instance()
unset _instance for this class and singleton parents.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config_file_name
A trait for unicode strings.

config_file_paths
An instance of a Python list.

config_file_specified
A boolean (True, False) trait.

config_files
An instance of a Python list.

copy_config_files
A boolean (True, False) trait.

crash_handler_class
alias of ParallelCrashHandler

created = None

description = ‘Start an IPython logger for parallel computing.\n\nIPython controllers and engines (and your own processes) can broadcast log messages\nby registering a ‘zmq.log.handlers.PUBHandler‘ with the ‘logging‘ module. The\nlogger can be configured using command line options or using a cluster\ndirectory. Cluster directories contain config, log and security files and are\nusually located in your ipython directory and named as “profile_name”.\nSee the ‘profile‘ and ‘profile-dir‘ options for details.\n’

examples
A trait for unicode strings.

exit(exit_status=0)

extra_args
An instance of a Python list.

flags
An instance of a Python dict.

8.56. parallel.apps.iploggerapp 631

IPython Documentation, Release 0.11

generate_config_file()
generate default config file from Configurables

get_pid_from_file()
Get the pid from the pid file.

If the pid file doesn’t exist a PIDFileError is raised.

init_config_files()
[optionally] copy default config files into profile dir.

init_crash_handler()
Create a crash handler, typically setting sys.excepthook to it.

init_logging()
Start logging for this application.

The default is to log to stdout using a StreaHandler. The log level starts at loggin.WARN, but
this can be adjusted by setting the log_level attribute.

init_profile_dir()
initialize the profile dir

init_watcher()

initialize(argv=None)

initialize_subcommand(subc, argv=None)
Initialize a subcommand with argv.

classmethod initialized()
Has an instance been created?

classmethod instance(*args, **kwargs)
Returns a global instance of this class.

This method create a new instance if none have previously been created and returns a previously
created instance is one already exists.

The arguments and keyword arguments passed to this method are passed on to the __init__()
method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from IPython.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrived using the base class instance:

632 Chapter 8. The IPython API

IPython Documentation, Release 0.11

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

ipython_dir
A trait for unicode strings.

keyvalue_description
A trait for unicode strings.

load_config_file(suppress_errors=True)
Load the config file.

By default, errors in loading config are handled, and a warning printed on screen. For testing,
the suppress_errors option is set to False, so errors will make tests fail.

log_level
An enum that whose value must be in a given sequence.

log_to_file
A boolean (True, False) trait.

log_url
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

name = u’iplogger’

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

8.56. parallel.apps.iploggerapp 633

IPython Documentation, Release 0.11

option_description
A trait for unicode strings.

overwrite
A boolean (True, False) trait.

parse_command_line(argv=None)
Parse the command line arguments.

print_alias_help()
Print the alias part of the help.

print_description()
Print the application description.

print_examples()
Print usage and examples.

This usage string goes at the end of the command line help string and should contain examples
of the application’s usage.

print_flag_help()
Print the flag part of the help.

print_help(classes=False)
Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

print_options()

print_subcommands()
Print the subcommand part of the help.

print_version()
Print the version string.

profile
A trait for unicode strings.

reinit_logging()

remove_pid_file()
Remove the pid file.

This should be called at shutdown by registering a callback with
reactor.addSystemEventTrigger(). This needs to return None.

stage_default_config_file()
auto generate default config file, and stage it into the profile.

start()

subapp
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

634 Chapter 8. The IPython API

IPython Documentation, Release 0.11

subcommand_description
A trait for unicode strings.

subcommands
An instance of a Python dict.

to_work_dir()

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_config(config)
Fire the traits events when the config is updated.

version
A trait for unicode strings.

work_dir
A trait for unicode strings.

write_pid_file(overwrite=False)
Create a .pid file in the pid_dir with my pid.

This must be called after pre_construct, which sets self.pid_dir. This raises PIDFileError if
the pid file exists already.

IPython.parallel.apps.iploggerapp.launch_new_instance()
Create and run the IPython LogWatcher

8.57 parallel.apps.launcher

8.57.1 Module: parallel.apps.launcher

Inheritance diagram for IPython.parallel.apps.launcher:

8.57. parallel.apps.launcher 635

IPython Documentation, Release 0.11

apps.launcher.PBSEngineSetLauncher

apps.launcher.PBSLauncher

apps.launcher.SGELauncher

apps.launcher.PBSControllerLauncher

apps.launcher.LocalProcessLauncher

apps.launcher.SSHLauncher

apps.launcher.MPIExecLauncher

apps.launcher.LocalEngineLauncher

apps.launcher.IPClusterLauncher

apps.launcher.LocalControllerLauncher

apps.launcher.BaseLauncher

apps.launcher.BatchSystemLauncher

apps.launcher.WindowsHPCLauncher

apps.launcher.LocalEngineSetLauncher

apps.launcher.LSFLauncher apps.launcher.LSFEngineSetLauncher

apps.launcher.LSFControllerLauncher

apps.launcher.ProcessStateError

apps.launcher.LauncherError

apps.launcher.UnknownStatus

utils.traitlets.HasTraits config.configurable.Configurable

apps.launcher.SSHEngineLauncher

apps.launcher.SSHControllerLauncher

apps.launcher.SGEControllerLauncher

apps.launcher.SGEEngineSetLauncher

apps.launcher.MPIExecEngineSetLauncher

apps.launcher.MPIExecControllerLauncher

config.configurable.LoggingConfigurable

apps.launcher.WindowsHPCControllerLauncher

apps.launcher.WindowsHPCEngineSetLauncher

apps.launcher.SSHEngineSetLauncher

Facilities for launching IPython processes asynchronously.

Authors:

• Brian Granger

• MinRK

8.57.2 Classes

BaseLauncher

class IPython.parallel.apps.launcher.BaseLauncher(work_dir=u’.’, config=None,
**kwargs)

Bases: IPython.config.configurable.LoggingConfigurable

An asbtraction for starting, stopping and signaling a process.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

636 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_args()
The .args property calls this to find the args list.

Subcommand should implement this to construct the cmd and args.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

8.57. parallel.apps.launcher 637

IPython Documentation, Release 0.11

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start()
Start the process.

start_data

stop()
Stop the process and notify observers of stopping.

This method will return None immediately. To observe the actual process stopping, see
on_stop().

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

638 Chapter 8. The IPython API

IPython Documentation, Release 0.11

work_dir
A trait for unicode strings.

BatchSystemLauncher

class IPython.parallel.apps.launcher.BatchSystemLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.BaseLauncher

Launch an external process using a batch system.

This class is designed to work with UNIX batch systems like PBS, LSF, GridEngine, etc. The overall
model is that there are different commands like qsub, qdel, etc. that handle the starting and stopping
of the process.

This class also has the notion of a batch script. The batch_template attribute can be set to a
string that is a template for the batch script. This template is instantiated using string formatting.
Thus the template can use {n} fot the number of instances. Subclasses can add additional variables to
the template dict.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

batch_template_file
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

8.57. parallel.apps.launcher 639

IPython Documentation, Release 0.11

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

find_args()

formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

job_array_template
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

640 Chapter 8. The IPython API

IPython Documentation, Release 0.11

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

queue
A trait for unicode strings.

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

8.57. parallel.apps.launcher 641

IPython Documentation, Release 0.11

‘KILL’, ‘INT’, etc., or any signal number

start(n, profile_dir)
Start n copies of the process using a batch system.

start_data

stop()

stop_data

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

IPClusterLauncher

class IPython.parallel.apps.launcher.IPClusterLauncher(work_dir=u’.’, con-
fig=None, **kwargs)

Bases: IPython.parallel.apps.launcher.LocalProcessLauncher

Launch the ipcluster program in an external process.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

642 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cmd_and_args
An instance of a Python list.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_args()

handle_stderr(fd, events)

handle_stdout(fd, events)

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

ipcluster_args
An instance of a Python list.

ipcluster_cmd
An instance of a Python list.

ipcluster_n
A integer trait.

ipcluster_subcommand
A trait for unicode strings.

8.57. parallel.apps.launcher 643

IPython Documentation, Release 0.11

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

running
Am I running.

signal(sig)

644 Chapter 8. The IPython API

IPython Documentation, Release 0.11

start()

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

LSFControllerLauncher

class IPython.parallel.apps.launcher.LSFControllerLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.LSFLauncher

Launch a controller using LSF.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

8.57. parallel.apps.launcher 645

IPython Documentation, Release 0.11

batch_template_file
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

find_args()

formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

646 Chapter 8. The IPython API

IPython Documentation, Release 0.11

job_array_template
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

8.57. parallel.apps.launcher 647

IPython Documentation, Release 0.11

queue
A trait for unicode strings.

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(profile_dir)
Start the controller by profile or profile_dir.

start_data

stop()

stop_data

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

648 Chapter 8. The IPython API

IPython Documentation, Release 0.11

LSFEngineSetLauncher

class IPython.parallel.apps.launcher.LSFEngineSetLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.LSFLauncher

Launch Engines using LSF

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

batch_template_file
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

8.57. parallel.apps.launcher 649

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

find_args()

formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

job_array_template
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

650 Chapter 8. The IPython API

IPython Documentation, Release 0.11

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

queue
A trait for unicode strings.

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(n, profile_dir)
Start n engines by profile or profile_dir.

start_data

stop()

stop_data

8.57. parallel.apps.launcher 651

IPython Documentation, Release 0.11

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

LSFLauncher

class IPython.parallel.apps.launcher.LSFLauncher(work_dir=u’.’, config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.BatchSystemLauncher

A BatchSystemLauncher subclass for LSF.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

batch_template_file
A trait for unicode strings.

652 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

find_args()

formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

job_array_template
A trait for unicode strings.

8.57. parallel.apps.launcher 653

IPython Documentation, Release 0.11

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

queue
A trait for unicode strings.

654 Chapter 8. The IPython API

IPython Documentation, Release 0.11

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(n, profile_dir)
Start n copies of the process using LSF batch system. This cant inherit from the base class
because bsub expects to be piped a shell script in order to honor the #BSUB directives : bsub <
script

start_data

stop()

stop_data

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

8.57. parallel.apps.launcher 655

IPython Documentation, Release 0.11

LauncherError

class IPython.parallel.apps.launcher.LauncherError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

LocalControllerLauncher

class IPython.parallel.apps.launcher.LocalControllerLauncher(work_dir=u’.’,
con-
fig=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.LocalProcessLauncher

Launch a controller as a regular external process.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

656 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cmd_and_args
An instance of a Python list.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

controller_args
An instance of a Python list.

controller_cmd
An instance of a Python list.

created = None

find_args()

handle_stderr(fd, events)

handle_stdout(fd, events)

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

8.57. parallel.apps.launcher 657

IPython Documentation, Release 0.11

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

running
Am I running.

signal(sig)

start(profile_dir)
Start the controller by profile_dir.

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

658 Chapter 8. The IPython API

IPython Documentation, Release 0.11

LocalEngineLauncher

class IPython.parallel.apps.launcher.LocalEngineLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.LocalProcessLauncher

Launch a single engine as a regular externall process.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cmd_and_args
An instance of a Python list.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

8.57. parallel.apps.launcher 659

IPython Documentation, Release 0.11

engine_args
An instance of a Python list.

engine_cmd
An instance of a Python list.

find_args()

handle_stderr(fd, events)

handle_stdout(fd, events)

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

660 Chapter 8. The IPython API

IPython Documentation, Release 0.11

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

running
Am I running.

signal(sig)

start(profile_dir)
Start the engine by profile_dir.

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

LocalEngineSetLauncher

class IPython.parallel.apps.launcher.LocalEngineSetLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.BaseLauncher

Launch a set of engines as regular external processes.

__init__(work_dir=u’.’, config=None, **kwargs)

8.57. parallel.apps.launcher 661

IPython Documentation, Release 0.11

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

engine_args
An instance of a Python list.

find_args()

interrupt_then_kill(delay=1.0)

launcher_class
alias of LocalEngineLauncher

launchers
An instance of a Python dict.

662 Chapter 8. The IPython API

IPython Documentation, Release 0.11

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

running
Am I running.

signal(sig)

start(n, profile_dir)
Start n engines by profile or profile_dir.

start_data

8.57. parallel.apps.launcher 663

IPython Documentation, Release 0.11

stop()

stop_data
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

LocalProcessLauncher

class IPython.parallel.apps.launcher.LocalProcessLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.BaseLauncher

Start and stop an external process in an asynchronous manner.

This will launch the external process with a working directory of self.work_dir.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

664 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cmd_and_args
An instance of a Python list.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_args()

handle_stderr(fd, events)

handle_stdout(fd, events)

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

8.57. parallel.apps.launcher 665

IPython Documentation, Release 0.11

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

running
Am I running.

signal(sig)

start()

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

666 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

MPIExecControllerLauncher

class IPython.parallel.apps.launcher.MPIExecControllerLauncher(work_dir=u’.’,
con-
fig=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.MPIExecLauncher

Launch a controller using mpiexec.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.57. parallel.apps.launcher 667

IPython Documentation, Release 0.11

cmd_and_args
An instance of a Python list.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

controller_args
An instance of a Python list.

controller_cmd
An instance of a Python list.

created = None

find_args()

handle_stderr(fd, events)

handle_stdout(fd, events)

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

mpi_args
An instance of a Python list.

mpi_cmd
An instance of a Python list.

n
A integer trait.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

668 Chapter 8. The IPython API

IPython Documentation, Release 0.11

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

program
An instance of a Python list.

program_args
An instance of a Python list.

running
Am I running.

signal(sig)

start(profile_dir)
Start the controller by profile_dir.

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

8.57. parallel.apps.launcher 669

IPython Documentation, Release 0.11

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

MPIExecEngineSetLauncher

class IPython.parallel.apps.launcher.MPIExecEngineSetLauncher(work_dir=u’.’,
con-
fig=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.MPIExecLauncher

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

670 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cmd_and_args
An instance of a Python list.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_args()
Build self.args using all the fields.

handle_stderr(fd, events)

handle_stdout(fd, events)

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

mpi_args
An instance of a Python list.

mpi_cmd
An instance of a Python list.

n
A integer trait.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

8.57. parallel.apps.launcher 671

IPython Documentation, Release 0.11

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

program
An instance of a Python list.

program_args
An instance of a Python list.

running
Am I running.

signal(sig)

start(n, profile_dir)
Start n engines by profile or profile_dir.

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

672 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

MPIExecLauncher

class IPython.parallel.apps.launcher.MPIExecLauncher(work_dir=u’.’, con-
fig=None, **kwargs)

Bases: IPython.parallel.apps.launcher.LocalProcessLauncher

Launch an external process using mpiexec.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cmd_and_args
An instance of a Python list.

8.57. parallel.apps.launcher 673

IPython Documentation, Release 0.11

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_args()
Build self.args using all the fields.

handle_stderr(fd, events)

handle_stdout(fd, events)

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

mpi_args
An instance of a Python list.

mpi_cmd
An instance of a Python list.

n
A integer trait.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

674 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

program
An instance of a Python list.

program_args
An instance of a Python list.

running
Am I running.

signal(sig)

start(n)
Start n instances of the program using mpiexec.

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.57. parallel.apps.launcher 675

IPython Documentation, Release 0.11

work_dir
A trait for unicode strings.

PBSControllerLauncher

class IPython.parallel.apps.launcher.PBSControllerLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.PBSLauncher

Launch a controller using PBS.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

batch_template_file
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

676 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

find_args()

formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

job_array_template
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

8.57. parallel.apps.launcher 677

IPython Documentation, Release 0.11

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

queue
A trait for unicode strings.

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(profile_dir)
Start the controller by profile or profile_dir.

start_data

stop()

678 Chapter 8. The IPython API

IPython Documentation, Release 0.11

stop_data

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

PBSEngineSetLauncher

class IPython.parallel.apps.launcher.PBSEngineSetLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.PBSLauncher

Launch Engines using PBS

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

8.57. parallel.apps.launcher 679

IPython Documentation, Release 0.11

batch_template_file
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

find_args()

formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

680 Chapter 8. The IPython API

IPython Documentation, Release 0.11

job_array_template
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

8.57. parallel.apps.launcher 681

IPython Documentation, Release 0.11

queue
A trait for unicode strings.

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(n, profile_dir)
Start n engines by profile or profile_dir.

start_data

stop()

stop_data

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

682 Chapter 8. The IPython API

IPython Documentation, Release 0.11

PBSLauncher

class IPython.parallel.apps.launcher.PBSLauncher(work_dir=u’.’, config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.BatchSystemLauncher

A BatchSystemLauncher subclass for PBS.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

batch_template_file
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

8.57. parallel.apps.launcher 683

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

find_args()

formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

job_array_template
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

684 Chapter 8. The IPython API

IPython Documentation, Release 0.11

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

queue
A trait for unicode strings.

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(n, profile_dir)
Start n copies of the process using a batch system.

start_data

stop()

stop_data

8.57. parallel.apps.launcher 685

IPython Documentation, Release 0.11

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

ProcessStateError

class IPython.parallel.apps.launcher.ProcessStateError
Bases: IPython.parallel.apps.launcher.LauncherError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

SGEControllerLauncher

class IPython.parallel.apps.launcher.SGEControllerLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.SGELauncher

Launch a controller using SGE.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

686 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

batch_template_file
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

8.57. parallel.apps.launcher 687

IPython Documentation, Release 0.11

find_args()

formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

job_array_template
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

688 Chapter 8. The IPython API

IPython Documentation, Release 0.11

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

queue
A trait for unicode strings.

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(profile_dir)
Start the controller by profile or profile_dir.

start_data

stop()

stop_data

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.57. parallel.apps.launcher 689

IPython Documentation, Release 0.11

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

SGEEngineSetLauncher

class IPython.parallel.apps.launcher.SGEEngineSetLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.SGELauncher

Launch Engines with SGE

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

batch_template_file
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

690 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

find_args()

formatter
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

job_array_template
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

8.57. parallel.apps.launcher 691

IPython Documentation, Release 0.11

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

queue
A trait for unicode strings.

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

692 Chapter 8. The IPython API

IPython Documentation, Release 0.11

start(n, profile_dir)
Start n engines by profile or profile_dir.

start_data

stop()

stop_data

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

SGELauncher

class IPython.parallel.apps.launcher.SGELauncher(work_dir=u’.’, config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.PBSLauncher

Sun GridEngine is a PBS clone with slightly different syntax

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

batch_file
A trait for unicode strings.

8.57. parallel.apps.launcher 693

IPython Documentation, Release 0.11

batch_file_name
A trait for unicode strings.

batch_template
A trait for unicode strings.

batch_template_file
A trait for unicode strings.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
An instance of a Python dict.

created = None

default_template
A trait for unicode strings.

delete_command
An instance of a Python list.

find_args()

formatter
A trait whose value must be an instance of a specified class.

694 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The value can also be an instance of a subclass of the specified class.

job_array_regexp
A trait for unicode strings.

job_array_template
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

8.57. parallel.apps.launcher 695

IPython Documentation, Release 0.11

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

queue
A trait for unicode strings.

queue_regexp
A trait for unicode strings.

queue_template
A trait for unicode strings.

running
Am I running.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(n, profile_dir)
Start n copies of the process using a batch system.

start_data

stop()

stop_data

submit_command
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_batch_script(n)
Instantiate and write the batch script to the work_dir.

696 Chapter 8. The IPython API

IPython Documentation, Release 0.11

SSHControllerLauncher

class IPython.parallel.apps.launcher.SSHControllerLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.SSHLauncher

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cmd_and_args
An instance of a Python list.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_args()

8.57. parallel.apps.launcher 697

IPython Documentation, Release 0.11

handle_stderr(fd, events)

handle_stdout(fd, events)

hostname
A trait for unicode strings.

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

location
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

698 Chapter 8. The IPython API

IPython Documentation, Release 0.11

remove : bool

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

program
An instance of a Python list.

program_args
An instance of a Python list.

running
Am I running.

signal(sig)

ssh_args
An instance of a Python list.

ssh_cmd
An instance of a Python list.

start(profile_dir, hostname=None, user=None)

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

user
A trait for unicode strings.

work_dir
A trait for unicode strings.

8.57. parallel.apps.launcher 699

IPython Documentation, Release 0.11

SSHEngineLauncher

class IPython.parallel.apps.launcher.SSHEngineLauncher(work_dir=u’.’, con-
fig=None, **kwargs)

Bases: IPython.parallel.apps.launcher.SSHLauncher

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cmd_and_args
An instance of a Python list.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_args()

handle_stderr(fd, events)

700 Chapter 8. The IPython API

IPython Documentation, Release 0.11

handle_stdout(fd, events)

hostname
A trait for unicode strings.

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

location
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

8.57. parallel.apps.launcher 701

IPython Documentation, Release 0.11

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

program
An instance of a Python list.

program_args
An instance of a Python list.

running
Am I running.

signal(sig)

ssh_args
An instance of a Python list.

ssh_cmd
An instance of a Python list.

start(profile_dir, hostname=None, user=None)

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

user
A trait for unicode strings.

work_dir
A trait for unicode strings.

702 Chapter 8. The IPython API

IPython Documentation, Release 0.11

SSHEngineSetLauncher

class IPython.parallel.apps.launcher.SSHEngineSetLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.LocalEngineSetLauncher

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

engine_args
An instance of a Python list.

8.57. parallel.apps.launcher 703

IPython Documentation, Release 0.11

engines
An instance of a Python dict.

find_args()

interrupt_then_kill(delay=1.0)

launcher_class
alias of SSHEngineLauncher

launchers
An instance of a Python dict.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

704 Chapter 8. The IPython API

IPython Documentation, Release 0.11

remove : bool

If False (the default), then install the handler. If True then unintall it.

running
Am I running.

signal(sig)

start(n, profile_dir)
Start engines by profile or profile_dir. n is ignored, and the engines config property is used
instead.

start_data

stop()

stop_data
An instance of a Python dict.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

SSHLauncher

class IPython.parallel.apps.launcher.SSHLauncher(work_dir=u’.’, config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.LocalProcessLauncher

A minimal launcher for ssh.

To be useful this will probably have to be extended to use the sshx idea for environment variables.
There could be other things this needs as well.

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

8.57. parallel.apps.launcher 705

IPython Documentation, Release 0.11

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

cmd_and_args
An instance of a Python list.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_args()

handle_stderr(fd, events)

handle_stdout(fd, events)

hostname
A trait for unicode strings.

interrupt_then_kill(delay=2.0)
Send INT, wait a delay and then send KILL.

location
A trait for unicode strings.

706 Chapter 8. The IPython API

IPython Documentation, Release 0.11

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

poll()

poll_frequency
A integer trait.

program
An instance of a Python list.

8.57. parallel.apps.launcher 707

IPython Documentation, Release 0.11

program_args
An instance of a Python list.

running
Am I running.

signal(sig)

ssh_args
An instance of a Python list.

ssh_cmd
An instance of a Python list.

start(profile_dir, hostname=None, user=None)

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

user
A trait for unicode strings.

work_dir
A trait for unicode strings.

UnknownStatus

class IPython.parallel.apps.launcher.UnknownStatus
Bases: IPython.parallel.apps.launcher.LauncherError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

708 Chapter 8. The IPython API

IPython Documentation, Release 0.11

WindowsHPCControllerLauncher

class IPython.parallel.apps.launcher.WindowsHPCControllerLauncher(work_dir=u’.’,
con-
fig=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.WindowsHPCLauncher

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

extra_args
An instance of a Python list.

8.57. parallel.apps.launcher 709

IPython Documentation, Release 0.11

find_args()

job_cmd
A trait for unicode strings.

job_file

job_file_name
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

710 Chapter 8. The IPython API

IPython Documentation, Release 0.11

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

running
Am I running.

scheduler
A trait for unicode strings.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(profile_dir)
Start the controller by profile_dir.

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_job_file(n)

8.57. parallel.apps.launcher 711

IPython Documentation, Release 0.11

WindowsHPCEngineSetLauncher

class IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher(work_dir=u’.’,
con-
fig=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.WindowsHPCLauncher

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

extra_args
An instance of a Python list.

712 Chapter 8. The IPython API

IPython Documentation, Release 0.11

find_args()

job_cmd
A trait for unicode strings.

job_file

job_file_name
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

8.57. parallel.apps.launcher 713

IPython Documentation, Release 0.11

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

running
Am I running.

scheduler
A trait for unicode strings.

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(n, profile_dir)
Start the controller by profile_dir.

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_job_file(n)

WindowsHPCLauncher

class IPython.parallel.apps.launcher.WindowsHPCLauncher(work_dir=u’.’,
config=None,
**kwargs)

Bases: IPython.parallel.apps.launcher.BaseLauncher

714 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__(work_dir=u’.’, config=None, **kwargs)

arg_str
The string form of the program arguments.

args
A list of cmd and args that will be used to start the process.

This is what is passed to spawnProcess() and the first element will be the process name.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

find_args()

job_cmd
A trait for unicode strings.

job_file

job_file_name
A trait for unicode strings.

job_id_regexp
A trait for unicode strings.

8.57. parallel.apps.launcher 715

IPython Documentation, Release 0.11

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notify_start(data)
Call this to trigger startup actions.

This logs the process startup and sets the state to ‘running’. It is a pass-through so it can be used
as a callback.

notify_stop(data)
Call this to trigger process stop actions.

This logs the process stopping and sets the state to ‘after’. Call this to trigger callbacks registered
via on_stop().

on_stop(f)
Register a callback to be called with this Launcher’s stop_data when the process actually fin-
ishes.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

parse_job_id(output)
Take the output of the submit command and return the job id.

running
Am I running.

scheduler
A trait for unicode strings.

716 Chapter 8. The IPython API

IPython Documentation, Release 0.11

signal(sig)
Signal the process.

Parameters sig : str or int

‘KILL’, ‘INT’, etc., or any signal number

start(n)
Start n copies of the process using the Win HPC job scheduler.

start_data

stop()

stop_data

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

work_dir
A trait for unicode strings.

write_job_file(n)

8.57.3 Function

IPython.parallel.apps.launcher.find_job_cmd()

8.58 parallel.apps.logwatcher

8.58.1 Module: parallel.apps.logwatcher

Inheritance diagram for IPython.parallel.apps.logwatcher:

apps.logwatcher.LogWatcherconfig.configurable.LoggingConfigurableconfig.configurable.Configurableutils.traitlets.HasTraits

8.58. parallel.apps.logwatcher 717

IPython Documentation, Release 0.11

A simple logger object that consolidates messages incoming from ipcluster processes.

Authors:

• MinRK

8.58.2 LogWatcher

class IPython.parallel.apps.logwatcher.LogWatcher(**kwargs)
Bases: IPython.config.configurable.LoggingConfigurable

A simple class that receives messages on a SUB socket, as published by subclasses of
zmq.log.handlers.PUBHandler, and logs them itself.

This can subscribe to multiple topics, but defaults to all topics.

__init__(**kwargs)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

718 Chapter 8. The IPython API

IPython Documentation, Release 0.11

created = None

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

log_message(raw)
receive and parse a message, then log it.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

start()

stop()

stream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

subscribe()
Update our SUB socket’s subscriptions.

topics
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

8.58. parallel.apps.logwatcher 719

IPython Documentation, Release 0.11

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

url
A trait for unicode strings.

8.59 parallel.apps.win32support

8.59.1 Module: parallel.apps.win32support

Inheritance diagram for IPython.parallel.apps.win32support:

apps.win32support.ForwarderThreadthreading.Threadthreading._Verbose

Utility for forwarding file read events over a zmq socket.

This is necessary because select on Windows only supports sockets, not FDs.

Authors:

• MinRK

8.59.2 ForwarderThread

class IPython.parallel.apps.win32support.ForwarderThread(sock, fd)
Bases: threading.Thread

__init__(sock, fd)

daemon

getName()

ident

isAlive()

isDaemon()

is_alive()

720 Chapter 8. The IPython API

IPython Documentation, Release 0.11

join(timeout=None)

name

run()
Loop through lines in self.fd, and send them over self.sock.

setDaemon(daemonic)

setName(name)

start()

IPython.parallel.apps.win32support.forward_read_events(fd, con-
text=None)

Forward read events from an FD over a socket.

This method wraps a file in a socket pair, so it can be polled for read events by select (specifically
zmq.eventloop.ioloop)

8.60 parallel.apps.winhpcjob

8.60.1 Module: parallel.apps.winhpcjob

Inheritance diagram for IPython.parallel.apps.winhpcjob:

utils.traitlets.HasTraits config.configurable.Configurable

apps.winhpcjob.WinHPCJob

apps.winhpcjob.IPEngineSetJob

apps.winhpcjob.IPControllerJob

apps.winhpcjob.WinHPCTask apps.winhpcjob.IPControllerTask

apps.winhpcjob.IPEngineTask

Job and task components for writing .xml files that the Windows HPC Server 2008 can use to start jobs.

Authors:

• Brian Granger

• MinRK

8.60.2 Classes

IPControllerJob

class IPython.parallel.apps.winhpcjob.IPControllerJob(**kwargs)
Bases: IPython.parallel.apps.winhpcjob.WinHPCJob

8.60. parallel.apps.winhpcjob 721

IPython Documentation, Release 0.11

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

add_task(task)
Add a task to the job.

Parameters task : WinHPCTask

The task object to add.

as_element()

auto_calculate_max
A boolean (True, False) trait.

auto_calculate_min
A boolean (True, False) trait.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

722 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

is_exclusive
A boolean (True, False) trait.

job_id
A trait for unicode strings.

job_name
A trait for unicode strings.

job_type
A trait for unicode strings.

max_cores
A integer trait.

max_nodes
A integer trait.

max_sockets
A integer trait.

min_cores
A integer trait.

min_nodes
A integer trait.

min_sockets
A integer trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

8.60. parallel.apps.winhpcjob 723

IPython Documentation, Release 0.11

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

owner

priority
An enum that whose value must be in a given sequence.

project
A trait for unicode strings.

requested_nodes
A trait for unicode strings.

run_until_canceled
A boolean (True, False) trait.

tasks
An instance of a Python list.

tostring()
Return the string representation of the job description XML.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unit_type
A trait for unicode strings.

username
A trait for unicode strings.

version
A trait for unicode strings.

write(filename)
Write the XML job description to a file.

724 Chapter 8. The IPython API

IPython Documentation, Release 0.11

xmlns
A trait for unicode strings.

IPControllerTask

class IPython.parallel.apps.winhpcjob.IPControllerTask(config=None)
Bases: IPython.parallel.apps.winhpcjob.WinHPCTask

__init__(config=None)

as_element()

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

command_line

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

controller_args
An instance of a Python list.

controller_cmd
An instance of a Python list.

created = None

8.60. parallel.apps.winhpcjob 725

IPython Documentation, Release 0.11

environment_variables
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

get_env_vars()

is_parametric
A boolean (True, False) trait.

is_rerunnaable
A boolean (True, False) trait.

max_cores
A integer trait.

max_nodes
A integer trait.

max_sockets
A integer trait.

min_cores
A integer trait.

min_nodes
A integer trait.

min_sockets
A integer trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

std_err_file_path
A trait for unicode strings.

726 Chapter 8. The IPython API

IPython Documentation, Release 0.11

std_out_file_path
A trait for unicode strings.

task_id
A trait for unicode strings.

task_name
A trait for unicode strings.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unit_type
A trait for unicode strings.

version
A trait for unicode strings.

work_directory
A trait for unicode strings.

IPEngineSetJob

class IPython.parallel.apps.winhpcjob.IPEngineSetJob(**kwargs)
Bases: IPython.parallel.apps.winhpcjob.WinHPCJob

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

8.60. parallel.apps.winhpcjob 727

IPython Documentation, Release 0.11

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

add_task(task)
Add a task to the job.

Parameters task : WinHPCTask

The task object to add.

as_element()

auto_calculate_max
A boolean (True, False) trait.

auto_calculate_min
A boolean (True, False) trait.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

728 Chapter 8. The IPython API

IPython Documentation, Release 0.11

is_exclusive
A boolean (True, False) trait.

job_id
A trait for unicode strings.

job_name
A trait for unicode strings.

job_type
A trait for unicode strings.

max_cores
A integer trait.

max_nodes
A integer trait.

max_sockets
A integer trait.

min_cores
A integer trait.

min_nodes
A integer trait.

min_sockets
A integer trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

owner

priority
An enum that whose value must be in a given sequence.

8.60. parallel.apps.winhpcjob 729

IPython Documentation, Release 0.11

project
A trait for unicode strings.

requested_nodes
A trait for unicode strings.

run_until_canceled
A boolean (True, False) trait.

tasks
An instance of a Python list.

tostring()
Return the string representation of the job description XML.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unit_type
A trait for unicode strings.

username
A trait for unicode strings.

version
A trait for unicode strings.

write(filename)
Write the XML job description to a file.

xmlns
A trait for unicode strings.

IPEngineTask

class IPython.parallel.apps.winhpcjob.IPEngineTask(config=None)
Bases: IPython.parallel.apps.winhpcjob.WinHPCTask

__init__(config=None)

as_element()

730 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

command_line

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

engine_args
An instance of a Python list.

engine_cmd
An instance of a Python list.

environment_variables
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

get_env_vars()

is_parametric
A boolean (True, False) trait.

is_rerunnaable
A boolean (True, False) trait.

8.60. parallel.apps.winhpcjob 731

IPython Documentation, Release 0.11

max_cores
A integer trait.

max_nodes
A integer trait.

max_sockets
A integer trait.

min_cores
A integer trait.

min_nodes
A integer trait.

min_sockets
A integer trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

std_err_file_path
A trait for unicode strings.

std_out_file_path
A trait for unicode strings.

task_id
A trait for unicode strings.

task_name
A trait for unicode strings.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

732 Chapter 8. The IPython API

IPython Documentation, Release 0.11

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unit_type
A trait for unicode strings.

version
A trait for unicode strings.

work_directory
A trait for unicode strings.

WinHPCJob

class IPython.parallel.apps.winhpcjob.WinHPCJob(**kwargs)
Bases: IPython.config.configurable.Configurable

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

add_task(task)
Add a task to the job.

Parameters task : WinHPCTask

The task object to add.

as_element()

8.60. parallel.apps.winhpcjob 733

IPython Documentation, Release 0.11

auto_calculate_max
A boolean (True, False) trait.

auto_calculate_min
A boolean (True, False) trait.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

is_exclusive
A boolean (True, False) trait.

job_id
A trait for unicode strings.

job_name
A trait for unicode strings.

job_type
A trait for unicode strings.

max_cores
A integer trait.

734 Chapter 8. The IPython API

IPython Documentation, Release 0.11

max_nodes
A integer trait.

max_sockets
A integer trait.

min_cores
A integer trait.

min_nodes
A integer trait.

min_sockets
A integer trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

owner

priority
An enum that whose value must be in a given sequence.

project
A trait for unicode strings.

requested_nodes
A trait for unicode strings.

run_until_canceled
A boolean (True, False) trait.

tasks
An instance of a Python list.

tostring()
Return the string representation of the job description XML.

8.60. parallel.apps.winhpcjob 735

IPython Documentation, Release 0.11

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unit_type
A trait for unicode strings.

username
A trait for unicode strings.

version
A trait for unicode strings.

write(filename)
Write the XML job description to a file.

xmlns
A trait for unicode strings.

WinHPCTask

class IPython.parallel.apps.winhpcjob.WinHPCTask(**kwargs)
Bases: IPython.config.configurable.Configurable

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

736 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This ensures that instances will be configured properly.

as_element()

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

command_line
A trait for unicode strings.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

environment_variables
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

get_env_vars()

is_parametric
A boolean (True, False) trait.

is_rerunnaable
A boolean (True, False) trait.

max_cores
A integer trait.

8.60. parallel.apps.winhpcjob 737

IPython Documentation, Release 0.11

max_nodes
A integer trait.

max_sockets
A integer trait.

min_cores
A integer trait.

min_nodes
A integer trait.

min_sockets
A integer trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

std_err_file_path
A trait for unicode strings.

std_out_file_path
A trait for unicode strings.

task_id
A trait for unicode strings.

task_name
A trait for unicode strings.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

738 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unit_type
A trait for unicode strings.

version
A trait for unicode strings.

work_directory
A trait for unicode strings.

8.60.3 Functions

IPython.parallel.apps.winhpcjob.as_str(value)

IPython.parallel.apps.winhpcjob.find_username()

IPython.parallel.apps.winhpcjob.indent(elem, level=0)

8.61 parallel.client.asyncresult

8.61.1 Module: parallel.client.asyncresult

Inheritance diagram for IPython.parallel.client.asyncresult:

client.asyncresult.AsyncHubResult

client.asyncresult.AsyncResult

client.asyncresult.AsyncMapResult

AsyncResult objects for the client

Authors:

• MinRK

8.61. parallel.client.asyncresult 739

IPython Documentation, Release 0.11

8.61.2 Classes

AsyncHubResult

class IPython.parallel.client.asyncresult.AsyncHubResult(client, msg_ids,
fname=’unknown’,
targets=None,
tracker=None)

Bases: IPython.parallel.client.asyncresult.AsyncResult

Class to wrap pending results that must be requested from the Hub.

Note that waiting/polling on these objects requires polling the Hubover the network, so use
AsyncHubResult.wait() sparingly.

__init__(client, msg_ids, fname=’unknown’, targets=None, tracker=None)

abort()
abort my tasks.

get(timeout=-1)
Return the result when it arrives.

If timeout is not None and the result does not arrive within timeout seconds then
TimeoutError is raised. If the remote call raised an exception then that exception will be
reraised by get() inside a RemoteError.

get_dict(timeout=-1)
Get the results as a dict, keyed by engine_id.

timeout behavior is described in get().

metadata
property for accessing execution metadata.

msg_ids = None

r
result property wrapper for get(timeout=0).

ready()
Return whether the call has completed.

result
result property wrapper for get(timeout=0).

result_dict
result property as a dict.

sent
check whether my messages have been sent.

successful()
Return whether the call completed without raising an exception.

Will raise AssertionError if the result is not ready.

740 Chapter 8. The IPython API

IPython Documentation, Release 0.11

wait(timeout=-1)
wait for result to complete.

wait_for_send(timeout=-1)
wait for pyzmq send to complete.

This is necessary when sending arrays that you intend to edit in-place. timeout is in seconds,
and will raise TimeoutError if it is reached before the send completes.

AsyncMapResult

class IPython.parallel.client.asyncresult.AsyncMapResult(client, msg_ids,
mapObject,
fname=’‘)

Bases: IPython.parallel.client.asyncresult.AsyncResult

Class for representing results of non-blocking gathers.

This will properly reconstruct the gather.

__init__(client, msg_ids, mapObject, fname=’‘)

abort()
abort my tasks.

get(timeout=-1)
Return the result when it arrives.

If timeout is not None and the result does not arrive within timeout seconds then
TimeoutError is raised. If the remote call raised an exception then that exception will be
reraised by get() inside a RemoteError.

get_dict(timeout=-1)
Get the results as a dict, keyed by engine_id.

timeout behavior is described in get().

metadata
property for accessing execution metadata.

msg_ids = None

r
result property wrapper for get(timeout=0).

ready()
Return whether the call has completed.

result
result property wrapper for get(timeout=0).

result_dict
result property as a dict.

sent
check whether my messages have been sent.

8.61. parallel.client.asyncresult 741

IPython Documentation, Release 0.11

successful()
Return whether the call completed without raising an exception.

Will raise AssertionError if the result is not ready.

wait(timeout=-1)
Wait until the result is available or until timeout seconds pass.

This method always returns None.

wait_for_send(timeout=-1)
wait for pyzmq send to complete.

This is necessary when sending arrays that you intend to edit in-place. timeout is in seconds,
and will raise TimeoutError if it is reached before the send completes.

AsyncResult

class IPython.parallel.client.asyncresult.AsyncResult(client, msg_ids,
fname=’unknown’,
targets=None,
tracker=None)

Bases: object

Class for representing results of non-blocking calls.

Provides the same interface as multiprocessing.pool.AsyncResult.

__init__(client, msg_ids, fname=’unknown’, targets=None, tracker=None)

abort()
abort my tasks.

get(timeout=-1)
Return the result when it arrives.

If timeout is not None and the result does not arrive within timeout seconds then
TimeoutError is raised. If the remote call raised an exception then that exception will be
reraised by get() inside a RemoteError.

get_dict(timeout=-1)
Get the results as a dict, keyed by engine_id.

timeout behavior is described in get().

metadata
property for accessing execution metadata.

msg_ids = None

r
result property wrapper for get(timeout=0).

ready()
Return whether the call has completed.

742 Chapter 8. The IPython API

IPython Documentation, Release 0.11

result
result property wrapper for get(timeout=0).

result_dict
result property as a dict.

sent
check whether my messages have been sent.

successful()
Return whether the call completed without raising an exception.

Will raise AssertionError if the result is not ready.

wait(timeout=-1)
Wait until the result is available or until timeout seconds pass.

This method always returns None.

wait_for_send(timeout=-1)
wait for pyzmq send to complete.

This is necessary when sending arrays that you intend to edit in-place. timeout is in seconds,
and will raise TimeoutError if it is reached before the send completes.

8.61.3 Function

IPython.parallel.client.asyncresult.check_ready(f)
Call spin() to sync state prior to calling the method.

8.62 parallel.client.client

8.62.1 Module: parallel.client.client

Inheritance diagram for IPython.parallel.client.client:

client.client.Metadata

client.client.Clientutils.traitlets.HasTraits

A semi-synchronous Client for the ZMQ cluster

Authors:

8.62. parallel.client.client 743

IPython Documentation, Release 0.11

• MinRK

8.62.2 Classes

Client

class IPython.parallel.client.client.Client(url_or_file=None, profile=None,
profile_dir=None, ipython_dir=None,
context=None, debug=False,
exec_key=None, sshserver=None,
sshkey=None, password=None,
paramiko=None, timeout=10, **ex-
tra_args)

Bases: IPython.utils.traitlets.HasTraits

A semi-synchronous client to the IPython ZMQ cluster

Parameters url_or_file : bytes or unicode; zmq url or path to ipcontroller-client.json

Connection information for the Hub’s registration. If a json connector file is
given, then likely no further configuration is necessary. [Default: use profile]

profile : bytes

The name of the Cluster profile to be used to find connector information. If
run from an IPython application, the default profile will be the same as the
running application, otherwise it will be ‘default’.

context : zmq.Context

Pass an existing zmq.Context instance, otherwise the client will create its
own.

debug : bool

flag for lots of message printing for debug purposes

timeout : int/float

time (in seconds) to wait for connection replies from the Hub [Default: 10]

#————– session related args —————- :

config : Config object

If specified, this will be relayed to the Session for configuration

username : str

set username for the session object

packer : str (import_string) or callable

Can be either the simple keyword ‘json’ or ‘pickle’, or an import_string to a
function to serialize messages. Must support same input as JSON, and output
must be bytes. You can pass a callable directly as pack

744 Chapter 8. The IPython API

IPython Documentation, Release 0.11

unpacker : str (import_string) or callable

The inverse of packer. Only necessary if packer is specified as not one of
‘json’ or ‘pickle’.

#————– ssh related args —————- :

These are args for configuring the ssh tunnel to be used :

credentials are used to forward connections over ssh to the Controller :

Note that the ip given in ‘addr‘ needs to be relative to sshserver :

The most basic case is to leave addr as pointing to localhost (127.0.0.1), :

and set sshserver as the same machine the Controller is on. However, :

the only requirement is that sshserver is able to see the Controller :

(i.e. is within the same trusted network). :

sshserver : str

A string of the form passed to ssh, i.e. ‘server.tld’ or ‘user@server.tld:port’ If
keyfile or password is specified, and this is not, it will default to the ip given
in addr.

sshkey : str; path to public ssh key file

This specifies a key to be used in ssh login, default None. Regular default ssh
keys will be used without specifying this argument.

password : str

Your ssh password to sshserver. Note that if this is left None, you will be
prompted for it if passwordless key based login is unavailable.

paramiko : bool

flag for whether to use paramiko instead of shell ssh for tunneling. [default:
True on win32, False else]

——- exec authentication args ——- :

If even localhost is untrusted, you can have some protection against :

unauthorized execution by signing messages with HMAC digests. :

Messages are still sent as cleartext, so if someone can snoop your :

loopback traffic this will not protect your privacy, but will prevent :

unauthorized execution. :

exec_key : str

an authentication key or file containing a key default: None

Attributes ids : list of int engine IDs

8.62. parallel.client.client 745

mailto:'user@server.tld

IPython Documentation, Release 0.11

requesting the ids attribute always synchronizes the registration state. To re-
quest ids without synchronization, use semi-private _ids attributes.

history : list of msg_ids

a list of msg_ids, keeping track of all the execution messages you have sub-
mitted in order.

outstanding : set of msg_ids

a set of msg_ids that have been submitted, but whose results have not yet been
received.

results : dict

a dict of all our results, keyed by msg_id

block : bool

determines default behavior when block not specified in execution methods

Methods spin :

flushes incoming results and registration state changes control methods spin,
and requesting ids also ensures up to date

wait :

wait on one or more msg_ids

execution methods :

apply legacy: execute, run

data movement :

push, pull, scatter, gather

query methods :

queue_status, get_result, purge, result_status

control methods :

abort, shutdown

__init__(url_or_file=None, profile=None, profile_dir=None, ipython_dir=None, con-
text=None, debug=False, exec_key=None, sshserver=None, sshkey=None, pass-
word=None, paramiko=None, timeout=10, **extra_args)

abort(jobs=None, targets=None, block=None)
Abort specific jobs from the execution queues of target(s).

This is a mechanism to prevent jobs that have already been submitted from executing.

Parameters jobs : msg_id, list of msg_ids, or AsyncResult

The jobs to be aborted

block
A boolean (True, False) trait.

746 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

clear(targets=None, block=None)
Clear the namespace in target(s).

close()

db_query(query, keys=None)
Query the Hub’s TaskRecord database

This will return a list of task record dicts that match query

Parameters query : mongodb query dict

The search dict. See mongodb query docs for details.

keys : list of strs [optional]

The subset of keys to be returned. The default is to fetch everything but
buffers. ‘msg_id’ will always be included.

debug
A boolean (True, False) trait.

direct_view(targets=’all’)
construct a DirectView object.

If no targets are specified, create a DirectView using all engines.

Parameters targets: list,slice,int,etc. [default: use all engines] :

The engines to use for the View

get_result(indices_or_msg_ids=None, block=None)
Retrieve a result by msg_id or history index, wrapped in an AsyncResult object.

If the client already has the results, no request to the Hub will be made.

This is a convenient way to construct AsyncResult objects, which are wrappers that include
metadata about execution, and allow for awaiting results that were not submitted by this Client.

It can also be a convenient way to retrieve the metadata associated with blocking execution,
since it always retrieves

8.62. parallel.client.client 747

IPython Documentation, Release 0.11

Parameters indices_or_msg_ids : integer history index, str msg_id, or list of either

The indices or msg_ids of indices to be retrieved

block : bool

Whether to wait for the result to be done

Returns AsyncResult :

A single AsyncResult object will always be returned.

AsyncHubResult :

A subclass of AsyncResult that retrieves results from the Hub

Examples

In [10]: r = client.apply()

history
An instance of a Python list.

hub_history()
Get the Hub’s history

Just like the Client, the Hub has a history, which is a list of msg_ids. This will contain the his-
tory of all clients, and, depending on configuration, may contain history across multiple cluster
sessions.

Any msg_id returned here is a valid argument to get_result.

Returns msg_ids : list of strs

list of all msg_ids, ordered by task submission time.

ids
Always up-to-date ids property.

load_balanced_view(targets=None)
construct a DirectView object.

If no arguments are specified, create a LoadBalancedView using all engines.

Parameters targets: list,slice,int,etc. [default: use all engines] :

The subset of engines across which to load-balance

metadata
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

748 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

outstanding
An instance of a Python set.

profile
A trait for unicode strings.

purge_results(jobs=[], targets=[])
Tell the Hub to forget results.

Individual results can be purged by msg_id, or the entire history of specific targets can be purged.

Use purge_results(‘all’) to scrub everything from the Hub’s db.

Parameters jobs : str or list of str or AsyncResult objects

the msg_ids whose results should be forgotten.

targets : int/str/list of ints/strs

The targets, by int_id, whose entire history is to be purged.

default : None

queue_status(targets=’all’, verbose=False)
Fetch the status of engine queues.

Parameters targets : int/str/list of ints/strs

the engines whose states are to be queried. default : all

verbose : bool

Whether to return lengths only, or lists of ids for each element

resubmit(indices_or_msg_ids=None, subheader=None, block=None)
Resubmit one or more tasks.

in-flight tasks may not be resubmitted.

Parameters indices_or_msg_ids : integer history index, str msg_id, or list of either

The indices or msg_ids of indices to be retrieved

8.62. parallel.client.client 749

IPython Documentation, Release 0.11

block : bool

Whether to wait for the result to be done

Returns AsyncHubResult :

A subclass of AsyncResult that retrieves results from the Hub

result_status(msg_ids, status_only=True)
Check on the status of the result(s) of the apply request with msg_ids.

If status_only is False, then the actual results will be retrieved, else only the status of the results
will be checked.

Parameters msg_ids : list of msg_ids

if int: Passed as index to self.history for convenience.

status_only : bool (default: True)

if False: Retrieve the actual results of completed tasks.

Returns results : dict

There will always be the keys ‘pending’ and ‘completed’, which will be lists
of msg_ids that are incomplete or complete. If status_only is False, then
completed results will be keyed by their msg_id.

results
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

send_apply_message(socket, f, args=None, kwargs=None, subheader=None,
track=False, ident=None)

construct and send an apply message via a socket.

This is the principal method with which all engine execution is performed by views.

shutdown(targets=None, restart=False, hub=False, block=None)
Terminates one or more engine processes, optionally including the hub.

spin()
Flush any registration notifications and execution results waiting in the ZMQ queue.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

750 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

wait(jobs=None, timeout=-1)
waits on one or more jobs, for up to timeout seconds.

Parameters jobs : int, str, or list of ints and/or strs, or one or more AsyncResult
objects

ints are indices to self.history strs are msg_ids default: wait on all outstanding
messages

timeout : float

a time in seconds, after which to give up. default is -1, which means no
timeout

Returns True : when all msg_ids are done

False : timeout reached, some msg_ids still outstanding

Metadata

class IPython.parallel.client.client.Metadata(*args, **kwargs)
Bases: dict

Subclass of dict for initializing metadata values.

Attribute access works on keys.

These objects have a strict set of keys - errors will raise if you try to add new keys.

__init__(*args, **kwargs)

clear
D.clear() -> None. Remove all items from D.

copy
D.copy() -> a shallow copy of D

static fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

get
D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

has_key
D.has_key(k) -> True if D has a key k, else False

items
D.items() -> list of D’s (key, value) pairs, as 2-tuples

iteritems
D.iteritems() -> an iterator over the (key, value) items of D

8.62. parallel.client.client 751

IPython Documentation, Release 0.11

iterkeys
D.iterkeys() -> an iterator over the keys of D

itervalues
D.itervalues() -> an iterator over the values of D

keys
D.keys() -> list of D’s keys

pop
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found,
d is returned if given, otherwise KeyError is raised

popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError
if D is empty.

setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

update
D.update(E, **F) -> None. Update D from dict/iterable E and F. If E has a .keys() method, does:
for k in E: D[k] = E[k] If E lacks .keys() method, does: for (k, v) in E: D[k] = v In either case,
this is followed by: for k in F: D[k] = F[k]

values
D.values() -> list of D’s values

8.62.3 Function

IPython.parallel.client.client.spin_first(f)
Call spin() to sync state prior to calling the method.

8.63 parallel.client.map

8.63.1 Module: parallel.client.map

Inheritance diagram for IPython.parallel.client.map:

client.map.Map client.map.RoundRobinMap

Classes used in scattering and gathering sequences.

Scattering consists of partitioning a sequence and sending the various pieces to individual nodes in a cluster.

752 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Authors:

• Brian Granger

• MinRK

8.63.2 Classes

Map

class IPython.parallel.client.map.Map
A class for partitioning a sequence using a map.

concatenate(listOfPartitions)

getPartition(seq, p, q)
Returns the pth partition of q partitions of seq.

joinPartitions(listOfPartitions)

RoundRobinMap

class IPython.parallel.client.map.RoundRobinMap
Bases: IPython.parallel.client.map.Map

Partitions a sequence in a roun robin fashion.

This currently does not work!

concatenate(listOfPartitions)

flatten_array(klass, listOfPartitions)

flatten_list(listOfPartitions)

getPartition(seq, p, q)

joinPartitions(listOfPartitions)

8.63.3 Function

IPython.parallel.client.map.mappable(obj)
return whether an object is mappable or not.

8.64 parallel.client.remotefunction

8.64.1 Module: parallel.client.remotefunction

Inheritance diagram for IPython.parallel.client.remotefunction:

8.64. parallel.client.remotefunction 753

IPython Documentation, Release 0.11

client.remotefunction.RemoteFunction client.remotefunction.ParallelFunction

Remote Functions and decorators for Views.

Authors:

• Brian Granger

• Min RK

8.64.2 Classes

ParallelFunction

class IPython.parallel.client.remotefunction.ParallelFunction(view, f,
dist=’b’,
block=None,
chunk-
size=None,
**flags)

Bases: IPython.parallel.client.remotefunction.RemoteFunction

Class for mapping a function to sequences.

This will distribute the sequences according the a mapper, and call the function on each sub-sequence.
If called via map, then the function will be called once on each element, rather that each sub-sequence.

Parameters view : View instance

The view to be used for execution

f : callable

The function to be wrapped into a remote function

dist : str [default: ‘b’]

The key for which mapObject to use to distribute sequences options are:

• ‘b’ : use contiguous chunks in order

• ‘r’ : use round-robin striping

block : bool [default: None]

Whether to wait for results or not. The default behavior is to use the current
block attribute of view

chunksize : int or None

754 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The size of chunk to use when breaking up sequences in a load-balanced
manner

**flags : remaining kwargs are passed to View.temp_flags

__init__(view, f, dist=’b’, block=None, chunksize=None, **flags)

block = None

chunksize = None

flags = None

func = None

map(*sequences)
call a function on each element of a sequence remotely. This should behave very much like the
builtin map, but return an AsyncMapResult if self.block is False.

mapObject = None

view = None

RemoteFunction

class IPython.parallel.client.remotefunction.RemoteFunction(view, f,
block=None,
**flags)

Bases: object

Turn an existing function into a remote function.

Parameters view : View instance

The view to be used for execution

f : callable

The function to be wrapped into a remote function

block : bool [default: None]

Whether to wait for results or not. The default behavior is to use the current
block attribute of view

**flags : remaining kwargs are passed to View.temp_flags

__init__(view, f, block=None, **flags)

block = None

flags = None

func = None

view = None

8.64. parallel.client.remotefunction 755

IPython Documentation, Release 0.11

8.64.3 Functions

IPython.parallel.client.remotefunction.parallel(view, dist=’b’, block=None,
**flags)

Turn a function into a parallel remote function.

This method can be used for map:

In [1]: @parallel(view, block=True) ...: def func(a): ...: pass

IPython.parallel.client.remotefunction.remote(view, block=None, **flags)
Turn a function into a remote function.

This method can be used for map:

In [1]: @remote(view,block=True) ...: def func(a): ...: pass

8.65 parallel.client.view

8.65.1 Module: parallel.client.view

Inheritance diagram for IPython.parallel.client.view:

client.view.DirectView

client.view.View

client.view.LoadBalancedView

utils.traitlets.HasTraits

Views of remote engines.

Authors:

• Min RK

8.65.2 Classes

DirectView

class IPython.parallel.client.view.DirectView(client=None, socket=None, tar-
gets=None)

Bases: IPython.parallel.client.view.View

Direct Multiplexer View of one or more engines.

These are created via indexed access to a client:

756 Chapter 8. The IPython API

IPython Documentation, Release 0.11

>>> dv_1 = client[1]
>>> dv_all = client[:]
>>> dv_even = client[::2]
>>> dv_some = client[1:3]

This object provides dictionary access to engine namespaces:

push a=5: >>> dv[’a’] = 5 # pull ‘foo’: >>> db[’foo’]

__init__(client=None, socket=None, targets=None)

abort(jobs=None, targets=None, block=None)
Abort jobs on my engines.

Parameters jobs : None, str, list of strs, optional

if None: abort all jobs. else: abort specific msg_id(s).

activate()
Make this View active for parallel magic commands.

IPython has a magic command syntax to work with MultiEngineClient objects. In a given
IPython session there is a single active one. While there can be many Views created and used by
the user, there is only one active one. The active View is used whenever the magic commands
%px and %autopx are used.

The activate() method is called on a given View to make it active. Once this has been done, the
magic commands can be used.

apply(f, *args, **kwargs)
calls f(*args, **kwargs) on remote engines, returning the result.

This method sets all apply flags via this View’s attributes.

if self.block is False: returns AsyncResult

else: returns actual result of f(*args, **kwargs)

apply_async(f, *args, **kwargs)
calls f(*args, **kwargs) on remote engines in a nonblocking manner.

returns AsyncResult

apply_sync(f, *args, **kwargs)
calls f(*args, **kwargs) on remote engines in a blocking manner, returning the result.

returns: actual result of f(*args, **kwargs)

block
A boolean (True, False) trait.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

8.65. parallel.client.view 757

IPython Documentation, Release 0.11

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

clear(targets=None, block=False)
Clear the remote namespaces on my engines.

client
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

execute(code, targets=None, block=None)
Executes code on targets in blocking or nonblocking manner.

execute is always bound (affects engine namespace)

Parameters code : str

the code string to be executed

block : bool

whether or not to wait until done to return default: self.block

gather(key, dist=’b’, targets=None, block=None)
Gather a partitioned sequence on a set of engines as a single local seq.

get(key_s)
get object(s) by key_s from remote namespace

see pull for details.

get_result(indices_or_msg_ids=None)
return one or more results, specified by history index or msg_id.

See client.get_result for details.

history
An instance of a Python list.

imap(f, *sequences, **kwargs)
Parallel version of itertools.imap.

See self.map for details.

importer
sync_imports(local=True) as a property.

See sync_imports for details.

kill(targets=None, block=True)
Kill my engines.

758 Chapter 8. The IPython API

IPython Documentation, Release 0.11

map(f, *sequences, **kwargs)
view.map(f, *sequences, block=self.block) => list|AsyncMapResult

Parallel version of builtin map, using this View’s targets.

There will be one task per target, so work will be chunked if the sequences are longer than
targets.

Results can be iterated as they are ready, but will become available in chunks.

Parameters f : callable

function to be mapped

*sequences: one or more sequences of matching length :

the sequences to be distributed and passed to f

block : bool

whether to wait for the result or not [default self.block]

Returns if block=False: :

AsyncMapResult An object like AsyncResult, but which reassembles the
sequence of results into a single list. AsyncMapResults can be iterated
through before all results are complete.

else: :

list the result of map(f,*sequences)

map_async(f, *sequences, **kwargs)
Parallel version of builtin map, using this view’s engines.

This is equivalent to map(...block=False)

See self.map for details.

map_sync(f, *sequences, **kwargs)
Parallel version of builtin map, using this view’s engines.

This is equivalent to map(...block=True)

See self.map for details.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

8.65. parallel.client.view 759

IPython Documentation, Release 0.11

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

outstanding
An instance of a Python set.

parallel(dist=’b’, block=None, **flags)
Decorator for making a ParallelFunction

pull(names, targets=None, block=None)
get object(s) by name from remote namespace

will return one object if it is a key. can also take a list of keys, in which case it will return a list
of objects.

purge_results(jobs=[], targets=[])
Instruct the controller to forget specific results.

push(ns, targets=None, block=None, track=None)
update remote namespace with dict ns

Parameters ns : dict

dict of keys with which to update engine namespace(s)

block : bool [default

whether to wait to be notified of engine receipt

queue_status(targets=None, verbose=False)
Fetch the Queue status of my engines

remote(block=True, **flags)
Decorator for making a RemoteFunction

results
An instance of a Python dict.

run(filename, targets=None, block=None)
Execute contents of filename on my engine(s).

This simply reads the contents of the file and calls execute.

Parameters filename : str

The path to the file

targets : int/str/list of ints/strs

the engines on which to execute default : all

block : bool

whether or not to wait until done default: self.block

760 Chapter 8. The IPython API

IPython Documentation, Release 0.11

scatter(key, seq, dist=’b’, flatten=False, targets=None, block=None, track=None)
Partition a Python sequence and send the partitions to a set of engines.

set_flags(**kwargs)
set my attribute flags by keyword.

Views determine behavior with a few attributes (block, track, etc.). These attributes can be set
all at once by name with this method.

Parameters block : bool

whether to wait for results

track : bool

whether to create a MessageTracker to allow the user to safely edit after arrays
and buffers during non-copying sends.

shutdown(targets=None, restart=False, hub=False, block=None)
Terminates one or more engine processes, optionally including the hub.

skip_doctest = True

spin()
spin the client, and sync

sync_imports(*args, **kwds)
Context Manager for performing simultaneous local and remote imports.

‘import x as y’ will not work. The ‘as y’ part will simply be ignored.

>>> with view.sync_imports():
... from numpy import recarray
importing recarray from numpy on engine(s)

targets

temp_flags(*args, **kwds)
temporarily set flags, for use in with statements.

See set_flags for permanent setting of flags

Examples

>>> view.track=False
...
>>> with view.temp_flags(track=True):
... ar = view.apply(dostuff, my_big_array)
... ar.tracker.wait() # wait for send to finish
>>> view.track
False

track
A boolean (True, False) trait.

8.65. parallel.client.view 761

IPython Documentation, Release 0.11

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update(ns)
update remote namespace with dict ns

See push for details.

wait(jobs=None, timeout=-1)
waits on one or more jobs, for up to timeout seconds.

Parameters jobs : int, str, or list of ints and/or strs, or one or more AsyncResult
objects

ints are indices to self.history strs are msg_ids default: wait on all outstanding
messages

timeout : float

a time in seconds, after which to give up. default is -1, which means no
timeout

Returns True : when all msg_ids are done

False : timeout reached, some msg_ids still outstanding

LoadBalancedView

class IPython.parallel.client.view.LoadBalancedView(client=None,
socket=None, **flags)

Bases: IPython.parallel.client.view.View

An load-balancing View that only executes via the Task scheduler.

Load-balanced views can be created with the client’s view method:

>>> v = client.load_balanced_view()

or targets can be specified, to restrict the potential destinations:

>>> v = client.client.load_balanced_view(([1,3])

which would restrict loadbalancing to between engines 1 and 3.

762 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__(client=None, socket=None, **flags)

abort(jobs=None, targets=None, block=None)
Abort jobs on my engines.

Parameters jobs : None, str, list of strs, optional

if None: abort all jobs. else: abort specific msg_id(s).

after

apply(f, *args, **kwargs)
calls f(*args, **kwargs) on remote engines, returning the result.

This method sets all apply flags via this View’s attributes.

if self.block is False: returns AsyncResult

else: returns actual result of f(*args, **kwargs)

apply_async(f, *args, **kwargs)
calls f(*args, **kwargs) on remote engines in a nonblocking manner.

returns AsyncResult

apply_sync(f, *args, **kwargs)
calls f(*args, **kwargs) on remote engines in a blocking manner, returning the result.

returns: actual result of f(*args, **kwargs)

block
A boolean (True, False) trait.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

client
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

follow

get_result(indices_or_msg_ids=None)
return one or more results, specified by history index or msg_id.

8.65. parallel.client.view 763

IPython Documentation, Release 0.11

See client.get_result for details.

history
An instance of a Python list.

imap(f, *sequences, **kwargs)
Parallel version of itertools.imap.

See self.map for details.

map(f, *sequences, **kwargs)
view.map(f, *sequences, block=self.block, chunksize=1) => list|AsyncMapResult

Parallel version of builtin map, load-balanced by this View.

block, and chunksize can be specified by keyword only.

Each chunksize elements will be a separate task, and will be load-balanced. This lets individual
elements be available for iteration as soon as they arrive.

Parameters f : callable

function to be mapped

*sequences: one or more sequences of matching length :

the sequences to be distributed and passed to f

block : bool

whether to wait for the result or not [default self.block]

track : bool

whether to create a MessageTracker to allow the user to safely edit after arrays
and buffers during non-copying sends.

chunksize : int

how many elements should be in each task [default 1]

Returns if block=False: :

AsyncMapResult An object like AsyncResult, but which reassembles the
sequence of results into a single list. AsyncMapResults can be iterated
through before all results are complete.

else: the result of map(f,*sequences)

map_async(f, *sequences, **kwargs)
Parallel version of builtin map, using this view’s engines.

This is equivalent to map(...block=False)

See self.map for details.

map_sync(f, *sequences, **kwargs)
Parallel version of builtin map, using this view’s engines.

This is equivalent to map(...block=True)

764 Chapter 8. The IPython API

IPython Documentation, Release 0.11

See self.map for details.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

outstanding
An instance of a Python set.

parallel(dist=’b’, block=None, **flags)
Decorator for making a ParallelFunction

purge_results(jobs=[], targets=[])
Instruct the controller to forget specific results.

queue_status(targets=None, verbose=False)
Fetch the Queue status of my engines

remote(block=True, **flags)
Decorator for making a RemoteFunction

results
An instance of a Python dict.

retries
A casting version of the int trait.

set_flags(**kwargs)
set my attribute flags by keyword.

A View is a wrapper for the Client’s apply method, but with attributes that specify keyword
arguments, those attributes can be set by keyword argument with this method.

Parameters block : bool

whether to wait for results

track : bool

8.65. parallel.client.view 765

IPython Documentation, Release 0.11

whether to create a MessageTracker to allow the user to safely edit after arrays
and buffers during non-copying sends.

after : Dependency or collection of msg_ids

Only for load-balanced execution (targets=None) Specify a list of msg_ids as
a time-based dependency. This job will only be run after the dependencies
have been met.

follow : Dependency or collection of msg_ids

Only for load-balanced execution (targets=None) Specify a list of msg_ids as
a location-based dependency. This job will only be run on an engine where
this dependency is met.

timeout : float/int or None

Only for load-balanced execution (targets=None) Specify an amount of time
(in seconds) for the scheduler to wait for dependencies to be met before failing
with a DependencyTimeout.

retries : int

Number of times a task will be retried on failure.

shutdown(targets=None, restart=False, hub=False, block=None)
Terminates one or more engine processes, optionally including the hub.

skip_doctest = True

spin()
spin the client, and sync

targets

temp_flags(*args, **kwds)
temporarily set flags, for use in with statements.

See set_flags for permanent setting of flags

Examples

>>> view.track=False
...
>>> with view.temp_flags(track=True):
... ar = view.apply(dostuff, my_big_array)
... ar.tracker.wait() # wait for send to finish
>>> view.track
False

timeout
A casting version of the float trait.

track
A boolean (True, False) trait.

766 Chapter 8. The IPython API

IPython Documentation, Release 0.11

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

wait(jobs=None, timeout=-1)
waits on one or more jobs, for up to timeout seconds.

Parameters jobs : int, str, or list of ints and/or strs, or one or more AsyncResult
objects

ints are indices to self.history strs are msg_ids default: wait on all outstanding
messages

timeout : float

a time in seconds, after which to give up. default is -1, which means no
timeout

Returns True : when all msg_ids are done

False : timeout reached, some msg_ids still outstanding

View

class IPython.parallel.client.view.View(client=None, socket=None, **flags)
Bases: IPython.utils.traitlets.HasTraits

Base View class for more convenint apply(f,*args,**kwargs) syntax via attributes.

Don’t use this class, use subclasses.

Methods spin :

flushes incoming results and registration state changes control methods spin,
and requesting ids also ensures up to date

wait :

wait on one or more msg_ids

execution methods :

apply legacy: execute, run

data movement :

8.65. parallel.client.view 767

IPython Documentation, Release 0.11

push, pull, scatter, gather

query methods :

get_result, queue_status, purge_results, result_status

control methods :

abort, shutdown

__init__(client=None, socket=None, **flags)

abort(jobs=None, targets=None, block=None)
Abort jobs on my engines.

Parameters jobs : None, str, list of strs, optional

if None: abort all jobs. else: abort specific msg_id(s).

apply(f, *args, **kwargs)
calls f(*args, **kwargs) on remote engines, returning the result.

This method sets all apply flags via this View’s attributes.

if self.block is False: returns AsyncResult

else: returns actual result of f(*args, **kwargs)

apply_async(f, *args, **kwargs)
calls f(*args, **kwargs) on remote engines in a nonblocking manner.

returns AsyncResult

apply_sync(f, *args, **kwargs)
calls f(*args, **kwargs) on remote engines in a blocking manner, returning the result.

returns: actual result of f(*args, **kwargs)

block
A boolean (True, False) trait.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

768 Chapter 8. The IPython API

IPython Documentation, Release 0.11

client
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

get_result(indices_or_msg_ids=None)
return one or more results, specified by history index or msg_id.

See client.get_result for details.

history
An instance of a Python list.

imap(f, *sequences, **kwargs)
Parallel version of itertools.imap.

See self.map for details.

map(f, *sequences, **kwargs)
override in subclasses

map_async(f, *sequences, **kwargs)
Parallel version of builtin map, using this view’s engines.

This is equivalent to map(...block=False)

See self.map for details.

map_sync(f, *sequences, **kwargs)
Parallel version of builtin map, using this view’s engines.

This is equivalent to map(...block=True)

See self.map for details.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

8.65. parallel.client.view 769

IPython Documentation, Release 0.11

outstanding
An instance of a Python set.

parallel(dist=’b’, block=None, **flags)
Decorator for making a ParallelFunction

purge_results(jobs=[], targets=[])
Instruct the controller to forget specific results.

queue_status(targets=None, verbose=False)
Fetch the Queue status of my engines

remote(block=True, **flags)
Decorator for making a RemoteFunction

results
An instance of a Python dict.

set_flags(**kwargs)
set my attribute flags by keyword.

Views determine behavior with a few attributes (block, track, etc.). These attributes can be set
all at once by name with this method.

Parameters block : bool

whether to wait for results

track : bool

whether to create a MessageTracker to allow the user to safely edit after arrays
and buffers during non-copying sends.

shutdown(targets=None, restart=False, hub=False, block=None)
Terminates one or more engine processes, optionally including the hub.

skip_doctest = True

spin()
spin the client, and sync

targets

temp_flags(*args, **kwds)
temporarily set flags, for use in with statements.

See set_flags for permanent setting of flags

Examples

>>> view.track=False
...
>>> with view.temp_flags(track=True):
... ar = view.apply(dostuff, my_big_array)
... ar.tracker.wait() # wait for send to finish

770 Chapter 8. The IPython API

IPython Documentation, Release 0.11

>>> view.track
False

track
A boolean (True, False) trait.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

wait(jobs=None, timeout=-1)
waits on one or more jobs, for up to timeout seconds.

Parameters jobs : int, str, or list of ints and/or strs, or one or more AsyncResult
objects

ints are indices to self.history strs are msg_ids default: wait on all outstanding
messages

timeout : float

a time in seconds, after which to give up. default is -1, which means no
timeout

Returns True : when all msg_ids are done

False : timeout reached, some msg_ids still outstanding

8.65.3 Functions

IPython.parallel.client.view.save_ids(f)
Keep our history and outstanding attributes up to date after a method call.

IPython.parallel.client.view.spin_after(f)
call spin after the method.

IPython.parallel.client.view.sync_results(f)
sync relevant results from self.client to our results attribute.

8.65. parallel.client.view 771

IPython Documentation, Release 0.11

8.66 parallel.controller.dependency

8.66.1 Module: parallel.controller.dependency

Inheritance diagram for IPython.parallel.controller.dependency:

controller.dependency.Dependency

controller.dependency.depend

controller.dependency.dependent

Dependency utilities

Authors:

• Min RK

8.66.2 Classes

Dependency

class IPython.parallel.controller.dependency.Dependency(dependencies=[
], all=True,
success=True,
failure=False)

Bases: set

An object for representing a set of msg_id dependencies.

Subclassed from set().

Parameters dependencies: list/set of msg_ids or AsyncResult objects or output of
Dependency.as_dict() :

The msg_ids to depend on

all : bool [default True]

Whether the dependency should be considered met when all depending tasks
have completed or only when any have been completed.

success : bool [default True]

772 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Whether to consider successes as fulfilling dependencies.

failure : bool [default False]

Whether to consider failures as fulfilling dependencies.

If ‘all=success=True‘ and ‘failure=False‘, then the task will fail with an Impossi-
bleDependency :

as soon as the first depended-upon task fails.

__init__(dependencies=[], all=True, success=True, failure=False)

add
Add an element to a set.

This has no effect if the element is already present.

all = True

as_dict()
Represent this dependency as a dict. For json compatibility.

check(completed, failed=None)
check whether our dependencies have been met.

clear
Remove all elements from this set.

copy
Return a shallow copy of a set.

difference
Return the difference of two or more sets as a new set.

(i.e. all elements that are in this set but not the others.)

difference_update
Remove all elements of another set from this set.

discard
Remove an element from a set if it is a member.

If the element is not a member, do nothing.

failure = True

intersection
Return the intersection of two or more sets as a new set.

(i.e. elements that are common to all of the sets.)

intersection_update
Update a set with the intersection of itself and another.

isdisjoint
Return True if two sets have a null intersection.

8.66. parallel.controller.dependency 773

IPython Documentation, Release 0.11

issubset
Report whether another set contains this set.

issuperset
Report whether this set contains another set.

pop
Remove and return an arbitrary set element. Raises KeyError if the set is empty.

remove
Remove an element from a set; it must be a member.

If the element is not a member, raise a KeyError.

success = True

symmetric_difference
Return the symmetric difference of two sets as a new set.

(i.e. all elements that are in exactly one of the sets.)

symmetric_difference_update
Update a set with the symmetric difference of itself and another.

union
Return the union of sets as a new set.

(i.e. all elements that are in either set.)

unreachable(completed, failed=None)
return whether this dependency has become impossible.

update
Update a set with the union of itself and others.

depend

class IPython.parallel.controller.dependency.depend(f, *args, **kwargs)
Bases: object

Dependency decorator, for use with tasks.

@depend lets you define a function for engine dependencies just like you use apply for tasks.

Examples

@depend(df, a,b, c=5)
def f(m,n,p)

view.apply(f, 1,2,3)

will call df(a,b,c=5) on the engine, and if it returns False or raises an UnmetDependency error, then
the task will not be run and another engine will be tried.

774 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__(f, *args, **kwargs)

dependent

class IPython.parallel.controller.dependency.dependent(f, df, *dargs,
**dkwargs)

Bases: object

A function that depends on another function. This is an object to prevent the closure used in traditional
decorators, which are not picklable.

__init__(f, df, *dargs, **dkwargs)

8.66.3 Function

IPython.parallel.controller.dependency.require(*mods)
Simple decorator for requiring names to be importable.

Examples

In [1]: @require(‘numpy’) ...: def norm(a): ...: import numpy ...: return numpy.linalg.norm(a,2)

8.67 parallel.controller.dictdb

8.67.1 Module: parallel.controller.dictdb

Inheritance diagram for IPython.parallel.controller.dictdb:

controller.dictdb.BaseDB controller.dictdb.DictDBconfig.configurable.LoggingConfigurableconfig.configurable.Configurable

controller.dictdb.CompositeFilter

utils.traitlets.HasTraits

A Task logger that presents our DB interface, but exists entirely in memory and implemented with dicts.

Authors:

• Min RK

TaskRecords are dicts of the form: {

‘msg_id’ : str(uuid), ‘client_uuid’ : str(uuid), ‘engine_uuid’ : str(uuid) or None, ‘header’ :
dict(header), ‘content’: dict(content), ‘buffers’: list(buffers), ‘submitted’: datetime, ‘started’:
datetime or None, ‘completed’: datetime or None, ‘resubmitted’: datetime or None, ‘re-
sult_header’ : dict(header) or None, ‘result_content’ : dict(content) or None, ‘result_buffers’ :
list(buffers) or None,

8.67. parallel.controller.dictdb 775

IPython Documentation, Release 0.11

} With this info, many of the special categories of tasks can be defined by query:

pending: completed is None client’s outstanding: client_uuid = uuid && completed is None MIA: arrived
is None (and completed is None) etc.

EngineRecords are dicts of the form: {

‘eid’ : int(id), ‘uuid’: str(uuid)

} This may be extended, but is currently.

We support a subset of mongodb operators: $lt,$gt,$lte,$gte,$ne,$in,$nin,$all,$mod,$exists

8.67.2 Classes

BaseDB

class IPython.parallel.controller.dictdb.BaseDB(**kwargs)
Bases: IPython.config.configurable.LoggingConfigurable

Empty Parent class so traitlets work on DB.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

776 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

session
A trait for unicode strings.

trait_metadata(traitname, key)
Get metadata values for trait by key.

8.67. parallel.controller.dictdb 777

IPython Documentation, Release 0.11

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

CompositeFilter

class IPython.parallel.controller.dictdb.CompositeFilter(dikt)
Bases: object

Composite filter for matching multiple properties.

__init__(dikt)

DictDB

class IPython.parallel.controller.dictdb.DictDB(**kwargs)
Bases: IPython.parallel.controller.dictdb.BaseDB

Basic in-memory dict-based object for saving Task Records.

This is the first object to present the DB interface for logging tasks out of memory.

The interface is based on MongoDB, so adding a MongoDB backend should be straightforward.

__init__(**kwargs)
Create a configurable given a config config.

Parameters config : Config

If this is empty, default values are used. If config is a Config instance, it
will be used to configure the instance.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before
doing anything else and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):

super(MyConfigurable, self).__init__(config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

778 Chapter 8. The IPython API

IPython Documentation, Release 0.11

add_record(msg_id, rec)
Add a new Task Record, by msg_id.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

drop_matching_records(check)
Remove a record from the DB.

drop_record(msg_id)
Remove a record from the DB.

find_records(check, keys=None)
Find records matching a query dict, optionally extracting subset of keys.

Returns dict keyed by msg_id of matching records.

Parameters check: dict :

mongodb-style query argument

keys: list of strs [optional] :

if specified, the subset of keys to extract. msg_id will always be included.

8.67. parallel.controller.dictdb 779

IPython Documentation, Release 0.11

get_history()
get all msg_ids, ordered by time submitted.

get_record(msg_id)
Get a specific Task Record, by msg_id.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

session
A trait for unicode strings.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_record(msg_id, rec)
Update the data in an existing record.

780 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.68 parallel.controller.heartmonitor

8.68.1 Module: parallel.controller.heartmonitor

Inheritance diagram for IPython.parallel.controller.heartmonitor:

config.configurable.LoggingConfigurable controller.heartmonitor.HeartMonitorconfig.configurable.Configurableutils.traitlets.HasTraits

controller.heartmonitor.Heart

A multi-heart Heartbeat system using PUB and XREP sockets. pings are sent out on the PUB, and hearts
are tracked based on their XREQ identities.

Authors:

• Min RK

8.68.2 Classes

Heart

class IPython.parallel.controller.heartmonitor.Heart(in_addr, out_addr,
in_type=2, out_type=5,
heart_id=None)

Bases: object

A basic heart object for responding to a HeartMonitor. This is a simple wrapper with defaults for the
most common Device model for responding to heartbeats.

It simply builds a threadsafe zmq.FORWARDER Device, defaulting to using SUB/XREQ for in/out.

You can specify the XREQ’s IDENTITY via the optional heart_id argument.

__init__(in_addr, out_addr, in_type=2, out_type=5, heart_id=None)

device = None

id = None

start()

HeartMonitor

class IPython.parallel.controller.heartmonitor.HeartMonitor(**kwargs)
Bases: IPython.config.configurable.LoggingConfigurable

A basic HeartMonitor class pingstream: a PUB stream pongstream: an XREP stream period: the
period of the heartbeat in milliseconds

8.68. parallel.controller.heartmonitor 781

IPython Documentation, Release 0.11

__init__(**kwargs)

add_heart_failure_handler(handler)
add a new handler for heart failure

add_new_heart_handler(handler)
add a new handler for new hearts

beat()

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

handle_heart_failure(heart)

handle_new_heart(heart)

handle_pong(msg)
a heart just beat

hearts
An instance of a Python set.

last_ping
A casting version of the float trait.

782 Chapter 8. The IPython API

IPython Documentation, Release 0.11

lifetime
A casting version of the float trait.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_probation
An instance of a Python set.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

period
A casting version of the float trait.

pingstream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

pongstream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

responses
An instance of a Python set.

start()

tic
A casting version of the float trait.

8.68. parallel.controller.heartmonitor 783

IPython Documentation, Release 0.11

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.69 parallel.controller.hub

8.69.1 Module: parallel.controller.hub

Inheritance diagram for IPython.parallel.controller.hub:

controller.hub.HubFactoryparallel.factory.RegistrationFactory

zmq.session.SessionFactory

controller.hub.Hub

controller.hub.EngineConnector

utils.traitlets.HasTraits

config.configurable.Configurable config.configurable.LoggingConfigurable

The IPython Controller Hub with 0MQ This is the master object that handles connections from engines and
clients, and monitors traffic through the various queues.

Authors:

• Min RK

8.69.2 Classes

EngineConnector

class IPython.parallel.controller.hub.EngineConnector(**kw)
Bases: IPython.utils.traitlets.HasTraits

A simple object for accessing the various zmq connections of an object. Attributes are: id (int): engine
ID uuid (str): uuid (unused?) queue (str): identity of queue’s XREQ socket registration (str): identity
of registration XREQ socket heartbeat (str): identity of heartbeat XREQ socket

__init__(**kw)

784 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

control
A casting version of the string trait.

heartbeat
A casting version of the string trait.

id
A integer trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

pending
An instance of a Python set.

queue
A casting version of the string trait.

registration
A casting version of the string trait.

8.69. parallel.controller.hub 785

IPython Documentation, Release 0.11

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

Hub

class IPython.parallel.controller.hub.Hub(**kwargs)
Bases: IPython.zmq.session.SessionFactory

The IPython Controller Hub with 0MQ connections

Parameters loop: zmq IOLoop instance :

session: Session object :

<removed> context: zmq context for creating new connections (?) :

queue: ZMQStream for monitoring the command queue (SUB) :

query: ZMQStream for engine registration and client queries requests (XREP) :

heartbeat: HeartMonitor object checking the pulse of the engines :

notifier: ZMQStream for broadcasting engine registration changes (PUB) :

db: connection to db for out of memory logging of commands :

NotImplemented

engine_info: dict of zmq connection information for engines to connect :

to the queues.

client_info: dict of zmq connection information for engines to connect :

to the queues.

__init__(**kwargs)
universal: loop: IOLoop for creating future connections session: streamsession for sending se-
rialized data # engine: queue: ZMQStream for monitoring queue messages query: ZMQStream
for engine+client registration and client requests heartbeat: HeartMonitor object for tracking
engines # extra: db: ZMQStream for db connection (NotImplemented) engine_info: zmq ad-
dress/protocol dict for engine connections client_info: zmq address/protocol dict for client con-
nections

786 Chapter 8. The IPython API

IPython Documentation, Release 0.11

all_completed
An instance of a Python set.

by_ident
An instance of a Python dict.

check_load(client_id, msg)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

client_info
An instance of a Python dict.

clients
An instance of a Python dict.

completed
An instance of a Python dict.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

connection_request(client_id, msg)
Reply with connection addresses for clients.

context
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

8.69. parallel.controller.hub 787

IPython Documentation, Release 0.11

created = None

db
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

db_query(client_id, msg)
Perform a raw query on the task record database.

dead_engines
An instance of a Python set.

dispatch_db(msg)

dispatch_monitor_traffic(msg)
all ME and Task queue messages come through here, as well as IOPub traffic.

dispatch_query(msg)
Route registration requests and queries from clients.

engine_info
An instance of a Python dict.

engines
An instance of a Python dict.

finish_registration(heart)
Second half of engine registration, called after our HeartMonitor has received a beat from the
Engine’s Heart.

get_history(client_id, msg)
Get a list of all msg_ids in our DB records

get_results(client_id, msg)
Get the result of 1 or more messages.

handle_heart_failure(heart)
handler to attach to heartbeater. called when a previously registered heart fails to respond to beat
request. triggers unregistration

handle_new_heart(heart)
handler to attach to heartbeater. Called when a new heart starts to beat. Triggers completion of
registration.

heartmonitor
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

hearts
An instance of a Python dict.

ids
An instance of a Python set.

788 Chapter 8. The IPython API

IPython Documentation, Release 0.11

incoming_registrations
An instance of a Python dict.

keytable
An instance of a Python dict.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

logname
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

mia_task_request(idents, msg)

monitor
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

notifier
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

pending
An instance of a Python set.

8.69. parallel.controller.hub 789

IPython Documentation, Release 0.11

purge_results(client_id, msg)
Purge results from memory. This method is more valuable before we move to a DB based
message storage mechanism.

query
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

queue_status(client_id, msg)
Return the Queue status of one or more targets. if verbose: return the msg_ids else: return len
of each type. keys: queue (pending MUX jobs)

tasks (pending Task jobs) completed (finished jobs from both queues)

queues
An instance of a Python dict.

register_engine(reg, msg)
Register a new engine.

registration_timeout
A integer trait.

resubmit
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

resubmit_task(client_id, msg)
Resubmit one or more tasks.

save_iopub_message(topics, msg)
save an iopub message into the db

save_queue_request(idents, msg)

save_queue_result(idents, msg)

save_task_destination(idents, msg)

save_task_request(idents, msg)
Save the submission of a task.

save_task_result(idents, msg)
save the result of a completed task.

session
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shutdown_request(client_id, msg)
handle shutdown request.

tasks
An instance of a Python dict.

790 Chapter 8. The IPython API

IPython Documentation, Release 0.11

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

unassigned
An instance of a Python set.

unregister_engine(ident, msg)
Unregister an engine that explicitly requested to leave.

HubFactory

class IPython.parallel.controller.hub.HubFactory(**kwargs)
Bases: IPython.parallel.factory.RegistrationFactory

The Configurable for setting up a Hub.

__init__(**kwargs)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

8.69. parallel.controller.hub 791

IPython Documentation, Release 0.11

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

client_ip
A trait for unicode strings.

client_transport
A trait for unicode strings.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

construct()

context
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

control
An instance of a Python tuple.

created = None

db
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

db_class
A string holding a valid dotted object name in Python, such as A.b3._c

engine_ip
A trait for unicode strings.

engine_transport
A trait for unicode strings.

hb
An instance of a Python tuple.

heartmonitor
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

init_hub()
construct

iopub
An instance of a Python tuple.

ip
A trait for unicode strings.

792 Chapter 8. The IPython API

IPython Documentation, Release 0.11

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

logname
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

mon_port
A integer trait.

monitor_ip
A trait for unicode strings.

monitor_transport
A trait for unicode strings.

monitor_url
A trait for unicode strings.

mux
An instance of a Python tuple.

notifier_port
A integer trait.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

regport
A integer trait.

8.69. parallel.controller.hub 793

IPython Documentation, Release 0.11

session
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

start()

task
An instance of a Python tuple.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

transport
A trait for unicode strings.

url
A trait for unicode strings.

8.69.3 Functions

IPython.parallel.controller.hub.empty_record()
Return an empty dict with all record keys.

IPython.parallel.controller.hub.init_record(msg)
Initialize a TaskRecord based on a request.

8.70 parallel.controller.scheduler

8.70.1 Module: parallel.controller.scheduler

Inheritance diagram for IPython.parallel.controller.scheduler:

controller.scheduler.TaskSchedulerzmq.session.SessionFactoryconfig.configurable.LoggingConfigurableconfig.configurable.Configurableutils.traitlets.HasTraits

794 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The Python scheduler for rich scheduling.

The Pure ZMQ scheduler does not allow routing schemes other than LRU, nor does it check msg_id DAG
dependencies. For those, a slightly slower Python Scheduler exists.

Authors:

• Min RK

8.70.2 Class

8.70.3 TaskScheduler

class IPython.parallel.controller.scheduler.TaskScheduler(**kwargs)
Bases: IPython.zmq.session.SessionFactory

Python TaskScheduler object.

This is the simplest object that supports msg_id based DAG dependencies. Only task msg_ids are
checked, not msg_ids of jobs submitted via the MUX queue.

__init__(**kwargs)

add_job(idx)
Called after self.targets[idx] just got the job with header. Override with subclasses. The default
ordering is simple LRU. The default loads are the number of outstanding jobs.

all_completed
An instance of a Python set.

all_done
An instance of a Python set.

all_failed
An instance of a Python set.

all_ids
An instance of a Python set.

audit_timeouts()
Audit all waiting tasks for expired timeouts.

auditor
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

blacklist
An instance of a Python dict.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

8.70. parallel.controller.scheduler 795

IPython Documentation, Release 0.11

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

client_stream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

clients
An instance of a Python dict.

completed
An instance of a Python dict.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

depending
An instance of a Python dict.

destinations
An instance of a Python dict.

dispatch_notification(msg)
dispatch register/unregister events.

dispatch_result(raw_msg)
dispatch method for result replies

796 Chapter 8. The IPython API

IPython Documentation, Release 0.11

dispatch_submission(raw_msg)
Dispatch job submission to appropriate handlers.

engine_stream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

fail_unreachable(msg_id, why=<class ‘IPython.parallel.error.ImpossibleDependency’>)
a task has become unreachable, send a reply with an ImpossibleDependency error.

failed
An instance of a Python dict.

finish_job(idx)
Called after self.targets[idx] just finished a job. Override with subclasses.

graph
An instance of a Python dict.

handle_result(idents, parent, raw_msg, success=True)
handle a real task result, either success or failure

handle_stranded_tasks(engine)
Deal with jobs resident in an engine that died.

handle_unmet_dependency(idents, parent)
handle an unmet dependency

hwm
A integer trait.

ident
A casting version of the string trait.

loads
An instance of a Python list.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

logname
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

maybe_run(msg_id, raw_msg, targets, after, follow, timeout)
check location dependencies, and run if they are met.

mon_stream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

8.70. parallel.controller.scheduler 797

IPython Documentation, Release 0.11

notifier_stream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

pending
An instance of a Python dict.

resume_receiving()
Resume accepting jobs.

retries
An instance of a Python dict.

save_unmet(msg_id, raw_msg, targets, after, follow, timeout)
Save a message for later submission when its dependencies are met.

scheme
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

scheme_name
An enum that whose value must be in a given sequence.

session
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

start()

stop_receiving()
Stop accepting jobs while there are no engines. Leave them in the ZMQ queue.

798 Chapter 8. The IPython API

IPython Documentation, Release 0.11

submit_task(msg_id, raw_msg, targets, follow, timeout, indices=None)
Submit a task to any of a subset of our targets.

targets
An instance of a Python list.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_graph(dep_id=None, success=True)
dep_id just finished. Update our dependency graph and submit any jobs that just became runable.

Called with dep_id=None to update entire graph for hwm, but without finishing a task.

8.70.4 Functions

IPython.parallel.controller.scheduler.launch_scheduler(in_addr,
out_addr,
mon_addr,
not_addr, con-
fig=None, log-
name=’root’,
log_url=None,
loglevel=10,
identity=’task’,
in_thread=False)

IPython.parallel.controller.scheduler.leastload(loads)
Always choose the lowest load.

If the lowest load occurs more than once, the first occurance will be used. If loads has LRU ordering,
this means the LRU of those with the lowest load is chosen.

IPython.parallel.controller.scheduler.logged(f)

IPython.parallel.controller.scheduler.lru(loads)
Always pick the front of the line.

The content of loads is ignored.

Assumes LRU ordering of loads, with oldest first.

8.70. parallel.controller.scheduler 799

IPython Documentation, Release 0.11

IPython.parallel.controller.scheduler.plainrandom(loads)
Plain random pick.

IPython.parallel.controller.scheduler.twobin(loads)
Pick two at random, use the LRU of the two.

The content of loads is ignored.

Assumes LRU ordering of loads, with oldest first.

IPython.parallel.controller.scheduler.weighted(loads)
Pick two at random using inverse load as weight.

Return the less loaded of the two.

8.71 parallel.controller.sqlitedb

8.71.1 Module: parallel.controller.sqlitedb

Inheritance diagram for IPython.parallel.controller.sqlitedb:

controller.sqlitedb.SQLiteDBcontroller.dictdb.BaseDBconfig.configurable.LoggingConfigurableconfig.configurable.Configurableutils.traitlets.HasTraits

A TaskRecord backend using sqlite3

Authors:

• Min RK

8.71.2 SQLiteDB

class IPython.parallel.controller.sqlitedb.SQLiteDB(**kwargs)
Bases: IPython.parallel.controller.dictdb.BaseDB

SQLite3 TaskRecord backend.

__init__(**kwargs)

add_record(msg_id, rec)
Add a new Task Record, by msg_id.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

800 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

drop_matching_records(check)
Remove a record from the DB.

drop_record(msg_id)
Remove a record from the DB.

filename
A trait for unicode strings.

find_records(check, keys=None)
Find records matching a query dict, optionally extracting subset of keys.

Returns list of matching records.

Parameters check: dict :

mongodb-style query argument

keys: list of strs [optional] :

if specified, the subset of keys to extract. msg_id will always be included.

get_history()
get all msg_ids, ordered by time submitted.

get_record(msg_id)
Get a specific Task Record, by msg_id.

8.71. parallel.controller.sqlitedb 801

IPython Documentation, Release 0.11

location
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

session
A trait for unicode strings.

table
A trait for unicode strings.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

update_record(msg_id, rec)
Update the data in an existing record.

802 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.72 parallel.engine.engine

8.72.1 Module: parallel.engine.engine

Inheritance diagram for IPython.parallel.engine.engine:

engine.engine.EngineFactoryparallel.factory.RegistrationFactoryzmq.session.SessionFactoryconfig.configurable.LoggingConfigurableconfig.configurable.Configurableutils.traitlets.HasTraits

A simple engine that talks to a controller over 0MQ. it handles registration, etc. and launches a kernel
connected to the Controller’s Schedulers.

Authors:

• Min RK

8.72.2 EngineFactory

class IPython.parallel.engine.engine.EngineFactory(**kwargs)
Bases: IPython.parallel.factory.RegistrationFactory

IPython engine

__init__(**kwargs)

abort()

bident
A casting version of the string trait.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

8.72. parallel.engine.engine 803

IPython Documentation, Release 0.11

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

complete_registration(msg)

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

display_hook_factory
A trait whose value must be a subclass of a specified class.

id
A integer trait.

ident
A trait for unicode strings.

ip
A trait for unicode strings.

kernel
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

location
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

logname
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

804 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

out_stream_factory
A trait whose value must be a subclass of a specified class.

register()
send the registration_request

registrar
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

regport
A integer trait.

session
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

start()

timeout
A casting version of the float trait.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

8.72. parallel.engine.engine 805

IPython Documentation, Release 0.11

transport
A trait for unicode strings.

url
A trait for unicode strings.

user_ns
An instance of a Python dict.

8.73 parallel.engine.kernelstarter

8.73.1 Module: parallel.engine.kernelstarter

Inheritance diagram for IPython.parallel.engine.kernelstarter:

engine.kernelstarter.KernelStarter

KernelStarter class that intercepts Control Queue messages, and handles process management.

Authors:

• Min RK

8.73.2 KernelStarter

class IPython.parallel.engine.kernelstarter.KernelStarter(session, up-
stream, down-
stream, *ker-
nel_args, **ker-
nel_kwargs)

Bases: object

Object for resetting/killing the Kernel.

__init__(session, upstream, downstream, *kernel_args, **kernel_kwargs)

dispatch_reply(raw_msg)

dispatch_request(raw_msg)

has_kernel
Returns whether a kernel process has been specified for the kernel manager.

806 Chapter 8. The IPython API

IPython Documentation, Release 0.11

interrupt_kernel()
Interrupts the kernel. Unlike signal_kernel, this operation is well supported on all plat-
forms.

is_alive
Is the kernel process still running?

kill_kernel()
Kill the running kernel.

restart_kernel(now=False)
Restarts a kernel with the same arguments that were used to launch it. If the old kernel was
launched with random ports, the same ports will be used for the new kernel.

Parameters now : bool, optional

If True, the kernel is forcefully restarted immediately, without having a
chance to do any cleanup action. Otherwise the kernel is given 1s to clean
up before a forceful restart is issued.

In all cases the kernel is restarted, the only difference is whether it is given a
chance to perform a clean shutdown or not.

shutdown_kernel(restart=False)
Attempts to the stop the kernel process cleanly. If the kernel cannot be stopped, it is killed, if
possible.

shutdown_request(msg)

signal_kernel(signum)
Sends a signal to the kernel. Note that since only SIGTERM is supported on Windows, this
function is only useful on Unix systems.

start()

start_kernel(**kw)
Starts a kernel process and configures the manager to use it.

If random ports (port=0) are being used, this method must be called before the channels are
created.

IPython.parallel.engine.kernelstarter.make_starter(up_addr, down_addr,
*args, **kwargs)

entry point function for launching a kernelstarter in a subprocess

8.74 parallel.engine.streamkernel

8.74.1 Module: parallel.engine.streamkernel

Inheritance diagram for IPython.parallel.engine.streamkernel:

8.74. parallel.engine.streamkernel 807

IPython Documentation, Release 0.11

engine.streamkernel._Passereventloop.zmqstream.ZMQStream

engine.streamkernel.Kernelzmq.session.SessionFactoryconfig.configurable.LoggingConfigurableconfig.configurable.Configurableutils.traitlets.HasTraits

Kernel adapted from kernel.py to use ZMQ Streams

Authors:

• Min RK

• Brian Granger

• Fernando Perez

• Evan Patterson

8.74.2 Kernel

class IPython.parallel.engine.streamkernel.Kernel(**kwargs)
Bases: IPython.zmq.session.SessionFactory

__init__(**kwargs)

abort_queue(stream)

abort_queues()

abort_request(stream, ident, parent)
abort a specifig msg by id

aborted
An instance of a Python set.

apply_request(stream, ident, parent)

bident
A casting version of the string trait.

check_aborted(msg_id)

check_dependencies(dependencies)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

808 Chapter 8. The IPython API

IPython Documentation, Release 0.11

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

clear_request(stream, idents, parent)
Clear our namespace.

client
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

compiler
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

complete(msg)

complete_request(stream, ident, parent)

completer
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

control_handlers
An instance of a Python dict.

control_stream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

8.74. parallel.engine.streamkernel 809

IPython Documentation, Release 0.11

created = None

dispatch_control(msg)

dispatch_queue(stream, msg)

exec_lines
An instance of a Python list.

execute_request(stream, ident, parent)

ident
A trait for unicode strings.

int_id
A integer trait.

iopub_stream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

logname
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

810 Chapter 8. The IPython API

IPython Documentation, Release 0.11

session
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

shell_handlers
An instance of a Python dict.

shell_streams
An instance of a Python list.

shutdown_request(stream, ident, parent)
kill ourself. This should really be handled in an external process

start()

task_stream
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

user_ns
An instance of a Python dict.

IPython.parallel.engine.streamkernel.printer(*args)

8.75 parallel.error

8.75.1 Module: parallel.error

Inheritance diagram for IPython.parallel.error:

8.75. parallel.error 811

IPython Documentation, Release 0.11

parallel.error.IPythonError

parallel.error.KernelError

parallel.error.ControllerError

parallel.error.EngineError

parallel.error.UnpickleableException

parallel.error.NotDefined

parallel.error.StopLocalExecution

parallel.error.ProtocolError

parallel.error.AbortedPendingDeferredError

parallel.error.TaskRejectError

parallel.error.TaskAborted

parallel.error.ConnectionError

parallel.error.QueueCleared

parallel.error.MissingBlockArgument

parallel.error.RemoteError

parallel.error.InvalidDeferredID

parallel.error.MessageSizeError

parallel.error.TimeoutError

parallel.error.NotAPendingResult

parallel.error.ResultAlreadyRetrieved

parallel.error.UnmetDependency

parallel.error.NoEnginesRegistered

parallel.error.InvalidEngineID

parallel.error.TaskTimeout

parallel.error.InvalidClientID

parallel.error.ResultNotCompleted

parallel.error.ClientError

parallel.error.FileTimeoutError

parallel.error.SecurityError

parallel.error.SerializationError

parallel.error.InvalidProperty

parallel.error.IdInUse

parallel.error.ControllerCreationError

parallel.error.EngineCreationError

parallel.error.CompositeError

parallel.error.PBMessageSizeError

parallel.error.ImpossibleDependency

parallel.error.DependencyTimeout

parallel.error.InvalidDependency

Classes and functions for kernel related errors and exceptions.

Authors:

• Brian Granger

• Min RK

812 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.75.2 Classes

AbortedPendingDeferredError

class IPython.parallel.error.AbortedPendingDeferredError
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

ClientError

class IPython.parallel.error.ClientError
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

CompositeError

class IPython.parallel.error.CompositeError(message, elist)
Bases: IPython.parallel.error.RemoteError

Error for representing possibly multiple errors on engines

__init__(message, elist)

args

ename = None

engine_info = None

evalue = None

message

print_tracebacks(excid=None)

raise_exception(excid=0)

traceback = None

8.75. parallel.error 813

IPython Documentation, Release 0.11

ConnectionError

class IPython.parallel.error.ConnectionError
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

ControllerCreationError

class IPython.parallel.error.ControllerCreationError
Bases: IPython.parallel.error.ControllerError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

ControllerError

class IPython.parallel.error.ControllerError
Bases: IPython.parallel.error.IPythonError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

DependencyTimeout

class IPython.parallel.error.DependencyTimeout
Bases: IPython.parallel.error.ImpossibleDependency

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

814 Chapter 8. The IPython API

IPython Documentation, Release 0.11

EngineCreationError

class IPython.parallel.error.EngineCreationError
Bases: IPython.parallel.error.EngineError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

EngineError

class IPython.parallel.error.EngineError
Bases: IPython.parallel.error.IPythonError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

FileTimeoutError

class IPython.parallel.error.FileTimeoutError
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

IPythonError

class IPython.parallel.error.IPythonError
Bases: exceptions.Exception

Base exception that all of our exceptions inherit from.

This can be raised by code that doesn’t have any more specific information.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.75. parallel.error 815

IPython Documentation, Release 0.11

IdInUse

class IPython.parallel.error.IdInUse
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

ImpossibleDependency

class IPython.parallel.error.ImpossibleDependency
Bases: IPython.parallel.error.UnmetDependency

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

InvalidClientID

class IPython.parallel.error.InvalidClientID
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

InvalidDeferredID

class IPython.parallel.error.InvalidDeferredID
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

816 Chapter 8. The IPython API

IPython Documentation, Release 0.11

InvalidDependency

class IPython.parallel.error.InvalidDependency
Bases: IPython.parallel.error.ImpossibleDependency

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

InvalidEngineID

class IPython.parallel.error.InvalidEngineID
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

InvalidProperty

class IPython.parallel.error.InvalidProperty
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

KernelError

class IPython.parallel.error.KernelError
Bases: IPython.parallel.error.IPythonError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.75. parallel.error 817

IPython Documentation, Release 0.11

MessageSizeError

class IPython.parallel.error.MessageSizeError
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

MissingBlockArgument

class IPython.parallel.error.MissingBlockArgument
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

NoEnginesRegistered

class IPython.parallel.error.NoEnginesRegistered
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

NotAPendingResult

class IPython.parallel.error.NotAPendingResult
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

818 Chapter 8. The IPython API

IPython Documentation, Release 0.11

NotDefined

class IPython.parallel.error.NotDefined(name)
Bases: IPython.parallel.error.KernelError

__init__(name)

args

message

PBMessageSizeError

class IPython.parallel.error.PBMessageSizeError
Bases: IPython.parallel.error.MessageSizeError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

ProtocolError

class IPython.parallel.error.ProtocolError
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

QueueCleared

class IPython.parallel.error.QueueCleared
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.75. parallel.error 819

IPython Documentation, Release 0.11

RemoteError

class IPython.parallel.error.RemoteError(ename, evalue, traceback, en-
gine_info=None)

Bases: IPython.parallel.error.KernelError

Error raised elsewhere

__init__(ename, evalue, traceback, engine_info=None)

args

ename = None

engine_info = None

evalue = None

message

traceback = None

ResultAlreadyRetrieved

class IPython.parallel.error.ResultAlreadyRetrieved
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

ResultNotCompleted

class IPython.parallel.error.ResultNotCompleted
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

SecurityError

class IPython.parallel.error.SecurityError
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

820 Chapter 8. The IPython API

IPython Documentation, Release 0.11

args

message

SerializationError

class IPython.parallel.error.SerializationError
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

StopLocalExecution

class IPython.parallel.error.StopLocalExecution
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

TaskAborted

class IPython.parallel.error.TaskAborted
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

TaskRejectError

class IPython.parallel.error.TaskRejectError
Bases: IPython.parallel.error.KernelError

Exception to raise when a task should be rejected by an engine.

This exception can be used to allow a task running on an engine to test if the engine (or the user’s
namespace on the engine) has the needed task dependencies. If not, the task should raise this excep-
tion. For the task to be retried on another engine, the task should be created with the retries argument
> 1.

8.75. parallel.error 821

IPython Documentation, Release 0.11

The advantage of this approach over our older properties system is that tasks have full access to
the user’s namespace on the engines and the properties don’t have to be managed or tested by the
controller.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

TaskTimeout

class IPython.parallel.error.TaskTimeout
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

TimeoutError

class IPython.parallel.error.TimeoutError
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

UnmetDependency

class IPython.parallel.error.UnmetDependency
Bases: IPython.parallel.error.KernelError

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

UnpickleableException

class IPython.parallel.error.UnpickleableException
Bases: IPython.parallel.error.KernelError

822 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.75.3 Functions

IPython.parallel.error.collect_exceptions(rdict_or_list, method=’unspecified’)
check a result dict for errors, and raise CompositeError if any exist. Passthrough otherwise.

IPython.parallel.error.unwrap_exception(content)

IPython.parallel.error.wrap_exception(engine_info={})

8.76 parallel.factory

8.76.1 Module: parallel.factory

Inheritance diagram for IPython.parallel.factory:

parallel.factory.RegistrationFactoryzmq.session.SessionFactoryconfig.configurable.LoggingConfigurableconfig.configurable.Configurableutils.traitlets.HasTraits

Base config factories.

Authors:

• Min RK

8.76.2 RegistrationFactory

class IPython.parallel.factory.RegistrationFactory(**kwargs)
Bases: IPython.zmq.session.SessionFactory

The Base Configurable for objects that involve registration.

__init__(**kwargs)

classmethod class_config_section()
Get the config class config section

classmethod class_get_help()
Get the help string for this class in ReST format.

classmethod class_get_trait_help(trait)
Get the help string for a single trait.

8.76. parallel.factory 823

IPython Documentation, Release 0.11

classmethod class_print_help()
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

config
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

context
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

created = None

ip
A trait for unicode strings.

log
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

logname
A trait for unicode strings.

loop
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

824 Chapter 8. The IPython API

IPython Documentation, Release 0.11

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

remove : bool

If False (the default), then install the handler. If True then unintall it.

regport
A integer trait.

session
A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

transport
A trait for unicode strings.

url
A trait for unicode strings.

8.77 parallel.util

8.77.1 Module: parallel.util

Inheritance diagram for IPython.parallel.util:

8.77. parallel.util 825

IPython Documentation, Release 0.11

parallel.util.Namespace

parallel.util.ReverseDict

some generic utilities for dealing with classes, urls, and serialization

Authors:

• Min RK

8.77.2 Classes

Namespace

class IPython.parallel.util.Namespace
Bases: dict

Subclass of dict for attribute access to keys.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

clear
D.clear() -> None. Remove all items from D.

copy
D.copy() -> a shallow copy of D

static fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

get
D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

has_key
D.has_key(k) -> True if D has a key k, else False

items
D.items() -> list of D’s (key, value) pairs, as 2-tuples

iteritems
D.iteritems() -> an iterator over the (key, value) items of D

iterkeys
D.iterkeys() -> an iterator over the keys of D

826 Chapter 8. The IPython API

IPython Documentation, Release 0.11

itervalues
D.itervalues() -> an iterator over the values of D

keys
D.keys() -> list of D’s keys

pop
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found,
d is returned if given, otherwise KeyError is raised

popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError
if D is empty.

setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

update
D.update(E, **F) -> None. Update D from dict/iterable E and F. If E has a .keys() method, does:
for k in E: D[k] = E[k] If E lacks .keys() method, does: for (k, v) in E: D[k] = v In either case,
this is followed by: for k in F: D[k] = F[k]

values
D.values() -> list of D’s values

ReverseDict

class IPython.parallel.util.ReverseDict(*args, **kwargs)
Bases: dict

simple double-keyed subset of dict methods.

__init__(*args, **kwargs)

clear
D.clear() -> None. Remove all items from D.

copy
D.copy() -> a shallow copy of D

static fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

get(key, default=None)

has_key
D.has_key(k) -> True if D has a key k, else False

items
D.items() -> list of D’s (key, value) pairs, as 2-tuples

iteritems
D.iteritems() -> an iterator over the (key, value) items of D

8.77. parallel.util 827

IPython Documentation, Release 0.11

iterkeys
D.iterkeys() -> an iterator over the keys of D

itervalues
D.itervalues() -> an iterator over the values of D

keys
D.keys() -> list of D’s keys

pop(key)

popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError
if D is empty.

setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

update
D.update(E, **F) -> None. Update D from dict/iterable E and F. If E has a .keys() method, does:
for k in E: D[k] = E[k] If E lacks .keys() method, does: for (k, v) in E: D[k] = v In either case,
this is followed by: for k in F: D[k] = F[k]

values
D.values() -> list of D’s values

8.77.3 Functions

IPython.parallel.util.asbytes(s)
ensure that an object is ascii bytes

IPython.parallel.util.connect_engine_logger(context, iface, engine,
loglevel=10)

IPython.parallel.util.connect_logger(logname, context, iface, root=’ip’,
loglevel=10)

IPython.parallel.util.disambiguate_ip_address(ip, location=None)
turn multi-ip interfaces ‘0.0.0.0’ and ‘*’ into connectable ones, based on the location (default inter-
pretation of location is localhost).

IPython.parallel.util.disambiguate_url(url, location=None)
turn multi-ip interfaces ‘0.0.0.0’ and ‘*’ into connectable ones, based on the location (default inter-
pretation is localhost).

This is for zeromq urls, such as tcp://*:10101.

IPython.parallel.util.generate_exec_key(keyfile)

IPython.parallel.util.integer_loglevel(loglevel)

IPython.parallel.util.interactive(f)
decorator for making functions appear as interactively defined. This results in the function being
linked to the user_ns as globals() instead of the module globals().

828 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython.parallel.util.local_logger(logname, loglevel=10)

IPython.parallel.util.pack_apply_message(f, args, kwargs,
threshold=6.3999999999999997e-
05)

pack up a function, args, and kwargs to be sent over the wire as a series of buffers. Any object whose
data is larger than threshold will not have their data copied (currently only numpy arrays support
zero-copy)

IPython.parallel.util.select_random_ports(n)
Selects and return n random ports that are available.

IPython.parallel.util.serialize_object(obj, threshold=6.3999999999999997e-
05)

Serialize an object into a list of sendable buffers.

Parameters obj : object

The object to be serialized

threshold : float

The threshold for not double-pickling the content.

Returns (‘pmd’, [bufs]) : :

where pmd is the pickled metadata wrapper, bufs is a list of data buffers

IPython.parallel.util.signal_children(children)
Relay interupt/term signals to children, for more solid process cleanup.

IPython.parallel.util.split_url(url)
split a zmq url (tcp://ip:port) into (‘tcp’,’ip’,’port’).

IPython.parallel.util.unpack_apply_message(bufs, g=None, copy=True)
unpack f,args,kwargs from buffers packed by pack_apply_message() Returns: original f,args,kwargs

IPython.parallel.util.unserialize_object(bufs)
reconstruct an object serialized by serialize_object from data buffers.

IPython.parallel.util.validate_url(url)
validate a url for zeromq

IPython.parallel.util.validate_url_container(container)
validate a potentially nested collection of urls.

8.78 testing

8.78.1 Module: testing

Testing support (tools to test IPython itself).

IPython.testing.test()
Run the entire IPython test suite.

8.78. testing 829

IPython Documentation, Release 0.11

For fine-grained control, you should use the iptest script supplied with the IPython installation.

8.79 testing.decorators

8.79.1 Module: testing.decorators

Decorators for labeling test objects.

Decorators that merely return a modified version of the original function object are straightforward. Decora-
tors that return a new function object need to use nose.tools.make_decorator(original_function)(decorator)
in returning the decorator, in order to preserve metadata such as function name, setup and teardown functions
and so on - see nose.tools for more information.

This module provides a set of useful decorators meant to be ready to use in your own tests. See the bottom
of the file for the ready-made ones, and if you find yourself writing a new one that may be of generic use,
add it here.

Included decorators:

Lightweight testing that remains unittest-compatible.

• @parametric, for parametric test support that is vastly easier to use than nose’s for debugging. With
ours, if a test fails, the stack under inspection is that of the test and not that of the test framework.

• An @as_unittest decorator can be used to tag any normal parameter-less function as a unittest Test-
Case. Then, both nose and normal unittest will recognize it as such. This will make it easier to migrate
away from Nose if we ever need/want to while maintaining very lightweight tests.

NOTE: This file contains IPython-specific decorators. Using the machinery in IPython.external.decorators,
we import either numpy.testing.decorators if numpy is available, OR use equivalent code in
IPython.external._decorators, which we’ve copied verbatim from numpy.

Authors

• Fernando Perez <Fernando.Perez@berkeley.edu>

8.79.2 Functions

IPython.testing.decorators.apply_wrapper(wrapper, func)
Apply a wrapper to a function for decoration.

This mixes Michele Simionato’s decorator tool with nose’s make_decorator, to apply a wrapper in
a decorator so that all nose attributes, as well as function signature and other properties, survive the
decoration cleanly. This will ensure that wrapped functions can still be well introspected via IPython,
for example.

IPython.testing.decorators.as_unittest(func)
Decorator to make a simple function into a normal test via unittest.

830 Chapter 8. The IPython API

mailto:Fernando.Perez@berkeley.edu

IPython Documentation, Release 0.11

IPython.testing.decorators.make_label_dec(label, ds=None)
Factory function to create a decorator that applies one or more labels.

Parameters label : string or sequence

One or more labels that will be applied by the decorator to the functions

it decorates. Labels are attributes of the decorated function with their :

value set to True. :

ds : string An optional docstring for the resulting decorator. If not given, a
default docstring is auto-generated.

Returns A decorator. :

Examples

A simple labeling decorator: >>> slow = make_label_dec(‘slow’) >>> print slow.__doc__ Labels a
test as ‘slow’.

And one that uses multiple labels and a custom docstring: >>> rare = make_label_dec([’slow’,’hard’],
... “Mix labels ‘slow’ and ‘hard’ for rare tests.”) >>> print rare.__doc__ Mix labels ‘slow’ and ‘hard’
for rare tests.

Now, let’s test using this one: >>> @rare ... def f(): pass ... >>> >>> f.slow True >>> f.hard True

IPython.testing.decorators.module_not_available(module)
Can module be imported? Returns true if module does NOT import.

This is used to make a decorator to skip tests that require module to be available, but delay the ‘import
numpy’ to test execution time.

IPython.testing.decorators.onlyif(condition, msg)
The reverse from skipif, see skipif for details.

IPython.testing.decorators.skip(msg=None)
Decorator factory - mark a test function for skipping from test suite.

Parameters msg : string

Optional message to be added.

Returns decorator : function

Decorator, which, when applied to a function, causes SkipTest to be raised,
with the optional message added.

IPython.testing.decorators.skipif(skip_condition, msg=None)
Make function raise SkipTest exception if skip_condition is true

Parameters skip_condition : bool or callable.

Flag to determine whether to skip test. If the condition is a callable, it is
used at runtime to dynamically make the decision. This is useful for tests that

8.79. testing.decorators 831

IPython Documentation, Release 0.11

may require costly imports, to delay the cost until the test suite is actually
executed. msg : string

Message to give on raising a SkipTest exception

Returns decorator : function

Decorator, which, when applied to a function, causes SkipTest to be raised
when the skip_condition was True, and the function to be called normally
otherwise.

Notes

You will see from the code that we had to further decorate the decorator with the
nose.tools.make_decorator function in order to transmit function name, and various other metadata.

8.80 testing.globalipapp

8.80.1 Module: testing.globalipapp

Inheritance diagram for IPython.testing.globalipapp:

utils.io.IOStream testing.globalipapp.StreamProxy

testing.globalipapp.ipnsdict

testing.globalipapp.py_file_finder

Global IPython app to support test running.

We must start our own ipython object and heavily muck with it so that all the modifications IPython makes
to system behavior don’t send the doctest machinery into a fit. This code should be considered a gross hack,
but it gets the job done.

832 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.80.2 Classes

StreamProxy

class IPython.testing.globalipapp.StreamProxy(name)
Bases: IPython.utils.io.IOStream

Proxy for sys.stdout/err. This will request the stream at call time allowing for nose’s Capture plugin’s
redirection of sys.stdout/err.

Parameters name : str

The name of the stream. This will be requested anew at every call

__init__(name)

close()

closed

flush()

stream

write(data)

writelines(lines)

ipnsdict

class IPython.testing.globalipapp.ipnsdict(*a)
Bases: dict

A special subclass of dict for use as an IPython namespace in doctests.

This subclass adds a simple checkpointing capability so that when testing machinery clears it (we use
it as the test execution context), it doesn’t get completely destroyed.

In addition, it can handle the presence of the ‘_’ key in a special manner, which is needed because of
how Python’s doctest machinery operates with ‘_’. See constructor and update() for details.

__init__(*a)

clear()

copy
D.copy() -> a shallow copy of D

static fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

get
D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

has_key
D.has_key(k) -> True if D has a key k, else False

8.80. testing.globalipapp 833

IPython Documentation, Release 0.11

items
D.items() -> list of D’s (key, value) pairs, as 2-tuples

iteritems
D.iteritems() -> an iterator over the (key, value) items of D

iterkeys
D.iterkeys() -> an iterator over the keys of D

itervalues
D.itervalues() -> an iterator over the values of D

keys
D.keys() -> list of D’s keys

pop
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found,
d is returned if given, otherwise KeyError is raised

popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError
if D is empty.

setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

update(other)

values
D.values() -> list of D’s values

py_file_finder

class IPython.testing.globalipapp.py_file_finder(test_filename)
Bases: object

__init__(test_filename)

8.80.3 Functions

IPython.testing.globalipapp.get_ipython()

IPython.testing.globalipapp.start_ipython()
Start a global IPython shell, which we need for IPython-specific syntax.

IPython.testing.globalipapp.xsys(self, cmd)
Replace the default system call with a capturing one for doctest.

834 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.81 testing.iptest

8.81.1 Module: testing.iptest

Inheritance diagram for IPython.testing.iptest:

testing.iptest.IPTester

IPython Test Suite Runner.

This module provides a main entry point to a user script to test IPython itself from the command line. There
are two ways of running this script:

1. With the syntax iptest all. This runs our entire test suite by calling this script (with different arguments)
recursively. This causes modules and package to be tested in different processes, using nose or trial
where appropriate.

2. With the regular nose syntax, like iptest -vvs IPython. In this form the script simply calls nose, but
with special command line flags and plugins loaded.

8.81.2 Class

8.81.3 IPTester

class IPython.testing.iptest.IPTester(runner=’iptest’, params=None)
Bases: object

Call that calls iptest or trial in a subprocess.

__init__(runner=’iptest’, params=None)
Create new test runner.

call_args = None
list, arguments of system call to be made to call test runner

params = None
list, parameters for test runner

pids = None
list, process ids of subprocesses we start (for cleanup)

run()
Run the stored commands

runner = None
string, name of test runner that will be called

8.81. testing.iptest 835

IPython Documentation, Release 0.11

8.81.4 Functions

IPython.testing.iptest.main()

IPython.testing.iptest.make_exclude()
Make patterns of modules and packages to exclude from testing.

For the IPythonDoctest plugin, we need to exclude certain patterns that cause testing problems. We
should strive to minimize the number of skipped modules, since this means untested code.

These modules and packages will NOT get scanned by nose at all for tests.

IPython.testing.iptest.make_runners()
Define the top-level packages that need to be tested.

IPython.testing.iptest.report()
Return a string with a summary report of test-related variables.

IPython.testing.iptest.run_iptest()
Run the IPython test suite using nose.

This function is called when this script is not called with the form iptest all. It simply calls nose with
appropriate command line flags and accepts all of the standard nose arguments.

IPython.testing.iptest.run_iptestall()
Run the entire IPython test suite by calling nose and trial.

This function constructs IPTester instances for all IPython modules and package and then runs
each of them. This causes the modules and packages of IPython to be tested each in their own sub-
process using nose or twisted.trial appropriately.

IPython.testing.iptest.test_for(mod, min_version=None)
Test to see if mod is importable.

8.82 testing.ipunittest

8.82.1 Module: testing.ipunittest

Inheritance diagram for IPython.testing.ipunittest:

testing.ipunittest.Doc2UnitTester

testing.ipunittest.IPython2PythonConverter

Experimental code for cleaner support of IPython syntax with unittest.

836 Chapter 8. The IPython API

IPython Documentation, Release 0.11

In IPython up until 0.10, we’ve used very hacked up nose machinery for running tests with IPython spe-
cial syntax, and this has proved to be extremely slow. This module provides decorators to try a different
approach, stemming from a conversation Brian and I (FP) had about this problem Sept/09.

The goal is to be able to easily write simple functions that can be seen by unittest as tests, and ultimately for
these to support doctests with full IPython syntax. Nose already offers this based on naming conventions
and our hackish plugins, but we are seeking to move away from nose dependencies if possible.

This module follows a different approach, based on decorators.

• A decorator called @ipdoctest can mark any function as having a docstring that should be viewed as
a doctest, but after syntax conversion.

Authors

• Fernando Perez <Fernando.Perez@berkeley.edu>

8.82.2 Classes

Doc2UnitTester

class IPython.testing.ipunittest.Doc2UnitTester(verbose=False)
Bases: object

Class whose instances act as a decorator for docstring testing.

In practice we’re only likely to need one instance ever, made below (though no attempt is made at
turning it into a singleton, there is no need for that).

__init__(verbose=False)
New decorator.

Parameters verbose : boolean, optional (False)

Passed to the doctest finder and runner to control verbosity.

IPython2PythonConverter

class IPython.testing.ipunittest.IPython2PythonConverter
Bases: object

Convert IPython ‘syntax’ to valid Python.

Eventually this code may grow to be the full IPython syntax conversion implementation, but for now
it only does prompt convertion.

__init__()

8.82. testing.ipunittest 837

mailto:Fernando.Perez@berkeley.edu

IPython Documentation, Release 0.11

8.82.3 Functions

IPython.testing.ipunittest.count_failures(runner)
Count number of failures in a doctest runner.

Code modeled after the summarize() method in doctest.

IPython.testing.ipunittest.ipdocstring(func)
Change the function docstring via ip2py.

8.83 testing.mkdoctests

8.83.1 Module: testing.mkdoctests

Inheritance diagram for IPython.testing.mkdoctests:

testing.mkdoctests.RunnerFactory

testing.mkdoctests.IndentOut

Utility for making a doctest file out of Python or IPython input.

%prog [options] input_file [output_file]

This script is a convenient generator of doctest files that uses IPython’s irunner script to execute valid Python
or IPython input in a separate process, capture all of the output, and write it to an output file.

It can be used in one of two ways:

1. With a plain Python or IPython input file (denoted by extensions ‘.py’ or ‘.ipy’. In this case, the output
is an auto-generated reST file with a basic header, and the captured Python input and output contained
in an indented code block.

If no output filename is given, the input name is used, with the extension replaced by ‘.txt’.

2. With an input template file. Template files are simply plain text files with special directives of the
form

%run filename

to include the named file at that point.

If no output filename is given and the input filename is of the form ‘base.tpl.txt’, the output will be
automatically named ‘base.txt’.

838 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.83.2 Classes

IndentOut

class IPython.testing.mkdoctests.IndentOut(out=<open file ‘<stdout>’, mode ‘w’ at
0x2b718392d150>, indent=4)

Bases: object

A simple output stream that indents all output by a fixed amount.

Instances of this class trap output to a given stream and first reformat it to indent every input line.

__init__(out=<open file ‘<stdout>’, mode ‘w’ at 0x2b718392d150>, indent=4)
Create an indented writer.

Keywords

•out : stream (sys.stdout) Output stream to actually write to after indenting.

•indent : int Number of spaces to indent every input line by.

close()

flush()

write(data)
Write a string to the output stream.

RunnerFactory

class IPython.testing.mkdoctests.RunnerFactory(out=<open file ‘<stdout>’, mode
‘w’ at 0x2b718392d150>)

Bases: object

Code runner factory.

This class provides an IPython code runner, but enforces that only one runner is every instantiated.
The runner is created based on the extension of the first file to run, and it raises an exception if a
runner is later requested for a different extension type.

This ensures that we don’t generate example files for doctest with a mix of python and ipython syntax.

__init__(out=<open file ‘<stdout>’, mode ‘w’ at 0x2b718392d150>)
Instantiate a code runner.

8.83.3 Function

IPython.testing.mkdoctests.main()
Run as a script.

8.83. testing.mkdoctests 839

IPython Documentation, Release 0.11

8.84 testing.nosepatch

8.84.1 Module: testing.nosepatch

Monkeypatch nose to accept any callable as a method.

By default, nose’s ismethod() fails for static methods. Once this is fixed in upstream nose we can disable it.

Note: merely importing this module causes the monkeypatch to be applied.

IPython.testing.nosepatch.getTestCaseNames(self, testCaseClass)
Override to select with selector, unless config.getTestCaseNamesCompat is True

8.85 testing.plugin.dtexample

8.85.1 Module: testing.plugin.dtexample

Simple example using doctests.

This file just contains doctests both using plain python and IPython prompts. All tests should be loaded by
nose.

8.85.2 Functions

IPython.testing.plugin.dtexample.ipfunc()
Some ipython tests...

In [1]: import os

In [3]: 2+3 Out[3]: 5

In [26]: for i in range(3):: print i,: print i+1,:

0 1 1 2 2 3

Examples that access the operating system work:

In [1]: !echo hello hello

In [2]: !echo hello > /tmp/foo

In [3]: !cat /tmp/foo hello

In [4]: rm -f /tmp/foo

It’s OK to use ‘_’ for the last result, but do NOT try to use IPython’s numbered history of _NN outputs,
since those won’t exist under the doctest environment:

In [7]: ‘hi’ Out[7]: ‘hi’

In [8]: print repr(_) ‘hi’

In [7]: 3+4 Out[7]: 7

840 Chapter 8. The IPython API

IPython Documentation, Release 0.11

In [8]: _+3 Out[8]: 10

In [9]: ipfunc() Out[9]: ‘ipfunc’

IPython.testing.plugin.dtexample.iprand()
Some ipython tests with random output.

In [7]: 3+4 Out[7]: 7

In [8]: print ‘hello’ world # random

In [9]: iprand() Out[9]: ‘iprand’

IPython.testing.plugin.dtexample.iprand_all()
Some ipython tests with fully random output.

all-random

In [7]: 1 Out[7]: 99

In [8]: print ‘hello’ world

In [9]: iprand_all() Out[9]: ‘junk’

IPython.testing.plugin.dtexample.pyfunc()
Some pure python tests...

>>> pyfunc()
’pyfunc’

>>> import os

>>> 2+3
5

>>> for i in range(3):
... print i,
... print i+1,
...
0 1 1 2 2 3

IPython.testing.plugin.dtexample.random_all()
A function where we ignore the output of ALL examples.

Examples:

all-random

This mark tells the testing machinery that all subsequent examples should be treated as
random (ignoring their output). They are still executed, so if a they raise an error, it will be
detected as such, but their output is completely ignored.

>>> 1+3
junk goes here...

>>> 1+3
klasdfj;

8.85. testing.plugin.dtexample 841

IPython Documentation, Release 0.11

>>> 1+2
again, anything goes
blah...

IPython.testing.plugin.dtexample.ranfunc()
A function with some random output.

Normal examples are verified as usual: >>> 1+3 4

But if you put ‘# random’ in the output, it is ignored: >>> 1+3 junk goes here... # random

>>> 1+2
again, anything goes #random
if multiline, the random mark is only needed once.

>>> 1+2
You can also put the random marker at the end:
random

>>> 1+2
random
.. or at the beginning.

More correct input is properly verified: >>> ranfunc() ‘ranfunc’

8.86 testing.plugin.show_refs

8.86.1 Module: testing.plugin.show_refs

Inheritance diagram for IPython.testing.plugin.show_refs:

plugin.show_refs.C

Simple script to show reference holding behavior.

This is used by a companion test case.

8.86.2 C

class IPython.testing.plugin.show_refs.C
Bases: object

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

842 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.87 testing.plugin.simple

8.87.1 Module: testing.plugin.simple

Simple example using doctests.

This file just contains doctests both using plain python and IPython prompts. All tests should be loaded by
nose.

8.87.2 Functions

IPython.testing.plugin.simple.ipyfunc2()
Some pure python tests...

>>> 1+1
2

IPython.testing.plugin.simple.pyfunc()
Some pure python tests...

>>> pyfunc()
’pyfunc’

>>> import os

>>> 2+3
5

>>> for i in range(3):
... print i,
... print i+1,
...
0 1 1 2 2 3

8.88 testing.plugin.test_ipdoctest

8.88.1 Module: testing.plugin.test_ipdoctest

Tests for the ipdoctest machinery itself.

Note: in a file named test_X, functions whose only test is their docstring (as a doctest) and which have
no test functionality of their own, should be called ‘doctest_foo’ instead of ‘test_foo’, otherwise they get
double-counted (the empty function call is counted as a test, which just inflates tests numbers artificially).

8.88.2 Functions

IPython.testing.plugin.test_ipdoctest.doctest_multiline1()
The ipdoctest machinery must handle multiline examples gracefully.

8.87. testing.plugin.simple 843

IPython Documentation, Release 0.11

In [2]: for i in range(10): ...: print i, ...:

0 1 2 3 4 5 6 7 8 9

IPython.testing.plugin.test_ipdoctest.doctest_multiline2()
Multiline examples that define functions and print output.

In [7]: def f(x): ...: return x+1 ...:

In [8]: f(1) Out[8]: 2

In [9]: def g(x): ...: print ‘x is:’,x ...:

In [10]: g(1) x is: 1

In [11]: g(‘hello’) x is: hello

IPython.testing.plugin.test_ipdoctest.doctest_multiline3()
Multiline examples with blank lines.

In [12]: def h(x):: if x>1:: return x**2: # To leave a blank line in the input, you must mark
it: # with a comment character:: #: # otherwise the doctest parser gets confused.:
else:: return -1:

In [13]: h(5) Out[13]: 25

In [14]: h(1) Out[14]: -1

In [15]: h(0) Out[15]: -1

IPython.testing.plugin.test_ipdoctest.doctest_simple()
ipdoctest must handle simple inputs

In [1]: 1 Out[1]: 1

In [2]: print 1 1

8.89 testing.plugin.test_refs

8.89.1 Module: testing.plugin.test_refs

Some simple tests for the plugin while running scripts.

8.89.2 Functions

IPython.testing.plugin.test_refs.doctest_ivars()
Test that variables defined interactively are picked up. In [5]: zz=1

In [6]: zz Out[6]: 1

IPython.testing.plugin.test_refs.doctest_refs()
DocTest reference holding issues when running scripts.

In [32]: run show_refs.py c referrers: [<type ‘dict’>]

844 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython.testing.plugin.test_refs.doctest_run()
Test running a trivial script.

In [13]: run simplevars.py x is: 1

IPython.testing.plugin.test_refs.doctest_runvars()
Test that variables defined in scripts get loaded correcly via %run.

In [13]: run simplevars.py x is: 1

In [14]: x Out[14]: 1

IPython.testing.plugin.test_refs.test_trivial()
A trivial passing test.

8.90 testing.skipdoctest

8.90.1 Module: testing.skipdoctest

This decorator marks that a doctest should be skipped.

The IPython.testing.decorators module triggers various extra imports, including numpy and sympy if they’re
present. Since this decorator is used in core parts of IPython, it’s in a separate module so that running IPython
doesn’t trigger those imports.

IPython.testing.skipdoctest.skip_doctest(f)
Decorator - mark a function or method for skipping its doctest.

This decorator allows you to mark a function whose docstring you wish to omit from testing, while
preserving the docstring for introspection, help, etc.

8.91 testing.tools

8.91.1 Module: testing.tools

Inheritance diagram for IPython.testing.tools:

testing.tools.TempFileMixin

Generic testing tools that do NOT depend on Twisted.

In particular, this module exposes a set of top-level assert* functions that can be used in place of
nose.tools.assert* in method generators (the ones in nose can not, at least as of nose 0.10.4).

8.90. testing.skipdoctest 845

IPython Documentation, Release 0.11

Note: our testing package contains testing.util, which does depend on Twisted and provides utilities for tests
that manage Deferreds. All testing support tools that only depend on nose, IPython or the standard library
should go here instead.

Authors

• Fernando Perez <Fernando.Perez@berkeley.edu>

8.91.2 Class

8.91.3 TempFileMixin

class IPython.testing.tools.TempFileMixin
Bases: object

Utility class to create temporary Python/IPython files.

Meant as a mixin class for test cases.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

mktmp(src, ext=’.py’)
Make a valid python temp file.

tearDown()

8.91.4 Functions

IPython.testing.tools.check_pairs(func, pairs)
Utility function for the common case of checking a function with a sequence of input/output pairs.

Parameters func : callable

The function to be tested. Should accept a single argument.

pairs : iterable

A list of (input, expected_output) tuples.

Returns None. Raises an AssertionError if any output does not match the expected
:

value. :

IPython.testing.tools.default_argv()
Return a valid default argv for creating testing instances of ipython

IPython.testing.tools.default_config()
Return a config object with good defaults for testing.

846 Chapter 8. The IPython API

mailto:Fernando.Perez@berkeley.edu

IPython Documentation, Release 0.11

IPython.testing.tools.full_path(startPath, files)
Make full paths for all the listed files, based on startPath.

Only the base part of startPath is kept, since this routine is typically used with a script’s __file__
variable as startPath. The base of startPath is then prepended to all the listed files, forming the output
list.

Parameters startPath : string

Initial path to use as the base for the results. This path is split

using os.path.split() and only its first component is kept.

files [string or list] One or more files.

Examples

>>> full_path(’/foo/bar.py’,[’a.txt’,’b.txt’])
[’/foo/a.txt’, ’/foo/b.txt’]

>>> full_path(’/foo’,[’a.txt’,’b.txt’])
[’/a.txt’, ’/b.txt’]

If a single file is given, the output is still a list: >>> full_path(‘/foo’,’a.txt’) [’/a.txt’]

IPython.testing.tools.ipexec(fname, options=None)
Utility to call ‘ipython filename’.

Starts IPython witha minimal and safe configuration to make startup as fast as possible.

Note that this starts IPython in a subprocess!

Parameters fname : str

Name of file to be executed (should have .py or .ipy extension).

options : optional, list

Extra command-line flags to be passed to IPython.

Returns (stdout, stderr) of ipython subprocess. :

IPython.testing.tools.ipexec_validate(fname, expected_out, expected_err=’‘, op-
tions=None)

Utility to call ‘ipython filename’ and validate output/error.

This function raises an AssertionError if the validation fails.

Note that this starts IPython in a subprocess!

Parameters fname : str

Name of the file to be executed (should have .py or .ipy extension).

expected_out : str

Expected stdout of the process.

8.91. testing.tools 847

IPython Documentation, Release 0.11

expected_err : optional, str

Expected stderr of the process.

options : optional, list

Extra command-line flags to be passed to IPython.

Returns None :

IPython.testing.tools.mute_warn(*args, **kwds)

IPython.testing.tools.parse_test_output(txt)
Parse the output of a test run and return errors, failures.

Parameters txt : str

Text output of a test run, assumed to contain a line of one of the following
forms:

’FAILED (errors=1)’
’FAILED (failures=1)’
’FAILED (errors=1, failures=1)’

Returns nerr, nfail: number of errors and failures. :

8.92 utils.PyColorize

8.92.1 Module: utils.PyColorize

Inheritance diagram for IPython.utils.PyColorize:

utils.PyColorize.Parser

Class and program to colorize python source code for ANSI terminals.

Based on an HTML code highlighter by Jurgen Hermann found at:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52298

Modifications by Fernando Perez (fperez@colorado.edu).

Information on the original HTML highlighter follows:

MoinMoin - Python Source Parser

Title: Colorize Python source using the built-in tokenizer

Submitter: Jurgen Hermann Last Updated:2001/04/06

848 Chapter 8. The IPython API

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52298
mailto:fperez@colorado.edu

IPython Documentation, Release 0.11

Version no:1.2

Description:

This code is part of MoinMoin (http://moin.sourceforge.net/) and converts Python source code to HTML
markup, rendering comments, keywords, operators, numeric and string literals in different colors.

It shows how to use the built-in keyword, token and tokenize modules to scan Python source code and
re-emit it with no changes to its original formatting (which is the hard part).

8.92.2 Parser

class IPython.utils.PyColorize.Parser(color_table=None, out=<open file ‘<stdout>’,
mode ‘w’ at 0x2b718392d150>)

Format colored Python source.

__init__(color_table=None, out=<open file ‘<stdout>’, mode ‘w’ at 0x2b718392d150>)
Create a parser with a specified color table and output channel.

Call format() to process code.

format(raw, out=None, scheme=’‘)

format2(raw, out=None, scheme=’‘)
Parse and send the colored source.

If out and scheme are not specified, the defaults (given to constructor) are used.

out should be a file-type object. Optionally, out can be given as the string ‘str’ and the parser
will automatically return the output in a string.

IPython.utils.PyColorize.main(argv=None)
Run as a command-line script: colorize a python file or stdin using ANSI color escapes and print to
stdout.

Inputs:

•argv(None): a list of strings like sys.argv[1:] giving the command-line arguments. If None, use
sys.argv[1:].

8.93 utils.attic

8.93.1 Module: utils.attic

Inheritance diagram for IPython.utils.attic:

8.93. utils.attic 849

http://moin.sourceforge.net/

IPython Documentation, Release 0.11

utils.attic.NotGiven

utils.attic.EvalDict

Older utilities that are not being used.

WARNING: IF YOU NEED TO USE ONE OF THESE FUNCTIONS, PLEASE FIRST MOVE IT TO
ANOTHER APPROPRIATE MODULE IN IPython.utils.

8.93.2 Classes

EvalDict

class IPython.utils.attic.EvalDict
Emulate a dict which evaluates its contents in the caller’s frame.

Usage: >>> number = 19

>>> text = "python"

>>> print "%(text.capitalize())s %(number/9.0).1f rules!" % EvalDict()
Python 2.1 rules!

NotGiven

class IPython.utils.attic.NotGiven

8.93.3 Functions

IPython.utils.attic.all_belong(candidates, checklist)
Check whether a list of items ALL appear in a given list of options.

Returns a single 1 or 0 value.

IPython.utils.attic.belong(candidates, checklist)
Check whether a list of items appear in a given list of options.

Returns a list of 1 and 0, one for each candidate given.

IPython.utils.attic.import_fail_info(mod_name, fns=None)
Inform load failure for a module.

850 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython.utils.attic.map_method(method, object_list, *args, **kw)→ list
Return a list of the results of applying the methods to the items of the argument sequence(s). If more
than one sequence is given, the method is called with an argument list consisting of the corresponding
item of each sequence. All sequences must be of the same length.

Keyword arguments are passed verbatim to all objects called.

This is Python code, so it’s not nearly as fast as the builtin map().

IPython.utils.attic.mutex_opts(dict, ex_op)
Check for presence of mutually exclusive keys in a dict.

Call: mutex_opts(dict,[[op1a,op1b],[op2a,op2b]...]

IPython.utils.attic.popkey(dct, key, default=<class IPython.utils.attic.NotGiven at
0x6e25dd0>)

Return dct[key] and delete dct[key].

If default is given, return it if dct[key] doesn’t exist, otherwise raise KeyError.

IPython.utils.attic.with_obj(object, **args)
Set multiple attributes for an object, similar to Pascal’s with.

Example: with_obj(jim,

born = 1960, haircolour = ‘Brown’, eyecolour = ‘Green’)

Credit: Greg Ewing, in http://mail.python.org/pipermail/python-list/2001-May/040703.html.

NOTE: up until IPython 0.7.2, this was called simply ‘with’, but ‘with’ has become a keyword for
Python 2.5, so we had to rename it.

IPython.utils.attic.wrap_deprecated(func, suggest=’<nothing>’)

8.94 utils.autoattr

8.94.1 Module: utils.autoattr

Inheritance diagram for IPython.utils.autoattr:

utils.autoattr.ResetMixin

utils.autoattr.OneTimeProperty

Descriptor utilities.

8.94. utils.autoattr 851

http://mail.python.org/pipermail/python-list/2001-May/040703.html

IPython Documentation, Release 0.11

Utilities to support special Python descriptors [1,2], in particular the use of a useful pattern for properties we
call ‘one time properties’. These are object attributes which are declared as properties, but become regular
attributes once they’ve been read the first time. They can thus be evaluated later in the object’s life cycle, but
once evaluated they become normal, static attributes with no function call overhead on access or any other
constraints.

A special ResetMixin class is provided to add a .reset() method to users who may want to have their objects
capable of resetting these computed properties to their ‘untriggered’ state.

References

[1] How-To Guide for Descriptors, Raymond Hettinger. http://users.rcn.com/python/download/Descriptor.htm

[2] Python data model, http://docs.python.org/reference/datamodel.html

Notes

This module is taken from the NiPy project (http://neuroimaging.scipy.org/site/index.html), and is BSD
licensed.

Authors

• Fernando Perez.

8.94.2 Classes

OneTimeProperty

class IPython.utils.autoattr.OneTimeProperty(func)
Bases: object

A descriptor to make special properties that become normal attributes.

This is meant to be used mostly by the auto_attr decorator in this module.

__init__(func)
Create a OneTimeProperty instance.

Parameters func : method

The method that will be called the first time to compute a value. Afterwards,
the method’s name will be a standard attribute holding the value of this com-
putation.

852 Chapter 8. The IPython API

http://users.rcn.com/python/download/Descriptor.htm
http://docs.python.org/reference/datamodel.html
http://neuroimaging.scipy.org/site/index.html

IPython Documentation, Release 0.11

ResetMixin

class IPython.utils.autoattr.ResetMixin
Bases: object

A Mixin class to add a .reset() method to users of OneTimeProperty.

By default, auto attributes once computed, become static. If they happen to depend on other parts of
an object and those parts change, their values may now be invalid.

This class offers a .reset() method that users can call explicitly when they know the state of their objects
may have changed and they want to ensure that all their special attributes should be invalidated. Once
reset() is called, all their auto attributes are reset to their OneTimeProperty descriptors, and their
accessor functions will be triggered again.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

reset()
Reset all OneTimeProperty attributes that may have fired already.

8.94.3 Function

IPython.utils.autoattr.auto_attr(func)
Decorator to create OneTimeProperty attributes.

Parameters func : method

The method that will be called the first time to compute a value. Afterwards,
the method’s name will be a standard attribute holding the value of this com-
putation.

Examples

>>> class MagicProp(object):
... @auto_attr
... def a(self):
... return 99
...
>>> x = MagicProp()
>>> ’a’ in x.__dict__
False
>>> x.a
99
>>> ’a’ in x.__dict__
True

8.94. utils.autoattr 853

IPython Documentation, Release 0.11

8.95 utils.codeutil

8.95.1 Module: utils.codeutil

Utilities to enable code objects to be pickled.

Any process that import this module will be able to pickle code objects. This includes the func_code attribute
of any function. Once unpickled, new functions can be built using new.function(code, globals()). Eventually
we need to automate all of this so that functions themselves can be pickled.

Reference: A. Tremols, P Cogolo, “Python Cookbook,” p 302-305

8.95.2 Functions

IPython.utils.codeutil.code_ctor(*args)

IPython.utils.codeutil.reduce_code(co)

8.96 utils.coloransi

8.96.1 Module: utils.coloransi

Inheritance diagram for IPython.utils.coloransi:

utils.coloransi.ColorScheme

utils.coloransi.ColorSchemeTable

utils.coloransi.InputTermColors

utils.coloransi.TermColors

Tools for coloring text in ANSI terminals.

854 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.96.2 Classes

ColorScheme

class IPython.utils.coloransi.ColorScheme(_ColorScheme__scheme_name_, color-
dict=None, **colormap)

Generic color scheme class. Just a name and a Struct.

__init__(_ColorScheme__scheme_name_, colordict=None, **colormap)

copy(name=None)
Return a full copy of the object, optionally renaming it.

ColorSchemeTable

class IPython.utils.coloransi.ColorSchemeTable(scheme_list=None, de-
fault_scheme=’‘)

Bases: dict

General class to handle tables of color schemes.

It’s basically a dict of color schemes with a couple of shorthand attributes and some convenient meth-
ods.

active_scheme_name -> obvious active_colors -> actual color table of the active scheme

__init__(scheme_list=None, default_scheme=’‘)
Create a table of color schemes.

The table can be created empty and manually filled or it can be created with a list of valid color
schemes AND the specification for the default active scheme.

add_scheme(new_scheme)
Add a new color scheme to the table.

clear
D.clear() -> None. Remove all items from D.

copy()
Return full copy of object

static fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

get
D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

has_key
D.has_key(k) -> True if D has a key k, else False

items
D.items() -> list of D’s (key, value) pairs, as 2-tuples

iteritems
D.iteritems() -> an iterator over the (key, value) items of D

8.96. utils.coloransi 855

IPython Documentation, Release 0.11

iterkeys
D.iterkeys() -> an iterator over the keys of D

itervalues
D.itervalues() -> an iterator over the values of D

keys
D.keys() -> list of D’s keys

pop
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found,
d is returned if given, otherwise KeyError is raised

popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError
if D is empty.

set_active_scheme(scheme, case_sensitive=0)
Set the currently active scheme.

Names are by default compared in a case-insensitive way, but this can be changed by setting the
parameter case_sensitive to true.

setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

update
D.update(E, **F) -> None. Update D from dict/iterable E and F. If E has a .keys() method, does:
for k in E: D[k] = E[k] If E lacks .keys() method, does: for (k, v) in E: D[k] = v In either case,
this is followed by: for k in F: D[k] = F[k]

values
D.values() -> list of D’s values

InputTermColors

class IPython.utils.coloransi.InputTermColors
Color escape sequences for input prompts.

This class is similar to TermColors, but the escapes are wrapped in “ and ” so that readline can properly
know the length of each line and can wrap lines accordingly. Use this class for any colored text which
needs to be used in input prompts, such as in calls to raw_input().

This class defines the escape sequences for all the standard (ANSI?) colors in terminals. Also defines a
NoColor escape which is just the null string, suitable for defining ‘dummy’ color schemes in terminals
which get confused by color escapes.

This class should be used as a mixin for building color schemes.

Black = ‘\x01\x1b[0;30m\x02’

BlinkBlack = ‘\x01\x1b[5;30m\x02’

BlinkBlue = ‘\x01\x1b[5;34m\x02’

856 Chapter 8. The IPython API

IPython Documentation, Release 0.11

BlinkCyan = ‘\x01\x1b[5;36m\x02’

BlinkGreen = ‘\x01\x1b[5;32m\x02’

BlinkLightGray = ‘\x01\x1b[5;37m\x02’

BlinkPurple = ‘\x01\x1b[5;35m\x02’

BlinkRed = ‘\x01\x1b[5;31m\x02’

BlinkYellow = ‘\x01\x1b[5;33m\x02’

Blue = ‘\x01\x1b[0;34m\x02’

Brown = ‘\x01\x1b[0;33m\x02’

Cyan = ‘\x01\x1b[0;36m\x02’

DarkGray = ‘\x01\x1b[1;30m\x02’

Green = ‘\x01\x1b[0;32m\x02’

LightBlue = ‘\x01\x1b[1;34m\x02’

LightCyan = ‘\x01\x1b[1;36m\x02’

LightGray = ‘\x01\x1b[0;37m\x02’

LightGreen = ‘\x01\x1b[1;32m\x02’

LightPurple = ‘\x01\x1b[1;35m\x02’

LightRed = ‘\x01\x1b[1;31m\x02’

NoColor = ‘’

Normal = ‘\x01\x1b[0m\x02’

Purple = ‘\x01\x1b[0;35m\x02’

Red = ‘\x01\x1b[0;31m\x02’

White = ‘\x01\x1b[1;37m\x02’

Yellow = ‘\x01\x1b[1;33m\x02’

TermColors

class IPython.utils.coloransi.TermColors
Color escape sequences.

This class defines the escape sequences for all the standard (ANSI?) colors in terminals. Also defines a
NoColor escape which is just the null string, suitable for defining ‘dummy’ color schemes in terminals
which get confused by color escapes.

This class should be used as a mixin for building color schemes.

Black = ‘\x1b[0;30m’

BlinkBlack = ‘\x1b[5;30m’

8.96. utils.coloransi 857

IPython Documentation, Release 0.11

BlinkBlue = ‘\x1b[5;34m’

BlinkCyan = ‘\x1b[5;36m’

BlinkGreen = ‘\x1b[5;32m’

BlinkLightGray = ‘\x1b[5;37m’

BlinkPurple = ‘\x1b[5;35m’

BlinkRed = ‘\x1b[5;31m’

BlinkYellow = ‘\x1b[5;33m’

Blue = ‘\x1b[0;34m’

Brown = ‘\x1b[0;33m’

Cyan = ‘\x1b[0;36m’

DarkGray = ‘\x1b[1;30m’

Green = ‘\x1b[0;32m’

LightBlue = ‘\x1b[1;34m’

LightCyan = ‘\x1b[1;36m’

LightGray = ‘\x1b[0;37m’

LightGreen = ‘\x1b[1;32m’

LightPurple = ‘\x1b[1;35m’

LightRed = ‘\x1b[1;31m’

NoColor = ‘’

Normal = ‘\x1b[0m’

Purple = ‘\x1b[0;35m’

Red = ‘\x1b[0;31m’

White = ‘\x1b[1;37m’

Yellow = ‘\x1b[1;33m’

8.96.3 Function

IPython.utils.coloransi.make_color_table(in_class)
Build a set of color attributes in a class.

Helper function for building the *TermColors classes.

858 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.97 utils.daemonize

8.97.1 Module: utils.daemonize

daemonize function from twisted.scripts._twistd_unix.

IPython.utils.daemonize.daemonize()

8.98 utils.data

8.98.1 Module: utils.data

Utilities for working with data structures like lists, dicts and tuples.

8.98.2 Functions

IPython.utils.data.chop(seq, size)
Chop a sequence into chunks of the given size.

IPython.utils.data.flatten(seq)
Flatten a list of lists (NOT recursive, only works for 2d lists).

IPython.utils.data.get_slice(seq, start=0, stop=None, step=1)
Get a slice of a sequence with variable step. Specify start,stop,step.

IPython.utils.data.list2dict(lst)
Takes a list of (key,value) pairs and turns it into a dict.

IPython.utils.data.list2dict2(lst, default=’‘)
Takes a list and turns it into a dict. Much slower than list2dict, but more versatile. This version can
take lists with sublists of arbitrary length (including sclars).

IPython.utils.data.sort_compare(lst1, lst2, inplace=1)
Sort and compare two lists.

By default it does it in place, thus modifying the lists. Use inplace = 0 to avoid that (at the cost of
temporary copy creation).

IPython.utils.data.uniq_stable(elems)→ list
Return from an iterable, a list of all the unique elements in the input, but maintaining the order in
which they first appear.

A naive solution to this problem which just makes a dictionary with the elements as keys fails to
respect the stability condition, since dictionaries are unsorted by nature.

Note: All elements in the input must be valid dictionary keys for this routine to work, as it internally
uses a dictionary for efficiency reasons.

8.97. utils.daemonize 859

IPython Documentation, Release 0.11

8.99 utils.decorators

8.99.1 Module: utils.decorators

Decorators that don’t go anywhere else.

This module contains misc. decorators that don’t really go with another module in IPython.utils.
Beore putting something here please see if it should go into another topical module in IPython.utils.

IPython.utils.decorators.flag_calls(func)
Wrap a function to detect and flag when it gets called.

This is a decorator which takes a function and wraps it in a function with a ‘called’ attribute. wrap-
per.called is initialized to False.

The wrapper.called attribute is set to False right before each call to the wrapped function, so if the call
fails it remains False. After the call completes, wrapper.called is set to True and the output is returned.

Testing for truth in wrapper.called allows you to determine if a call to func() was attempted and
succeeded.

8.100 utils.dir2

8.100.1 Module: utils.dir2

A fancy version of Python’s builtin dir() function.

8.100.2 Functions

IPython.utils.dir2.dir2(obj)→ list of strings
Extended version of the Python builtin dir(), which does a few extra checks, and supports common
objects with unusual internals that confuse dir(), such as Traits and PyCrust.

This version is guaranteed to return only a list of true strings, whereas dir() returns anything that ob-
jects inject into themselves, even if they are later not really valid for attribute access (many extension
libraries have such bugs).

IPython.utils.dir2.get_class_members(cls)

8.101 utils.doctestreload

8.101.1 Module: utils.doctestreload

A utility for handling the reloading of doctest.

860 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.101.2 Functions

IPython.utils.doctestreload.dhook_wrap(func, *a, **k)
Wrap a function call in a sys.displayhook controller.

Returns a wrapper around func which calls func, with all its arguments and keywords unmodified,
using the default sys.displayhook. Since IPython modifies sys.displayhook, it breaks the behavior of
certain systems that rely on the default behavior, notably doctest.

IPython.utils.doctestreload.doctest_reload()
Properly reload doctest to reuse it interactively.

This routine:

•imports doctest but does NOT reload it (see below).

•resets its global ‘master’ attribute to None, so that multiple uses of

the module interactively don’t produce cumulative reports.

•Monkeypatches its core test runner method to protect it from IPython’s

modified displayhook. Doctest expects the default displayhook behavior deep down, so
our modification breaks it completely. For this reason, a hard monkeypatch seems like
a reasonable solution rather than asking users to manually use a different doctest runner
when under IPython.

Notes

This function used to reload doctest, but this has been disabled because reloading doctest uncondi-
tionally can cause massive breakage of other doctest-dependent modules already in memory, such as
those for IPython’s own testing system. The name wasn’t changed to avoid breaking people’s code,
but the reload call isn’t actually made anymore.

8.102 utils.frame

8.102.1 Module: utils.frame

Utilities for working with stack frames.

8.102.2 Functions

IPython.utils.frame.debugx(expr, pre_msg=’‘)
Print the value of an expression from the caller’s frame.

Takes an expression, evaluates it in the caller’s frame and prints both the given expression and the
resulting value (as well as a debug mark indicating the name of the calling function. The input must
be of a form suitable for eval().

An optional message can be passed, which will be prepended to the printed expr->value pair.

8.102. utils.frame 861

IPython Documentation, Release 0.11

IPython.utils.frame.extract_vars(*names, **kw)
Extract a set of variables by name from another frame.

Parameters

• *names: strings One or more variable names which will be extracted from the
caller’s

frame.

Keywords

• depth: integer (0) How many frames in the stack to walk when looking for your
variables.

Examples:

In [2]: def func(x): ...: y = 1 ...: print extract_vars(‘x’,’y’) ...:

In [3]: func(‘hello’) {‘y’: 1, ‘x’: ‘hello’}

IPython.utils.frame.extract_vars_above(*names)
Extract a set of variables by name from another frame.

Similar to extractVars(), but with a specified depth of 1, so that names are exctracted exactly from
above the caller.

This is simply a convenience function so that the very common case (for us) of skipping exactly 1
frame doesn’t have to construct a special dict for keyword passing.

8.103 utils.generics

8.103.1 Module: utils.generics

Generic functions for extending IPython.

See http://cheeseshop.python.org/pypi/simplegeneric.

8.103.2 Functions

IPython.utils.generics.complete_object(*args, **kw)
Custom completer dispatching for python objects.

Parameters obj : object

The object to complete.

prev_completions : list

List of attributes discovered so far.

This should return the list of attributes in obj. If you only wish to :

add to the attributes already discovered normally, return :

862 Chapter 8. The IPython API

http://cheeseshop.python.org/pypi/simplegeneric

IPython Documentation, Release 0.11

own_attrs + prev_completions. :

IPython.utils.generics.inspect_object(*args, **kw)
Called when you do obj?

8.104 utils.growl

8.104.1 Module: utils.growl

Inheritance diagram for IPython.utils.growl:

utils.growl.IPythonGrowlError

utils.growl.Notifier

Utilities using Growl on OS X for notifications.

8.104.2 Classes

IPythonGrowlError

class IPython.utils.growl.IPythonGrowlError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

Notifier

class IPython.utils.growl.Notifier(app_name)
Bases: object

__init__(app_name)

notify(title, msg)

notify_deferred(r, msg)

8.104. utils.growl 863

IPython Documentation, Release 0.11

8.104.3 Functions

IPython.utils.growl.notify(title, msg)

IPython.utils.growl.notify_deferred(r, msg)

IPython.utils.growl.start(app_name)

8.105 utils.importstring

8.105.1 Module: utils.importstring

A simple utility to import something by its string name.

Authors:

• Brian Granger

IPython.utils.importstring.import_item(name)
Import and return bar given the string foo.bar.

8.106 utils.io

8.106.1 Module: utils.io

Inheritance diagram for IPython.utils.io:

utils.io.IOTerm

utils.io.NLprinter

utils.io.IOStream

utils.io.Tee

IO related utilities.

864 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.106.2 Classes

IOStream

class IPython.utils.io.IOStream(stream, fallback=None)

__init__(stream, fallback=None)

close()

closed

write(data)

writelines(lines)

IOTerm

class IPython.utils.io.IOTerm(stdin=None, stdout=None, stderr=None)
Term holds the file or file-like objects for handling I/O operations.

These are normally just sys.stdin, sys.stdout and sys.stderr but for Windows they can can replaced to
allow editing the strings before they are displayed.

__init__(stdin=None, stdout=None, stderr=None)

NLprinter

class IPython.utils.io.NLprinter
Print an arbitrarily nested list, indicating index numbers.

An instance of this class called nlprint is available and callable as a function.

nlprint(list,indent=’ ‘,sep=’: ‘) -> prints indenting each level by ‘indent’ and using ‘sep’ to separate
the index from the value.

__init__()

Tee

class IPython.utils.io.Tee(file_or_name, mode=None, channel=’stdout’)
Bases: object

A class to duplicate an output stream to stdout/err.

This works in a manner very similar to the Unix ‘tee’ command.

When the object is closed or deleted, it closes the original file given to it for duplication.

__init__(file_or_name, mode=None, channel=’stdout’)
Construct a new Tee object.

8.106. utils.io 865

IPython Documentation, Release 0.11

Parameters file_or_name : filename or open filehandle (writable)

File that will be duplicated

mode : optional, valid mode for open().

If a filename was give, open with this mode.

channel : str, one of [’stdout’, ‘stderr’]

close()
Close the file and restore the channel.

flush()
Flush both channels.

write(data)
Write data to both channels.

8.106.3 Functions

IPython.utils.io.ask_yes_no(prompt, default=None)
Asks a question and returns a boolean (y/n) answer.

If default is given (one of ‘y’,’n’), it is used if the user input is empty. Otherwise the question is
repeated until an answer is given.

An EOF is treated as the default answer. If there is no default, an exception is raised to prevent infinite
loops.

Valid answers are: y/yes/n/no (match is not case sensitive).

IPython.utils.io.file_read(filename)
Read a file and close it. Returns the file source.

IPython.utils.io.file_readlines(filename)
Read a file and close it. Returns the file source using readlines().

IPython.utils.io.raw_input_ext(prompt=’‘, ps2=’... ‘)
Similar to raw_input(), but accepts extended lines if input ends with .

IPython.utils.io.raw_input_multi(header=’‘, ps1=’==> ‘, ps2=’..> ‘, termi-
nate_str=’.’)

Take multiple lines of input.

A list with each line of input as a separate element is returned when a termination string is entered
(defaults to a single ‘.’). Input can also terminate via EOF (^D in Unix, ^Z-RET in Windows).

Lines of input which end in are joined into single entries (and a secondary continuation prompt is
issued as long as the user terminates lines with). This allows entering very long strings which are still
meant to be treated as single entities.

IPython.utils.io.raw_print(*args, **kw)
Raw print to sys.__stdout__, otherwise identical interface to print().

866 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython.utils.io.raw_print_err(*args, **kw)
Raw print to sys.__stderr__, otherwise identical interface to print().

IPython.utils.io.temp_pyfile(src, ext=’.py’)
Make a temporary python file, return filename and filehandle.

Parameters src : string or list of strings (no need for ending newlines if list)

Source code to be written to the file.

ext : optional, string

Extension for the generated file.

Returns (filename, open filehandle) :

It is the caller’s responsibility to close the open file and unlink it.

8.107 utils.ipstruct

8.107.1 Module: utils.ipstruct

Inheritance diagram for IPython.utils.ipstruct:

utils.ipstruct.Struct

A dict subclass that supports attribute style access.

Authors:

• Fernando Perez (original)

• Brian Granger (refactoring to a dict subclass)

8.107.2 Struct

class IPython.utils.ipstruct.Struct(*args, **kw)
Bases: dict

A dict subclass with attribute style access.

This dict subclass has a a few extra features:

•Attribute style access.

•Protection of class members (like keys, items) when using attribute style access.

8.107. utils.ipstruct 867

IPython Documentation, Release 0.11

•The ability to restrict assignment to only existing keys.

•Intelligent merging.

•Overloaded operators.

__init__(*args, **kw)
Initialize with a dictionary, another Struct, or data.

Parameters args : dict, Struct

Initialize with one dict or Struct

kw : dict

Initialize with key, value pairs.

Examples

>>> s = Struct(a=10,b=30)
>>> s.a
10
>>> s.b
30
>>> s2 = Struct(s,c=30)
>>> s2.keys()
[’a’, ’c’, ’b’]

allow_new_attr(allow=True)
Set whether new attributes can be created in this Struct.

This can be used to catch typos by verifying that the attribute user tries to change already exists
in this Struct.

clear
D.clear() -> None. Remove all items from D.

copy()
Return a copy as a Struct.

Examples

>>> s = Struct(a=10,b=30)
>>> s2 = s.copy()
>>> s2
{’a’: 10, ’b’: 30}
>>> type(s2).__name__
’Struct’

dict()

static fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

868 Chapter 8. The IPython API

IPython Documentation, Release 0.11

get
D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

has_key
D.has_key(k) -> True if D has a key k, else False

hasattr(key)
hasattr function available as a method.

Implemented like has_key.

Examples

>>> s = Struct(a=10)
>>> s.hasattr(’a’)
True
>>> s.hasattr(’b’)
False
>>> s.hasattr(’get’)
False

items
D.items() -> list of D’s (key, value) pairs, as 2-tuples

iteritems
D.iteritems() -> an iterator over the (key, value) items of D

iterkeys
D.iterkeys() -> an iterator over the keys of D

itervalues
D.itervalues() -> an iterator over the values of D

keys
D.keys() -> list of D’s keys

merge(__loc_data__=None, _Struct__conflict_solve=None, **kw)
Merge two Structs with customizable conflict resolution.

This is similar to update(), but much more flexible. First, a dict is made from data+key=value
pairs. When merging this dict with the Struct S, the optional dictionary ‘conflict’ is used to
decide what to do.

If conflict is not given, the default behavior is to preserve any keys with their current value (the
opposite of the update() method’s behavior).

Parameters __loc_data : dict, Struct

The data to merge into self

__conflict_solve : dict

The conflict policy dict. The keys are binary functions used to resolve the
conflict and the values are lists of strings naming the keys the conflict reso-

8.107. utils.ipstruct 869

IPython Documentation, Release 0.11

lution function applies to. Instead of a list of strings a space separated string
can be used, like ‘a b c’.

kw : dict

Additional key, value pairs to merge in

Notes

The __conflict_solve dict is a dictionary of binary functions which will be used to solve key
conflicts. Here is an example:

__conflict_solve = dict(
func1=[’a’,’b’,’c’],
func2=[’d’,’e’]

)

In this case, the function func1() will be used to resolve keys ‘a’, ‘b’ and ‘c’ and the function
func2() will be used for keys ‘d’ and ‘e’. This could also be written as:

__conflict_solve = dict(func1=’a b c’,func2=’d e’)

These functions will be called for each key they apply to with the form:

func1(self[’a’], other[’a’])

The return value is used as the final merged value.

As a convenience, merge() provides five (the most commonly needed) pre-defined policies: pre-
serve, update, add, add_flip and add_s. The easiest explanation is their implementation:

preserve = lambda old,new: old
update = lambda old,new: new
add = lambda old,new: old + new
add_flip = lambda old,new: new + old # note change of order!
add_s = lambda old,new: old + ’ ’ + new # only for str!

You can use those four words (as strings) as keys instead of defining them as functions, and the
merge method will substitute the appropriate functions for you.

For more complicated conflict resolution policies, you still need to construct your own functions.

Examples

This show the default policy:

>>> s = Struct(a=10,b=30)
>>> s2 = Struct(a=20,c=40)
>>> s.merge(s2)
>>> s
{’a’: 10, ’c’: 40, ’b’: 30}

870 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Now, show how to specify a conflict dict:

>>> s = Struct(a=10,b=30)
>>> s2 = Struct(a=20,b=40)
>>> conflict = {’update’:’a’,’add’:’b’}
>>> s.merge(s2,conflict)
>>> s
{’a’: 20, ’b’: 70}

pop
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found,
d is returned if given, otherwise KeyError is raised

popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError
if D is empty.

setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

update
D.update(E, **F) -> None. Update D from dict/iterable E and F. If E has a .keys() method, does:
for k in E: D[k] = E[k] If E lacks .keys() method, does: for (k, v) in E: D[k] = v In either case,
this is followed by: for k in F: D[k] = F[k]

values
D.values() -> list of D’s values

8.108 utils.jsonutil

8.108.1 Module: utils.jsonutil

Utilities to manipulate JSON objects.

8.108.2 Functions

IPython.utils.jsonutil.date_default(obj)
default function for packing datetime objects in JSON.

IPython.utils.jsonutil.extract_dates(obj)
extract ISO8601 dates from unpacked JSON

IPython.utils.jsonutil.json_clean(obj)
Clean an object to ensure it’s safe to encode in JSON.

Atomic, immutable objects are returned unmodified. Sets and tuples are converted to lists, lists are
copied and dicts are also copied.

Note: dicts whose keys could cause collisions upon encoding (such as a dict with both the number 1
and the string ‘1’ as keys) will cause a ValueError to be raised.

8.108. utils.jsonutil 871

IPython Documentation, Release 0.11

Parameters obj : any python object

Returns out : object

A version of the input which will not cause an encoding error when encoded
as JSON. Note that this function does not encode its inputs, it simply sanitizes
it so that there will be no encoding errors later.

Examples

>>> json_clean(4)
4
>>> json_clean(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> json_clean(dict(x=1, y=2))
{’y’: 2, ’x’: 1}
>>> json_clean(dict(x=1, y=2, z=[1,2,3]))
{’y’: 2, ’x’: 1, ’z’: [1, 2, 3]}
>>> json_clean(True)
True

IPython.utils.jsonutil.rekey(dikt)
Rekey a dict that has been forced to use str keys where there should be ints by json.

IPython.utils.jsonutil.squash_dates(obj)
squash datetime objects into ISO8601 strings

8.109 utils.newserialized

8.109.1 Module: utils.newserialized

Inheritance diagram for IPython.utils.newserialized:

872 Chapter 8. The IPython API

IPython Documentation, Release 0.11

utils.newserialized.Serialized

utils.newserialized.UnSerializeItutils.newserialized.UnSerialized

utils.newserialized.IUnSerialized

utils.newserialized.ISerialized

utils.newserialized.SerializationError

utils.newserialized.SerializeIt

Refactored serialization classes and interfaces.

8.109.2 Classes

ISerialized

class IPython.utils.newserialized.ISerialized

getData()

getDataSize(units=1000000.0)

getMetadata()

getTypeDescriptor()

IUnSerialized

class IPython.utils.newserialized.IUnSerialized

getObject()

8.109. utils.newserialized 873

IPython Documentation, Release 0.11

SerializationError

class IPython.utils.newserialized.SerializationError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

SerializeIt

class IPython.utils.newserialized.SerializeIt(unSerialized)
Bases: object

__init__(unSerialized)

getData()

getDataSize(units=1000000.0)

getMetadata()

getTypeDescriptor()

Serialized

class IPython.utils.newserialized.Serialized(data, typeDescriptor, metadata={})
Bases: object

__init__(data, typeDescriptor, metadata={})

getData()

getDataSize(units=1000000.0)

getMetadata()

getTypeDescriptor()

UnSerializeIt

class IPython.utils.newserialized.UnSerializeIt(serialized)
Bases: IPython.utils.newserialized.UnSerialized

__init__(serialized)

getObject()

874 Chapter 8. The IPython API

IPython Documentation, Release 0.11

UnSerialized

class IPython.utils.newserialized.UnSerialized(obj)
Bases: object

__init__(obj)

getObject()

8.109.3 Functions

IPython.utils.newserialized.serialize(obj)

IPython.utils.newserialized.unserialize(serialized)

8.110 utils.notification

8.110.1 Module: utils.notification

Inheritance diagram for IPython.utils.notification:

utils.notification.NotificationError

utils.notification.NotificationCenter

The IPython Core Notification Center.

See docs/source/development/notification_blueprint.txt for an overview of the notification module.

Authors:

• Barry Wark

• Brian Granger

8.110.2 Classes

NotificationCenter

class IPython.utils.notification.NotificationCenter
Bases: object

8.110. utils.notification 875

IPython Documentation, Release 0.11

Synchronous notification center.

Examples

Here is a simple example of how to use this:

import IPython.util.notification as notification
def callback(ntype, theSender, args={}):

print ntype,theSender,args

notification.sharedCenter.add_observer(callback, ’NOTIFICATION_TYPE’, None)
notification.sharedCenter.post_notification(’NOTIFICATION_TYPE’, object()) # doctest:+ELLIPSIS
NOTIFICATION_TYPE ...

__init__()

add_observer(callback, ntype, sender)
Add an observer callback to this notification center.

The given callback will be called upon posting of notifications of the given type/sender and will
receive any additional arguments passed to post_notification.

Parameters callback : callable

The callable that will be called by post_notification() as ‘‘call-
back(ntype, sender, *args, **kwargs)

ntype : hashable

The notification type. If None, all notifications from sender will be posted.

sender : hashable

The notification sender. If None, all notifications of ntype will be posted.

post_notification(ntype, sender, *args, **kwargs)
Post notification to all registered observers.

The registered callback will be called as:

callback(ntype, sender, *args, **kwargs)

Parameters ntype : hashable

The notification type.

sender : hashable

The object sending the notification.

*args : tuple

The positional arguments to be passed to the callback.

**kwargs : dict

The keyword argument to be passed to the callback.

876 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Notes

•If no registered observers, performance is O(1).

•Notificaiton order is undefined.

•Notifications are posted synchronously.

remove_all_observers()
Removes all observers from this notification center

NotificationError

class IPython.utils.notification.NotificationError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.111 utils.path

8.111.1 Module: utils.path

Inheritance diagram for IPython.utils.path:

utils.path.HomeDirError

Utilities for path handling.

8.111.2 Class

8.111.3 HomeDirError

class IPython.utils.path.HomeDirError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

8.111. utils.path 877

IPython Documentation, Release 0.11

args

message

8.111.4 Functions

IPython.utils.path.check_for_old_config(ipython_dir=None)
Check for old config files, and present a warning if they exist.

A link to the docs of the new config is included in the message.

This should mitigate confusion with the transition to the new config system in 0.11.

IPython.utils.path.expand_path(s)
Expand $VARS and ~names in a string, like a shell

Examples In [2]: os.environ[’FOO’]=’test’

In [3]: expand_path(‘variable FOO is $FOO’) Out[3]: ‘variable FOO is test’

IPython.utils.path.filefind(filename, path_dirs=None)
Find a file by looking through a sequence of paths.

This iterates through a sequence of paths looking for a file and returns the full, absolute path of the
first occurence of the file. If no set of path dirs is given, the filename is tested as is, after running
through expandvars() and expanduser(). Thus a simple call:

filefind(’myfile.txt’)

will find the file in the current working dir, but:

filefind(’~/myfile.txt’)

Will find the file in the users home directory. This function does not automatically try any paths, such
as the cwd or the user’s home directory.

Parameters filename : str

The filename to look for.

path_dirs : str, None or sequence of str

The sequence of paths to look for the file in. If None, the filename need to
be absolute or be in the cwd. If a string, the string is put into a sequence
and the searched. If a sequence, walk through each element and join with
filename, calling expandvars() and expanduser() before testing
for existence.

Returns Raises :exc:‘IOError‘ or returns absolute path to file. :

IPython.utils.path.filehash(path)
Make an MD5 hash of a file, ignoring any differences in line ending characters.

IPython.utils.path.get_home_dir()
Return the closest possible equivalent to a ‘home’ directory.

878 Chapter 8. The IPython API

IPython Documentation, Release 0.11

•On POSIX, we try $HOME.

•On Windows we try: - %HOMESHARE% - %HOMEDRIVE%HOMEPATH% - %USERPRO-
FILE% - Registry hack for My Documents - %HOME%: rare, but some people with unix-like
setups may have defined it

•On Dos C:

Currently only Posix and NT are implemented, a HomeDirError exception is raised for all other OSes.

IPython.utils.path.get_ipython_dir()
Get the IPython directory for this platform and user.

This uses the logic in get_home_dir to find the home directory and the adds .ipython to the end of the
path.

IPython.utils.path.get_ipython_module_path(module_str)
Find the path to an IPython module in this version of IPython.

This will always find the version of the module that is in this importable IPython package. This will
always return the path to the .py version of the module.

IPython.utils.path.get_ipython_package_dir()
Get the base directory where IPython itself is installed.

IPython.utils.path.get_long_path_name(path)
Expand a path into its long form.

On Windows this expands any ~ in the paths. On other platforms, it is a null operation.

IPython.utils.path.get_py_filename(name)
Return a valid python filename in the current directory.

If the given name is not a file, it adds ‘.py’ and searches again. Raises IOError with an informative
message if the file isn’t found.

IPython.utils.path.get_xdg_dir()
Return the XDG_CONFIG_HOME, if it is defined and exists, else None.

This is only for posix (Linux,Unix,OS X, etc) systems.

IPython.utils.path.target_outdated(target, deps)
Determine whether a target is out of date.

target_outdated(target,deps) -> 1/0

deps: list of filenames which MUST exist. target: single filename which may or may not exist.

If target doesn’t exist or is older than any file listed in deps, return true, otherwise return false.

IPython.utils.path.target_update(target, deps, cmd)
Update a target with a given command given a list of dependencies.

target_update(target,deps,cmd) -> runs cmd if target is outdated.

This is just a wrapper around target_outdated() which calls the given command if target is outdated.

8.111. utils.path 879

IPython Documentation, Release 0.11

8.112 utils.pickleshare

8.112.1 Module: utils.pickleshare

Inheritance diagram for IPython.utils.pickleshare:

utils.pickleshare.PickleShareDBUserDict.DictMixin

utils.pickleshare.PickleShareLink

PickleShare - a small ‘shelve’ like datastore with concurrency support

Like shelve, a PickleShareDB object acts like a normal dictionary. Unlike shelve, many processes can
access the database simultaneously. Changing a value in database is immediately visible to other processes
accessing the same database.

Concurrency is possible because the values are stored in separate files. Hence the “database” is a directory
where all files are governed by PickleShare.

Example usage:

from pickleshare import *
db = PickleShareDB(’~/testpickleshare’)
db.clear()
print "Should be empty:",db.items()
db[’hello’] = 15
db[’aku ankka’] = [1,2,313]
db[’paths/are/ok/key’] = [1,(5,46)]
print db.keys()
del db[’aku ankka’]

This module is certainly not ZODB, but can be used for low-load (non-mission-critical) situations where
tiny code size trumps the advanced features of a “real” object database.

Installation guide: easy_install pickleshare

Author: Ville Vainio <vivainio@gmail.com> License: MIT open source license.

8.112.2 Classes

PickleShareDB

class IPython.utils.pickleshare.PickleShareDB(root)
Bases: UserDict.DictMixin

880 Chapter 8. The IPython API

mailto:vivainio@gmail.com

IPython Documentation, Release 0.11

The main ‘connection’ object for PickleShare database

__init__(root)
Return a db object that will manage the specied directory

clear()

get(key, default=None)

getlink(folder)
Get a convenient link for accessing items

has_key(key)

hcompress(hashroot)
Compress category ‘hashroot’, so hset is fast again

hget will fail if fast_only is True for compressed items (that were hset before hcompress).

hdict(hashroot)
Get all data contained in hashed category ‘hashroot’ as dict

hget(hashroot, key, default=<object object at 0x283f0f0>, fast_only=True)
hashed get

hset(hashroot, key, value)
hashed set

items()

iteritems()

iterkeys()

itervalues()

keys(globpat=None)
All keys in DB, or all keys matching a glob

pop(key, *args)

popitem()

setdefault(key, default=None)

uncache(*items)
Removes all, or specified items from cache

Use this after reading a large amount of large objects to free up memory, when you won’t be
needing the objects for a while.

update(other=None, **kwargs)

values()

waitget(key, maxwaittime=60)
Wait (poll) for a key to get a value

Will wait for maxwaittime seconds before raising a KeyError. The call exits normally if the key
field in db gets a value within the timeout period.

8.112. utils.pickleshare 881

IPython Documentation, Release 0.11

Use this for synchronizing different processes or for ensuring that an unfortunately timed
“db[’key’] = newvalue” operation in another process (which causes all ‘get’ operation to cause
a KeyError for the duration of pickling) won’t screw up your program logic.

PickleShareLink

class IPython.utils.pickleshare.PickleShareLink(db, keydir)
A shortdand for accessing nested PickleShare data conveniently.

Created through PickleShareDB.getlink(), example:

lnk = db.getlink(’myobjects/test’)
lnk.foo = 2
lnk.bar = lnk.foo + 5

__init__(db, keydir)

8.112.3 Functions

IPython.utils.pickleshare.gethashfile(key)

IPython.utils.pickleshare.main()

IPython.utils.pickleshare.stress()

IPython.utils.pickleshare.test()

8.113 utils.pickleutil

8.113.1 Module: utils.pickleutil

Inheritance diagram for IPython.utils.pickleutil:

utils.pickleutil.Reference

utils.pickleutil.CannedObject

utils.pickleutil.CannedFunction

Pickle related utilities. Perhaps this should be called ‘can’.

882 Chapter 8. The IPython API

IPython Documentation, Release 0.11

8.113.2 Classes

CannedFunction

class IPython.utils.pickleutil.CannedFunction(f)
Bases: IPython.utils.pickleutil.CannedObject

__init__(f)

getObject(g=None)

CannedObject

class IPython.utils.pickleutil.CannedObject(obj, keys=[])
Bases: object

__init__(obj, keys=[])
getObject(g=None)

Reference

class IPython.utils.pickleutil.Reference(name)
Bases: IPython.utils.pickleutil.CannedObject

object for wrapping a remote reference by name.

__init__(name)

getObject(g=None)

8.113.3 Functions

IPython.utils.pickleutil.can(obj)

IPython.utils.pickleutil.canDict(obj)

IPython.utils.pickleutil.canSequence(obj)

IPython.utils.pickleutil.rebindFunctionGlobals(f, glbls)

IPython.utils.pickleutil.uncan(obj, g=None)

IPython.utils.pickleutil.uncanDict(obj, g=None)

IPython.utils.pickleutil.uncanSequence(obj, g=None)

8.113. utils.pickleutil 883

IPython Documentation, Release 0.11

8.114 utils.process

8.114.1 Module: utils.process

Inheritance diagram for IPython.utils.process:

utils.process.FindCmdError

Utilities for working with external processes.

8.114.2 Class

8.114.3 FindCmdError

class IPython.utils.process.FindCmdError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.114.4 Functions

IPython.utils.process.abbrev_cwd()
Return abbreviated version of cwd, e.g. d:mydir

IPython.utils.process.arg_split(s, posix=False)
Split a command line’s arguments in a shell-like manner.

This is a modified version of the standard library’s shlex.split() function, but with a default of
posix=False for splitting, so that quotes in inputs are respected.

IPython.utils.process.find_cmd(cmd)
Find absolute path to executable cmd in a cross platform manner.

This function tries to determine the full path to a command line program using which on
Unix/Linux/OS X and win32api on Windows. Most of the time it will use the version that is first
on the users PATH. If cmd is python return sys.executable.

Warning, don’t use this to find IPython command line programs as there is a risk you will find the
wrong one. Instead find those using the following code and looking for the application itself:

884 Chapter 8. The IPython API

IPython Documentation, Release 0.11

from IPython.utils.path import get_ipython_module_path
from IPython.utils.process import pycmd2argv
argv = pycmd2argv(get_ipython_module_path(’IPython.frontend.terminal.ipapp’))

Parameters cmd : str

The command line program to look for.

IPython.utils.process.pycmd2argv(cmd)
Take the path of a python command and return a list (argv-style).

This only works on Python based command line programs and will find the location of the python
executable using sys.executable to make sure the right version is used.

For a given path cmd, this returns [cmd] if cmd’s extension is .exe, .com or .bat, and [, cmd] otherwise.

Parameters cmd : string

The path of the command.

Returns argv-style list. :

8.115 utils.strdispatch

8.115.1 Module: utils.strdispatch

Inheritance diagram for IPython.utils.strdispatch:

utils.strdispatch.StrDispatch

String dispatch class to match regexps and dispatch commands.

8.115.2 StrDispatch

class IPython.utils.strdispatch.StrDispatch
Bases: object

Dispatch (lookup) a set of strings / regexps for match.

Example:

8.115. utils.strdispatch 885

IPython Documentation, Release 0.11

>>> dis = StrDispatch()
>>> dis.add_s(’hei’,34, priority = 4)
>>> dis.add_s(’hei’,123, priority = 2)
>>> dis.add_re(’h.i’, 686)
>>> print list(dis.flat_matches(’hei’))
[123, 34, 686]

__init__()

add_re(regex, obj, priority=0)
Adds a target regexp for dispatching

add_s(s, obj, priority=0)
Adds a target ‘string’ for dispatching

dispatch(key)
Get a seq of Commandchain objects that match key

flat_matches(key)
Yield all ‘value’ targets, without priority

s_matches(key)

8.116 utils.sysinfo

8.116.1 Module: utils.sysinfo

Utilities for getting information about IPython and the system it’s running in.

8.116.2 Functions

IPython.utils.sysinfo.num_cpus()
Return the effective number of CPUs in the system as an integer.

This cross-platform function makes an attempt at finding the total number of available CPUs in the
system, as returned by various underlying system and python calls.

If it can’t find a sensible answer, it returns 1 (though an error may make it return a large positive
number that’s actually incorrect).

IPython.utils.sysinfo.pkg_commit_hash(pkg_path)
Get short form of commit hash given directory pkg_path

There should be a file called ‘COMMIT_INFO.txt’ in pkg_path. This is a file in INI file for-
mat, with at least one section: commit hash, and two variables archive_subst_hash and
install_hash. The first has a substitution pattern in it which may have been filled by the ex-
ecution of git archive if this is an archive generated that way. The second is filled in by the
installation, if the installation is from a git archive.

We get the commit hash from (in order of preference):

886 Chapter 8. The IPython API

IPython Documentation, Release 0.11

•A substituted value in archive_subst_hash

•A written commit hash value in ‘‘install_hash‘

•git output, if we are in a git repository

If all these fail, we return a not-found placeholder tuple

Parameters pkg_path : str

directory containing package

Returns hash_from : str

Where we got the hash from - description

hash_str : str

short form of hash

IPython.utils.sysinfo.pkg_info(pkg_path)
Return dict describing the context of this package

Parameters pkg_path : str

path containing __init__.py for package

Returns context : dict

with named parameters of interest

IPython.utils.sysinfo.sys_info()
Return useful information about IPython and the system, as a string.

8.117 utils.syspathcontext

8.117.1 Module: utils.syspathcontext

Inheritance diagram for IPython.utils.syspathcontext:

utils.syspathcontext.prepended_to_syspath

utils.syspathcontext.appended_to_syspath

Context managers for adding things to sys.path temporarily.

Authors:

8.117. utils.syspathcontext 887

IPython Documentation, Release 0.11

• Brian Granger

8.117.2 Classes

appended_to_syspath

class IPython.utils.syspathcontext.appended_to_syspath(dir)
Bases: object

A context for appending a directory to sys.path for a second.

__init__(dir)

prepended_to_syspath

class IPython.utils.syspathcontext.prepended_to_syspath(dir)
Bases: object

A context for prepending a directory to sys.path for a second.

__init__(dir)

8.118 utils.terminal

8.118.1 Module: utils.terminal

Utilities for working with terminals.

Authors:

• Brian E. Granger

• Fernando Perez

• Alexander Belchenko (e-mail: bialix AT ukr.net)

8.118.2 Functions

IPython.utils.terminal.freeze_term_title()

IPython.utils.terminal.get_terminal_size(defaultx=80, defaulty=25)

IPython.utils.terminal.set_term_title(title)
Set terminal title using the necessary platform-dependent calls.

IPython.utils.terminal.term_clear()

888 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython.utils.terminal.toggle_set_term_title(val)
Control whether set_term_title is active or not.

set_term_title() allows writing to the console titlebar. In embedded widgets this can cause problems,
so this call can be used to toggle it on or off as needed.

The default state of the module is for the function to be disabled.

Parameters val : bool

If True, set_term_title() actually writes to the terminal (using the appropriate
platform-specific module). If False, it is a no-op.

8.119 utils.text

8.119.1 Module: utils.text

Inheritance diagram for IPython.utils.text:

utils.text.SList

string.Formatter utils.text.EvalFormatter

utils.text.LSString

Utilities for working with strings and text.

8.119.2 Classes

EvalFormatter

class IPython.utils.text.EvalFormatter
Bases: string.Formatter

A String Formatter that allows evaluation of simple expressions.

Any time a format key is not found in the kwargs, it will be tried as an expression in the kwargs
namespace.

This is to be used in templating cases, such as the parallel batch script templates, where simple arith-
metic on arguments is useful.

8.119. utils.text 889

IPython Documentation, Release 0.11

Examples

In [1]: f = EvalFormatter() In [2]: f.format(‘{n/4}’, n=8) Out[2]: ‘2’

In [3]: f.format(‘{range(3)}’) Out[3]: ‘[0, 1, 2]’

In [4]: f.format(‘{3*2}’) Out[4]: ‘6’

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

check_unused_args(used_args, args, kwargs)

convert_field(value, conversion)

format(format_string, *args, **kwargs)

format_field(value, format_spec)

get_field(field_name, args, kwargs)

get_value(key, args, kwargs)

parse(format_string)

vformat(format_string, args, kwargs)

LSString

class IPython.utils.text.LSString
Bases: str

String derivative with a special access attributes.

These are normal strings, but with the special attributes:

.l (or .list) : value as list (split on newlines). .n (or .nlstr): original value (the string itself).

.s (or .spstr): value as whitespace-separated string. .p (or .paths): list of path objects

Any values which require transformations are computed only once and cached.

Such strings are very useful to efficiently interact with the shell, which typically only understands
whitespace-separated options for commands.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

capitalize
S.capitalize() -> string

Return a copy of the string S with only its first character capitalized.

center
S.center(width[, fillchar]) -> string

Return S centered in a string of length width. Padding is done using the specified fill character
(default is a space)

890 Chapter 8. The IPython API

IPython Documentation, Release 0.11

count
S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Op-
tional arguments start and end are interpreted as in slice notation.

decode
S.decode([encoding[,errors]]) -> object

Decodes S using the codec registered for encoding. encoding defaults to the default encoding.
errors may be given to set a different error handling scheme. Default is ‘strict’ meaning that
encoding errors raise a UnicodeDecodeError. Other possible values are ‘ignore’ and ‘replace’ as
well as any other name registered with codecs.register_error that is able to handle UnicodeDe-
codeErrors.

encode
S.encode([encoding[,errors]]) -> object

Encodes S using the codec registered for encoding. encoding defaults to the default encoding.
errors may be given to set a different error handling scheme. Default is ‘strict’ meaning that
encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that is able
to handle UnicodeEncodeErrors.

endswith
S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S
beginning at that position. With optional end, stop comparing S at that position. suffix can also
be a tuple of strings to try.

expandtabs
S.expandtabs([tabsize]) -> string

Return a copy of S where all tab characters are expanded using spaces. If tabsize is not given, a
tab size of 8 characters is assumed.

find
S.find(sub [,start [,end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format
S.format(*args, **kwargs) -> string

get_list()

get_nlstr()

get_paths()

get_spstr()

8.119. utils.text 891

IPython Documentation, Release 0.11

index
S.index(sub [,start [,end]]) -> int

Like S.find() but raise ValueError when the substring is not found.

isalnum
S.isalnum() -> bool

Return True if all characters in S are alphanumeric and there is at least one character in S, False
otherwise.

isalpha
S.isalpha() -> bool

Return True if all characters in S are alphabetic and there is at least one character in S, False
otherwise.

isdigit
S.isdigit() -> bool

Return True if all characters in S are digits and there is at least one character in S, False other-
wise.

islower
S.islower() -> bool

Return True if all cased characters in S are lowercase and there is at least one cased character in
S, False otherwise.

isspace
S.isspace() -> bool

Return True if all characters in S are whitespace and there is at least one character in S, False
otherwise.

istitle
S.istitle() -> bool

Return True if S is a titlecased string and there is at least one character in S, i.e. uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return
False otherwise.

isupper
S.isupper() -> bool

Return True if all cased characters in S are uppercase and there is at least one cased character in
S, False otherwise.

join
S.join(iterable) -> string

Return a string which is the concatenation of the strings in the iterable. The separator between
elements is S.

l

list

892 Chapter 8. The IPython API

IPython Documentation, Release 0.11

ljust
S.ljust(width[, fillchar]) -> string

Return S left-justified in a string of length width. Padding is done using the specified fill char-
acter (default is a space).

lower
S.lower() -> string

Return a copy of the string S converted to lowercase.

lstrip
S.lstrip([chars]) -> string or unicode

Return a copy of the string S with leading whitespace removed. If chars is given and not None,
remove characters in chars instead. If chars is unicode, S will be converted to unicode before
stripping

n

nlstr

p

partition(sep) -> (head, sep, tail)
Search for the separator sep in S, and return the part before it, the separator itself, and the part
after it. If the separator is not found, return S and two empty strings.

paths

replace
S.replace(old, new[, count]) -> string

Return a copy of string S with all occurrences of substring old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

rfind
S.rfind(sub [,start [,end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex
S.rindex(sub [,start [,end]]) -> int

Like S.rfind() but raise ValueError when the substring is not found.

rjust
S.rjust(width[, fillchar]) -> string

Return S right-justified in a string of length width. Padding is done using the specified fill
character (default is a space)

rpartition(sep) -> (head, sep, tail)
Search for the separator sep in S, starting at the end of S, and return the part before it, the

8.119. utils.text 893

IPython Documentation, Release 0.11

separator itself, and the part after it. If the separator is not found, return two empty strings and
S.

rsplit
S.rsplit([sep [,maxsplit]]) -> list of strings

Return a list of the words in the string S, using sep as the delimiter string, starting at the end of
the string and working to the front. If maxsplit is given, at most maxsplit splits are done. If sep
is not specified or is None, any whitespace string is a separator.

rstrip
S.rstrip([chars]) -> string or unicode

Return a copy of the string S with trailing whitespace removed. If chars is given and not None,
remove characters in chars instead. If chars is unicode, S will be converted to unicode before
stripping

s

split
S.split([sep [,maxsplit]]) -> list of strings

Return a list of the words in the string S, using sep as the delimiter string. If maxsplit is given,
at most maxsplit splits are done. If sep is not specified or is None, any whitespace string is a
separator and empty strings are removed from the result.

splitlines
S.splitlines([keepends]) -> list of strings

Return a list of the lines in S, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

spstr

startswith
S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S
beginning at that position. With optional end, stop comparing S at that position. prefix can also
be a tuple of strings to try.

strip
S.strip([chars]) -> string or unicode

Return a copy of the string S with leading and trailing whitespace removed. If chars is given and
not None, remove characters in chars instead. If chars is unicode, S will be converted to unicode
before stripping

swapcase
S.swapcase() -> string

Return a copy of the string S with uppercase characters converted to lowercase and vice versa.

title
S.title() -> string

894 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Return a titlecased version of S, i.e. words start with uppercase characters, all remaining cased
characters have lowercase.

translate
S.translate(table [,deletechars]) -> string

Return a copy of the string S, where all characters occurring in the optional argument deletechars
are removed, and the remaining characters have been mapped through the given translation table,
which must be a string of length 256.

upper
S.upper() -> string

Return a copy of the string S converted to uppercase.

zfill
S.zfill(width) -> string

Pad a numeric string S with zeros on the left, to fill a field of the specified width. The string S is
never truncated.

SList

class IPython.utils.text.SList
Bases: list

List derivative with a special access attributes.

These are normal lists, but with the special attributes:

.l (or .list) : value as list (the list itself). .n (or .nlstr): value as a string, joined on newlines.

.s (or .spstr): value as a string, joined on spaces. .p (or .paths): list of path objects

Any values which require transformations are computed only once and cached.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

append
L.append(object) – append object to end

count
L.count(value) -> integer – return number of occurrences of value

extend
L.extend(iterable) – extend list by appending elements from the iterable

fields(*fields)
Collect whitespace-separated fields from string list

Allows quick awk-like usage of string lists.

Example data (in var a, created by ‘a = !ls -l’)::

-rwxrwxrwx 1 ville None 18 Dec 14 2006 ChangeLog

8.119. utils.text 895

IPython Documentation, Release 0.11

drwxrwxrwx+ 6 ville None 0 Oct 24 18:05 IPython

a.fields(0) is [’-rwxrwxrwx’, ‘drwxrwxrwx+’] a.fields(1,0) is [‘1 -rwxrwxrwx’, ‘6 drwxr-
wxrwx+’] (note the joining by space). a.fields(-1) is [’ChangeLog’, ‘IPython’]

IndexErrors are ignored.

Without args, fields() just split()’s the strings.

get_list()

get_nlstr()

get_paths()

get_spstr()

grep(pattern, prune=False, field=None)
Return all strings matching ‘pattern’ (a regex or callable)

This is case-insensitive. If prune is true, return all items NOT matching the pattern.

If field is specified, the match must occur in the specified whitespace-separated field.

Examples:

a.grep(lambda x: x.startswith(’C’))
a.grep(’Cha.*log’, prune=1)
a.grep(’chm’, field=-1)

index
L.index(value, [start, [stop]]) -> integer – return first index of value. Raises ValueError if the
value is not present.

insert
L.insert(index, object) – insert object before index

l

list

n

nlstr

p

paths

pop
L.pop([index]) -> item – remove and return item at index (default last). Raises IndexError if list
is empty or index is out of range.

remove
L.remove(value) – remove first occurrence of value. Raises ValueError if the value is not present.

reverse
L.reverse() – reverse IN PLACE

896 Chapter 8. The IPython API

IPython Documentation, Release 0.11

s

sort(field=None, nums=False)
sort by specified fields (see fields())

Example:: a.sort(1, nums = True)

Sorts a by second field, in numerical order (so that 21 > 3)

spstr

8.119.3 Functions

IPython.utils.text.dedent(text)
Equivalent of textwrap.dedent that ignores unindented first line.

This means it will still dedent strings like: ‘’‘foo is a bar ‘’‘

For use in wrap_paragraphs.

IPython.utils.text.dgrep(pat, *opts)
Return grep() on dir()+dir(__builtins__).

A very common use of grep() when working interactively.

IPython.utils.text.esc_quotes(strng)
Return the input string with single and double quotes escaped out

IPython.utils.text.format_screen(strng)
Format a string for screen printing.

This removes some latex-type format codes.

IPython.utils.text.grep(pat, list, case=1)
Simple minded grep-like function. grep(pat,list) returns occurrences of pat in list, None on failure.

It only does simple string matching, with no support for regexps. Use the option case=0 for case-
insensitive matching.

IPython.utils.text.idgrep(pat)
Case-insensitive dgrep()

IPython.utils.text.igrep(pat, list)
Synonym for case-insensitive grep.

IPython.utils.text.indent(instr, nspaces=4, ntabs=0, flatten=False)
Indent a string a given number of spaces or tabstops.

indent(str,nspaces=4,ntabs=0) -> indent str by ntabs+nspaces.

Parameters instr : basestring

The string to be indented.

nspaces : int (default: 4)

The number of spaces to be indented.

8.119. utils.text 897

IPython Documentation, Release 0.11

ntabs : int (default: 0)

The number of tabs to be indented.

flatten : bool (default: False)

Whether to scrub existing indentation. If True, all lines will be aligned to the
same indentation. If False, existing indentation will be strictly increased.

Returns str|unicode : string indented by ntabs and nspaces.

IPython.utils.text.list_strings(arg)
Always return a list of strings, given a string or list of strings as input.

Examples In [7]: list_strings(‘A single string’) Out[7]: [’A single string’]

In [8]: list_strings([’A single string in a list’]) Out[8]: [’A single string in a list’]

In [9]: list_strings([’A’,’list’,’of’,’strings’]) Out[9]: [’A’, ‘list’, ‘of’, ‘strings’]

IPython.utils.text.make_quoted_expr(s)
Return string s in appropriate quotes, using raw string if possible.

XXX - example removed because it caused encoding errors in documentation generation. We need a
new example that doesn’t contain invalid chars.

Note the use of raw string and padding at the end to allow trailing backslash.

IPython.utils.text.marquee(txt=’‘, width=78, mark=’*’)
Return the input string centered in a ‘marquee’.

Examples In [16]: marquee(‘A test’,40) Out[16]: ‘************ A test ************‘

In [17]: marquee(‘A test’,40,’-‘) Out[17]: ‘—————- A test —————-‘

In [18]: marquee(‘A test’,40,’ ‘) Out[18]: ‘ A test ‘

IPython.utils.text.native_line_ends(filename, backup=1)
Convert (in-place) a file to line-ends native to the current OS.

If the optional backup argument is given as false, no backup of the original file is left.

IPython.utils.text.num_ini_spaces(strng)
Return the number of initial spaces in a string

IPython.utils.text.qw(words, flat=0, sep=None, maxsplit=-1)
Similar to Perl’s qw() operator, but with some more options.

qw(words,flat=0,sep=’ ‘,maxsplit=-1) -> words.split(sep,maxsplit)

words can also be a list itself, and with flat=1, the output will be recursively flattened.

Examples:

>>> qw(’1 2’)
[’1’, ’2’]

>>> qw([’a b’,’1 2’,[’m n’,’p q’]])
[[’a’, ’b’], [’1’, ’2’], [[’m’, ’n’], [’p’, ’q’]]]

898 Chapter 8. The IPython API

IPython Documentation, Release 0.11

>>> qw([’a b’,’1 2’,[’m n’,’p q’]],flat=1)
[’a’, ’b’, ’1’, ’2’, ’m’, ’n’, ’p’, ’q’]

IPython.utils.text.qw_lol(‘a b’)→ [[’a’,’b’]],
otherwise it’s just a call to qw().

We need this to make sure the modules_some keys always end up as a list of lists.

IPython.utils.text.qwflat(words, sep=None, maxsplit=-1)
Calls qw(words) in flat mode. It’s just a convenient shorthand.

IPython.utils.text.unquote_ends(istr)
Remove a single pair of quotes from the endpoints of a string.

IPython.utils.text.wrap_paragraphs(text, ncols=80)
Wrap multiple paragraphs to fit a specified width.

This is equivalent to textwrap.wrap, but with support for multiple paragraphs, as separated by empty
lines.

Returns list of complete paragraphs, wrapped to fill ‘ncols‘ columns. :

8.120 utils.timing

8.120.1 Module: utils.timing

Utilities for timing code execution.

8.120.2 Functions

IPython.utils.timing.timing(func, *args, **kw)→ t_total
Execute a function once, return the elapsed total CPU time in seconds. This is just the first value in
timings_out().

IPython.utils.timing.timings(reps, func, *args, **kw) -> (t_total, t_per_call)
Execute a function reps times, return a tuple with the elapsed total CPU time in seconds and the time
per call. These are just the first two values in timings_out().

IPython.utils.timing.timings_out(reps, func, *args, **kw) -> (t_total, t_per_call, out-
put)

Execute a function reps times, return a tuple with the elapsed total CPU time in seconds, the time per
call and the function’s output.

Under Unix, the return value is the sum of user+system time consumed by the process, computed via
the resource module. This prevents problems related to the wraparound effect which the time.clock()
function has.

Under Windows the return value is in wall clock seconds. See the documentation for the time module
for more details.

8.120. utils.timing 899

IPython Documentation, Release 0.11

8.121 utils.traitlets

8.121.1 Module: utils.traitlets

Inheritance diagram for IPython.utils.traitlets:

utils.traitlets.Instance

utils.traitlets.Container

utils.traitlets.Dict

utils.traitlets.ClassBasedTraitType

utils.traitlets.Type

utils.traitlets.This

utils.traitlets.CBoolutils.traitlets.Bool

utils.traitlets.TraitType

utils.traitlets.Int

utils.traitlets.Long

utils.traitlets.Bytes

utils.traitlets.Any

utils.traitlets.Unicode

utils.traitlets.Float

utils.traitlets.Enum

utils.traitlets.Complex

utils.traitlets.TCPAddress

utils.traitlets.ObjectName

utils.traitlets.DefaultValueGenerator

utils.traitlets.CInt

utils.traitlets.Tuple

utils.traitlets.List

utils.traitlets.Set

utils.traitlets.CLong

utils.traitlets.HasTraits

utils.traitlets._SimpleTest

utils.traitlets.CBytes

utils.traitlets.CUnicode

utils.traitlets.CFloat

utils.traitlets.CaselessStrEnum

utils.traitlets.CComplex

utils.traitlets.TraitError

utils.traitlets.MetaHasTraits

utils.traitlets.DottedObjectName

A lightweight Traits like module.

This is designed to provide a lightweight, simple, pure Python version of many of the capabilities of en-
thought.traits. This includes:

• Validation

• Type specification with defaults

• Static and dynamic notification

• Basic predefined types

• An API that is similar to enthought.traits

We don’t support:

• Delegation

• Automatic GUI generation

• A full set of trait types. Most importantly, we don’t provide container traits (list, dict, tuple) that can
trigger notifications if their contents change.

900 Chapter 8. The IPython API

IPython Documentation, Release 0.11

• API compatibility with enthought.traits

There are also some important difference in our design:

• enthought.traits does not validate default values. We do.

We choose to create this module because we need these capabilities, but we need them to be pure Python so
they work in all Python implementations, including Jython and IronPython.

Authors:

• Brian Granger

• Enthought, Inc. Some of the code in this file comes from enthought.traits and is licensed under the
BSD license. Also, many of the ideas also come from enthought.traits even though our implementa-
tion is very different.

8.121.2 Classes

Any

class IPython.utils.traitlets.Any(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = None

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘any value’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

8.121. utils.traitlets 901

IPython Documentation, Release 0.11

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

Bool

class IPython.utils.traitlets.Bool(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

A boolean (True, False) trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = False

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a boolean’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

902 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

Bytes

class IPython.utils.traitlets.Bytes(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

A trait for strings.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = ‘’

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a string’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

8.121. utils.traitlets 903

IPython Documentation, Release 0.11

set_metadata(key, value)

validate(obj, value)

CBool

class IPython.utils.traitlets.CBool(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.Bool

A casting version of the boolean trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = False

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a boolean’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

904 Chapter 8. The IPython API

IPython Documentation, Release 0.11

CBytes

class IPython.utils.traitlets.CBytes(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.Bytes

A casting version of the string trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = ‘’

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a string’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

8.121. utils.traitlets 905

IPython Documentation, Release 0.11

CComplex

class IPython.utils.traitlets.CComplex(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.Complex

A casting version of the complex number trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = 0j

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a complex number’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

906 Chapter 8. The IPython API

IPython Documentation, Release 0.11

CFloat

class IPython.utils.traitlets.CFloat(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.Float

A casting version of the float trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = 0.0

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a float’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

8.121. utils.traitlets 907

IPython Documentation, Release 0.11

CInt

class IPython.utils.traitlets.CInt(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.Int

A casting version of the int trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = 0

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘an integer’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

908 Chapter 8. The IPython API

IPython Documentation, Release 0.11

CLong

class IPython.utils.traitlets.CLong(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.Long

A casting version of the long integer trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = 0L

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a long’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

8.121. utils.traitlets 909

IPython Documentation, Release 0.11

CUnicode

class IPython.utils.traitlets.CUnicode(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.Unicode

A casting version of the unicode trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = u’‘

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a unicode string’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

910 Chapter 8. The IPython API

IPython Documentation, Release 0.11

CaselessStrEnum

class IPython.utils.traitlets.CaselessStrEnum(values, default_value=None, al-
low_none=True, **metadata)

Bases: IPython.utils.traitlets.Enum

An enum of strings that are caseless in validate.

__init__(values, default_value=None, allow_none=True, **metadata)

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()
Returns a description of the trait.

info_text = ‘any value’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

8.121. utils.traitlets 911

IPython Documentation, Release 0.11

ClassBasedTraitType

class IPython.utils.traitlets.ClassBasedTraitType(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>,
**metadata)

Bases: IPython.utils.traitlets.TraitType

A trait with error reporting for Type, Instance and This.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘any value’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

912 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Complex

class IPython.utils.traitlets.Complex(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

A trait for complex numbers.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = 0j

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a complex number’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

8.121. utils.traitlets 913

IPython Documentation, Release 0.11

Container

class IPython.utils.traitlets.Container(trait=None, default_value=None, al-
low_none=True, **metadata)

Bases: IPython.utils.traitlets.Instance

An instance of a container (list, set, etc.)

To be subclassed by overriding klass.

__init__(trait=None, default_value=None, allow_none=True, **metadata)
Create a container trait type from a list, set, or tuple.

The default value is created by doing List(default_value), which creates a copy of the
default_value.

trait can be specified, which restricts the type of elements in the container to that TraitType.

If only one arg is given and it is not a Trait, it is taken as default_value:

c = List([1,2,3])

Parameters trait : TraitType [optional]

the type for restricting the contents of the Container. If unspecified, types are
not checked.

default_value : SequenceType [optional]

The default value for the Trait. Must be list/tuple/set, and will be cast to the
container type.

allow_none : Bool [default True]

Whether to allow the value to be None

**metadata : any

further keys for extensions to the Trait (e.g. config)

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

element_error(obj, element, validator)

error(obj, value)

get_default_value()
Instantiate a default value instance.

This is called when the containing HasTraits classes’ __new__() method is called to ensure
that a unique instance is created for each HasTraits instance.

get_metadata(key)

info()

info_text = ‘any value’

init()

914 Chapter 8. The IPython API

IPython Documentation, Release 0.11

instance_init(obj)

klass = None

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

validate_elements(obj, value)

DefaultValueGenerator

class IPython.utils.traitlets.DefaultValueGenerator(*args, **kw)
Bases: object

A class for generating new default value instances.

__init__(*args, **kw)

generate(klass)

Dict

class IPython.utils.traitlets.Dict(default_value=None, allow_none=True, **meta-
data)

Bases: IPython.utils.traitlets.Instance

An instance of a Python dict.

__init__(default_value=None, allow_none=True, **metadata)
Create a dict trait type from a dict.

The default value is created by doing dict(default_value), which creates a copy of the
default_value.

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

get_default_value()
Instantiate a default value instance.

This is called when the containing HasTraits classes’ __new__() method is called to ensure
that a unique instance is created for each HasTraits instance.

get_metadata(key)

8.121. utils.traitlets 915

IPython Documentation, Release 0.11

info()

info_text = ‘any value’

init()

instance_init(obj)

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

DottedObjectName

class IPython.utils.traitlets.DottedObjectName(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **meta-
data)

Bases: IPython.utils.traitlets.ObjectName

A string holding a valid dotted object name in Python, such as A.b3._c

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

coerce_str(obj, value)
In Python 2, coerce ascii-only unicode to str

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a valid object identifier in Python’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

916 Chapter 8. The IPython API

IPython Documentation, Release 0.11

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

isidentifier(s)

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

Enum

class IPython.utils.traitlets.Enum(values, default_value=None, allow_none=True,
**metadata)

Bases: IPython.utils.traitlets.TraitType

An enum that whose value must be in a given sequence.

__init__(values, default_value=None, allow_none=True, **metadata)

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()
Returns a description of the trait.

info_text = ‘any value’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

8.121. utils.traitlets 917

IPython Documentation, Release 0.11

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

Float

class IPython.utils.traitlets.Float(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

A float trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = 0.0

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a float’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

918 Chapter 8. The IPython API

IPython Documentation, Release 0.11

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

HasTraits

class IPython.utils.traitlets.HasTraits(**kw)
Bases: object

__init__(**kw)

classmethod class_trait_names(**metadata)
Get a list of all the names of this classes traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a list of all the traits of this class.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

on_trait_change(handler, name=None, remove=False)
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming
convention ‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the
method _a_changed(self, name, old, new) (fewer arguments can be used, see below).

Parameters handler : callable

A callable that is called when a trait changes. Its signature can be handler(),
handler(name), handler(name, new) or handler(name, old, new).

name : list, str, None

If None, the handler will apply to all traits. If a list of str, handler will apply
to all names in the list. If a str, the handler will apply just to that name.

8.121. utils.traitlets 919

IPython Documentation, Release 0.11

remove : bool

If False (the default), then install the handler. If True then unintall it.

trait_metadata(traitname, key)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this classes traits.

traits(**metadata)
Get a list of all the traits of this class.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s in-
stances are holding.

This follows the same algorithm as traits does and does not allow for any simple way of specify-
ing merely that a metadata name exists, but has any value. This is because get_metadata returns
None if a metadata key doesn’t exist.

Instance

class IPython.utils.traitlets.Instance(klass=None, args=None, kw=None, al-
low_none=True, **metadata)

Bases: IPython.utils.traitlets.ClassBasedTraitType

A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

__init__(klass=None, args=None, kw=None, allow_none=True, **metadata)
Construct an Instance trait.

This trait allows values that are instances of a particular class or its sublclasses. Our implemen-
tation is quite different from that of enthough.traits as we don’t allow instances to be used for
klass and we handle the args and kw arguments differently.

Parameters klass : class, str

The class that forms the basis for the trait. Class names can also be specified
as strings, like ‘foo.bar.Bar’.

args : tuple

Positional arguments for generating the default value.

kw : dict

Keyword arguments for generating the default value.

allow_none : bool

Indicates whether None is allowed as a value.

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

920 Chapter 8. The IPython API

IPython Documentation, Release 0.11

get_default_value()
Instantiate a default value instance.

This is called when the containing HasTraits classes’ __new__() method is called to ensure
that a unique instance is created for each HasTraits instance.

get_metadata(key)

info()

info_text = ‘any value’

init()

instance_init(obj)

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

Int

class IPython.utils.traitlets.Int(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

A integer trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = 0

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘an integer’

init()

8.121. utils.traitlets 921

IPython Documentation, Release 0.11

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

List

class IPython.utils.traitlets.List(trait=None, default_value=None, minlen=0,
maxlen=9223372036854775807, al-
low_none=True, **metadata)

Bases: IPython.utils.traitlets.Container

An instance of a Python list.

__init__(trait=None, default_value=None, minlen=0, maxlen=9223372036854775807, al-
low_none=True, **metadata)

Create a List trait type from a list, set, or tuple.

The default value is created by doing List(default_value), which creates a copy of the
default_value.

trait can be specified, which restricts the type of elements in the container to that TraitType.

If only one arg is given and it is not a Trait, it is taken as default_value:

c = List([1,2,3])

Parameters trait : TraitType [optional]

the type for restricting the contents of the Container. If unspecified, types are
not checked.

default_value : SequenceType [optional]

922 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The default value for the Trait. Must be list/tuple/set, and will be cast to the
container type.

minlen : Int [default 0]

The minimum length of the input list

maxlen : Int [default sys.maxint]

The maximum length of the input list

allow_none : Bool [default True]

Whether to allow the value to be None

**metadata : any

further keys for extensions to the Trait (e.g. config)

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

element_error(obj, element, validator)

error(obj, value)

get_default_value()
Instantiate a default value instance.

This is called when the containing HasTraits classes’ __new__() method is called to ensure
that a unique instance is created for each HasTraits instance.

get_metadata(key)

info()

info_text = ‘any value’

init()

instance_init(obj)

klass
alias of list

length_error(obj, value)

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

validate_elements(obj, value)

8.121. utils.traitlets 923

IPython Documentation, Release 0.11

Long

class IPython.utils.traitlets.Long(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

A long integer trait.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = 0L

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a long’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

924 Chapter 8. The IPython API

IPython Documentation, Release 0.11

MetaHasTraits

class IPython.utils.traitlets.MetaHasTraits(name, bases, classdict)
Bases: type

A metaclass for HasTraits.

This metaclass makes sure that any TraitType class attributes are instantiated and sets their name
attribute.

__init__(name, bases, classdict)
Finish initializing the HasTraits class.

This sets the this_class attribute of each TraitType in the class dict to the newly created
class cls.

mro
mro() -> list return a type’s method resolution order

NoDefaultSpecified

IPython.utils.traitlets.NoDefaultSpecified

ObjectName

class IPython.utils.traitlets.ObjectName(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

A string holding a valid object name in this version of Python.

This does not check that the name exists in any scope.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

coerce_str(obj, value)
In Python 2, coerce ascii-only unicode to str

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a valid object identifier in Python’

init()

8.121. utils.traitlets 925

IPython Documentation, Release 0.11

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

isidentifier(s)

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

Set

class IPython.utils.traitlets.Set(trait=None, default_value=None, allow_none=True,
**metadata)

Bases: IPython.utils.traitlets.Container

An instance of a Python set.

__init__(trait=None, default_value=None, allow_none=True, **metadata)
Create a container trait type from a list, set, or tuple.

The default value is created by doing List(default_value), which creates a copy of the
default_value.

trait can be specified, which restricts the type of elements in the container to that TraitType.

If only one arg is given and it is not a Trait, it is taken as default_value:

c = List([1,2,3])

Parameters trait : TraitType [optional]

the type for restricting the contents of the Container. If unspecified, types are
not checked.

default_value : SequenceType [optional]

926 Chapter 8. The IPython API

IPython Documentation, Release 0.11

The default value for the Trait. Must be list/tuple/set, and will be cast to the
container type.

allow_none : Bool [default True]

Whether to allow the value to be None

**metadata : any

further keys for extensions to the Trait (e.g. config)

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

element_error(obj, element, validator)

error(obj, value)

get_default_value()
Instantiate a default value instance.

This is called when the containing HasTraits classes’ __new__() method is called to ensure
that a unique instance is created for each HasTraits instance.

get_metadata(key)

info()

info_text = ‘any value’

init()

instance_init(obj)

klass
alias of set

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

validate_elements(obj, value)

TCPAddress

class IPython.utils.traitlets.TCPAddress(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

A trait for an (ip, port) tuple.

8.121. utils.traitlets 927

IPython Documentation, Release 0.11

This allows for both IPv4 IP addresses as well as hostnames.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = (‘127.0.0.1’, 0)

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘an (ip, port) tuple’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

This

class IPython.utils.traitlets.This(**metadata)
Bases: IPython.utils.traitlets.ClassBasedTraitType

A trait for instances of the class containing this trait.

Because how how and when class bodies are executed, the This trait can only have a default value
of None. This, and because we always validate default values, allow_none is always true.

928 Chapter 8. The IPython API

IPython Documentation, Release 0.11

__init__(**metadata)

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘an instance of the same type as the receiver or None’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

TraitError

class IPython.utils.traitlets.TraitError
Bases: exceptions.Exception

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

args

message

8.121. utils.traitlets 929

IPython Documentation, Release 0.11

TraitType

class IPython.utils.traitlets.TraitType(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: object

A base class for all trait descriptors.

Notes

Our implementation of traits is based on Python’s descriptor prototol. This class is the base class for
all such descriptors. The only magic we use is a custom metaclass for the main HasTraits class
that does the following:

1.Sets the name attribute of every TraitType instance in the class dict to the name of the
attribute.

2.Sets the this_class attribute of every TraitType instance in the class dict to the class that
declared the trait. This is used by the This trait to allow subclasses to accept superclasses for
This values.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘any value’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

930 Chapter 8. The IPython API

IPython Documentation, Release 0.11

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

Tuple

class IPython.utils.traitlets.Tuple(*traits, **metadata)
Bases: IPython.utils.traitlets.Container

An instance of a Python tuple.

__init__(*traits, default_value=None, allow_none=True, **medatata)
Create a tuple from a list, set, or tuple.

Create a fixed-type tuple with Traits:

t = Tuple(Int, Str, CStr)

would be length 3, with Int,Str,CStr for each element.

If only one arg is given and it is not a Trait, it is taken as default_value:

t = Tuple((1,2,3))

Otherwise, default_value must be specified by keyword.

Parameters *traits : TraitTypes [optional]

the tsype for restricting the contents of the Tuple. If unspecified, types are
not checked. If specified, then each positional argument corresponds to an
element of the tuple. Tuples defined with traits are of fixed length.

default_value : SequenceType [optional]

The default value for the Tuple. Must be list/tuple/set, and will be cast to a
tuple. If traits are specified, the default_value must conform to the shape and
type they specify.

allow_none : Bool [default True]

Whether to allow the value to be None

**metadata : any

further keys for extensions to the Trait (e.g. config)

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

element_error(obj, element, validator)

error(obj, value)

8.121. utils.traitlets 931

IPython Documentation, Release 0.11

get_default_value()
Instantiate a default value instance.

This is called when the containing HasTraits classes’ __new__() method is called to ensure
that a unique instance is created for each HasTraits instance.

get_metadata(key)

info()

info_text = ‘any value’

init()

instance_init(obj)

klass
alias of tuple

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

validate_elements(obj, value)

Type

class IPython.utils.traitlets.Type(default_value=None, klass=None, al-
low_none=True, **metadata)

Bases: IPython.utils.traitlets.ClassBasedTraitType

A trait whose value must be a subclass of a specified class.

__init__(default_value=None, klass=None, allow_none=True, **metadata)
Construct a Type trait

A Type trait specifies that its values must be subclasses of a particular class.

If only default_value is given, it is used for the klass as well.

Parameters default_value : class, str or None

The default value must be a subclass of klass. If an str, the str must be a fully
specified class name, like ‘foo.bar.Bah’. The string is resolved into real class,
when the parent HasTraits class is instantiated.

klass : class, str, None

932 Chapter 8. The IPython API

IPython Documentation, Release 0.11

Values of this trait must be a subclass of klass. The klass may be specified in
a string like: ‘foo.bar.MyClass’. The string is resolved into real class, when
the parent HasTraits class is instantiated.

allow_none : boolean

Indicates whether None is allowed as an assignable value. Even if False,
the default value may be None.

default_value = <IPython.utils.traitlets.Undefined object at 0x2c6a2d0>

error(obj, value)

get_default_value()

get_metadata(key)

info()
Returns a description of the trait.

info_text = ‘any value’

init()

instance_init(obj)

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)
Validates that the value is a valid object instance.

Undefined

IPython.utils.traitlets.Undefined

Unicode

class IPython.utils.traitlets.Unicode(default_value=<IPython.utils.traitlets.NoDefaultSpecified
object at 0x2c6a250>, **metadata)

Bases: IPython.utils.traitlets.TraitType

A trait for unicode strings.

__init__(default_value=<IPython.utils.traitlets.NoDefaultSpecified object at 0x2c6a250>,
**metadata)

Create a TraitType.

8.121. utils.traitlets 933

IPython Documentation, Release 0.11

default_value = u’‘

error(obj, value)

get_default_value()
Create a new instance of the default value.

get_metadata(key)

info()

info_text = ‘a unicode string’

init()

instance_init(obj)
This is called by HasTraits.__new__() to finish init’ing.

Some stages of initialization must be delayed until the parent HasTraits instance has been
created. This method is called in HasTraits.__new__() after the instance has been cre-
ated.

This method trigger the creation and validation of default values and also things like the resolu-
tion of str given class names in Type and :class‘Instance‘.

Parameters obj : HasTraits instance

The parent HasTraits instance that has just been created.

metadata = {}

set_default_value(obj)
Set the default value on a per instance basis.

This method is called by instance_init() to create and validate the default value. The
creation and validation of default values must be delayed until the parent HasTraits class has
been instantiated.

set_metadata(key, value)

validate(obj, value)

8.121.3 Functions

IPython.utils.traitlets.add_article(name)
Returns a string containing the correct indefinite article (‘a’ or ‘an’) prefixed to the specified string.

IPython.utils.traitlets.class_of(object)
Returns a string containing the class name of an object with the correct indefinite article (‘a’ or ‘an’)
preceding it (e.g., ‘an Image’, ‘a PlotValue’).

IPython.utils.traitlets.getmembers(object, predicate=None)
A safe version of inspect.getmembers that handles missing attributes.

This is useful when there are descriptor based attributes that for some reason raise AttributeError even
though they exist. This happens in zope.inteface with the __provides__ attribute.

934 Chapter 8. The IPython API

IPython Documentation, Release 0.11

IPython.utils.traitlets.parse_notifier_name(name)
Convert the name argument to a list of names.

Examples

>>> parse_notifier_name(’a’)
[’a’]
>>> parse_notifier_name([’a’,’b’])
[’a’, ’b’]
>>> parse_notifier_name(None)
[’anytrait’]

IPython.utils.traitlets.repr_type(obj)
Return a string representation of a value and its type for readable error messages.

8.122 utils.upgradedir

8.122.1 Module: utils.upgradedir

A script/util to upgrade all files in a directory

This is rather conservative in its approach, only copying/overwriting new and unedited files.

To be used by “upgrade” feature.

8.122.2 Functions

IPython.utils.upgradedir.showdiff(old, new)

IPython.utils.upgradedir.upgrade_dir(srcdir, tgtdir)
Copy over all files in srcdir to tgtdir w/ native line endings

Creates .upgrade_report in tgtdir that stores md5sums of all files to notice changed files b/w upgrades.

8.123 utils.warn

8.123.1 Module: utils.warn

Utilities for warnings. Shoudn’t we just use the built in warnings module.

8.123.2 Functions

IPython.utils.warn.error(msg)
Equivalent to warn(msg,level=3).

8.122. utils.upgradedir 935

IPython Documentation, Release 0.11

IPython.utils.warn.fatal(msg, exit_val=1)
Equivalent to warn(msg,exit_val=exit_val,level=4).

IPython.utils.warn.info(msg)
Equivalent to warn(msg,level=1).

IPython.utils.warn.warn(msg, level=2, exit_val=1)
Standard warning printer. Gives formatting consistency.

Output is sent to io.stderr (sys.stderr by default).

Options:

-level(2): allows finer control: 0 -> Do nothing, dummy function. 1 -> Print message. 2 -> Print
‘WARNING:’ + message. (Default level). 3 -> Print ‘ERROR:’ + message. 4 -> Print ‘FATAL
ERROR:’ + message and trigger a sys.exit(exit_val).

-exit_val (1): exit value returned by sys.exit() for a level 4 warning. Ignored for all other levels.

8.124 utils.wildcard

8.124.1 Module: utils.wildcard

Support for wildcard pattern matching in object inspection.

Authors

• Jörgen Stenarson <jorgen.stenarson@bostream.nu>

• Thomas Kluyver

8.124.2 Functions

IPython.utils.wildcard.create_typestr2type_dicts(dont_include_in_type2typestr=[’lambda’])
Return dictionaries mapping lower case typename (e.g. ‘tuple’) to type objects from the types pack-
age, and vice versa.

IPython.utils.wildcard.dict_dir(obj)
Produce a dictionary of an object’s attributes. Builds on dir2 by checking that a getattr() call actually
succeeds.

IPython.utils.wildcard.filter_ns(ns, name_pattern=’*’, type_pattern=’all’, ig-
nore_case=True, show_all=True)

Filter a namespace dictionary by name pattern and item type.

IPython.utils.wildcard.is_type(obj, typestr_or_type)
is_type(obj, typestr_or_type) verifies if obj is of a certain type. It can take strings or actual python
types for the second argument, i.e. ‘tuple’<->TupleType. ‘all’ matches all types.

TODO: Should be extended for choosing more than one type.

936 Chapter 8. The IPython API

mailto:jorgen.stenarson@bostream.nu

IPython Documentation, Release 0.11

IPython.utils.wildcard.list_namespace(namespace, type_pattern, filter, ig-
nore_case=False, show_all=False)

Return dictionary of all objects in a namespace dictionary that match type_pattern and filter.

IPython.utils.wildcard.show_hidden(str, show_all=False)
Return true for strings starting with single _ if show_all is true.

8.124. utils.wildcard 937

IPython Documentation, Release 0.11

938 Chapter 8. The IPython API

CHAPTER

NINE

ABOUT IPYTHON

9.1 Credits

IPython was started and continues to be led by Fernando Pérez.

9.1.1 Core developers

As of this writing, core development team consists of the following developers:

• Fernando Pérez <Fernando.Perez-AT-berkeley.edu> Project creator and leader, IPython core, parallel
computing infrastructure, testing, release manager.

• Robert Kern <rkern-AT-enthought.com> Co-mentored the 2005 Google Summer of Code project,
work on IPython’s core.

• Brian Granger <ellisonbg-AT-gmail.com> Parallel computing infrastructure, IPython core.

• Benjamin (Min) Ragan-Kelley <benjaminrk-AT-gmail.com> Parallel computing infrastructure.

• Ville Vainio <vivainio-AT-gmail.com> IPython core, maintainer of IPython trunk from version 0.7.2
to 0.8.4.

• Gael Varoquaux <gael.varoquaux-AT-normalesup.org> wxPython IPython GUI, frontend architec-
ture.

• Barry Wark <barrywark-AT-gmail.com> Cocoa GUI, frontend architecture.

• Laurent Dufrechou <laurent.dufrechou-AT-gmail.com> wxPython IPython GUI.

• Jörgen Stenarson <jorgen.stenarson-AT-bostream.nu> Maintainer of the PyReadline project, which
is needed for IPython under windows.

• Thomas Kluyver <takowl-AT-gmail.com> Port of IPython and its necessary ZeroMQ infrastructure
to Python3, IPython core.

• Evan Patterson <epatters-AT-enthought.com> Qt console frontend with ZeroMQ.

939

IPython Documentation, Release 0.11

9.1.2 Special thanks

The IPython project is also very grateful to:

Bill Bumgarner <bbum-AT-friday.com>, for providing the DPyGetOpt module that IPython used for parsing
command line options through version 0.10.

Ka-Ping Yee <ping-AT-lfw.org>, for providing the Itpl module for convenient and powerful string interpo-
lation with a much nicer syntax than formatting through the ‘%’ operator.

Arnd Baecker <baecker-AT-physik.tu-dresden.de>, for his many very useful suggestions and comments,
and lots of help with testing and documentation checking. Many of IPython’s newer features are a result of
discussions with him.

Obviously Guido van Rossum and the whole Python development team, for creating a great language for
interactive computing.

Fernando would also like to thank Stephen Figgins <fig-AT-monitor.net>, an O’Reilly Python editor. His
October 11, 2001 article about IPP and LazyPython, was what got this project started. You can read it at
http://www.onlamp.com/pub/a/python/2001/10/11/pythonnews.html.

9.1.3 Sponsors

We would like to thank the following entities which, at one point or another, have provided resources and
support to IPython:

• Enthought (http://www.enthought.com), for hosting IPython’s website and supporting the project in
various ways over the years, including significant funding and resources in 2010 for the development
of our modern ZeroMQ-based architecture and Qt console frontend.

• Google, for supporting IPython through Summer of Code sponsorships in 2005 and 2010.

• Microsoft Corporation, for funding in 2009 the development of documentation and examples of the
Windows HPC Server 2008 support in IPython’s parallel computing tools.

• The Nipy project (http://nipy.org) for funding in 2009 a significant refactoring of the entire project
codebase that was key.

• Ohio Supercomputer Center (part of Ohio State University Research Foundation) and the Department
of Defense High Performance Computing Modernization Program (HPCMP), for sponsoring work in
2009 on the ipcluster script used for starting IPython’s parallel computing processes, as well as the in-
tegration between IPython and the Vision environment (http://mgltools.scripps.edu/packages/vision).
This project would not have been possible without the support and leadership of Jose Unpingco, from
Ohio State.

• Tech-X Corporation, for sponsoring a NASA SBIR project in 2008 on IPython’s distributed array and
parallel computing capabilities.

• Bivio Software (http://www.bivio.biz/bp/Intro), for hosting an IPython sprint in 2006 in addition to
their support of the Front Range Pythoneers group in Boulder, CO.

940 Chapter 9. About IPython

http://www.onlamp.com/pub/a/python/2001/10/11/pythonnews.html
http://www.enthought.com
http://nipy.org
http://mgltools.scripps.edu/packages/vision
http://www.bivio.biz/bp/Intro

IPython Documentation, Release 0.11

9.1.4 Contributors

And last but not least, all the kind IPython contributors who have contributed new code, bug reports, fixes,
comments and ideas. A brief list follows, please let us know if we have omitted your name by accident:

• Mark Voorhies <mark.voorhies-AT-ucsf.edu> Printing support in Qt console.

• Justin Riley <justin.t.riley-AT-gmail.com> Contributions to parallel support, Amazon EC2, Sun Grid
Engine, documentation.

• Satrajit Ghosh <satra-AT-mit.edu> parallel computing (SGE and much more).

• Thomas Spura <tomspur-AT-fedoraproject.org> various fixes motivated by Fedora support.

• Omar Andrés Zapata Mesa <andresete.chaos-AT-gmail.com> Google Summer of Code 2010, terminal
support with ZeroMQ

• Gerardo Gutierrez <muzgash-AT-gmail.com> Google Summer of Code 2010, Qt notebook frontend
support with ZeroMQ.

• Paul Ivanov <pivanov314-AT-gmail.com> multiline specials improvements.

• Dav Clark <davclark-AT-berkeley.edu> traitlets improvements.

• David Warde-Farley <wardefar-AT-iro.umontreal.ca> - bugfixes to %timeit, input autoindent manage-
ment, and Qt console tooltips.

• Darren Dale <dsdale24-AT-gmail.com>, traits-based configuration system, Qt support.

• Jose Unpingco <unpingco@gmail.com> authored multiple tutorials and screencasts teaching the use
of IPython both for interactive and parallel work (available in the documentation part of our website).

• Dan Milstein <danmil-AT-comcast.net> A bold refactor of the core prefilter machinery in the IPython
interpreter.

• Jack Moffit <jack-AT-xiph.org> Bug fixes, including the infamous color problem. This bug alone
caused many lost hours and frustration, many thanks to him for the fix. I’ve always been a fan of
Ogg & friends, now I have one more reason to like these folks. Jack is also contributing with Debian
packaging and many other things.

• Alexander Schmolck <a.schmolck-AT-gmx.net> Emacs work, bug reports, bug fixes, ideas, lots more.
The ipython.el mode for (X)Emacs is Alex’s code, providing full support for IPython under (X)Emacs.

• Andrea Riciputi <andrea.riciputi-AT-libero.it> Mac OSX information, Fink package management.

• Gary Bishop <gb-AT-cs.unc.edu> Bug reports, and patches to work around the exception handling
idiosyncracies of WxPython. Readline and color support for Windows.

• Jeffrey Collins <Jeff.Collins-AT-vexcel.com>. Bug reports. Much improved readline support, includ-
ing fixes for Python 2.3.

• Dryice Liu <dryice-AT-liu.com.cn> FreeBSD port.

• Mike Heeter <korora-AT-SDF.LONESTAR.ORG>

• Christopher Hart <hart-AT-caltech.edu> PDB integration.

• Milan Zamazal <pdm-AT-zamazal.org> Emacs info.

9.1. Credits 941

mailto:unpingco@gmail.com

IPython Documentation, Release 0.11

• Philip Hisley <compsys-AT-starpower.net>

• Holger Krekel <pyth-AT-devel.trillke.net> Tab completion, lots more.

• Robin Siebler <robinsiebler-AT-starband.net>

• Ralf Ahlbrink <ralf_ahlbrink-AT-web.de>

• Thorsten Kampe <thorsten-AT-thorstenkampe.de>

• Fredrik Kant <fredrik.kant-AT-front.com> Windows setup.

• Syver Enstad <syver-en-AT-online.no> Windows setup.

• Richard <rxe-AT-renre-europe.com> Global embedding.

• Hayden Callow <h.callow-AT-elec.canterbury.ac.nz> Gnuplot.py 1.6 compatibility.

• Leonardo Santagada <retype-AT-terra.com.br> Fixes for Windows installation.

• Christopher Armstrong <radix-AT-twistedmatrix.com> Bugfixes.

• Francois Pinard <pinard-AT-iro.umontreal.ca> Code and documentation fixes.

• Cory Dodt <cdodt-AT-fcoe.k12.ca.us> Bug reports and Windows ideas. Patches for Windows in-
staller.

• Olivier Aubert <oaubert-AT-bat710.univ-lyon1.fr> New magics.

• King C. Shu <kingshu-AT-myrealbox.com> Autoindent patch.

• Chris Drexler <chris-AT-ac-drexler.de> Readline packages for Win32/CygWin.

• Gustavo Cordova Avila <gcordova-AT-sismex.com> EvalDict code for nice, lightweight string inter-
polation.

• Kasper Souren <Kasper.Souren-AT-ircam.fr> Bug reports, ideas.

• Gever Tulley <gever-AT-helium.com> Code contributions.

• Ralf Schmitt <ralf-AT-brainbot.com> Bug reports & fixes.

• Oliver Sander <osander-AT-gmx.de> Bug reports.

• Rod Holland <rhh-AT-structurelabs.com> Bug reports and fixes to logging module.

• Daniel ‘Dang’ Griffith <pythondev-dang-AT-lazytwinacres.net> Fixes, enhancement suggestions for
system shell use.

• Viktor Ransmayr <viktor.ransmayr-AT-t-online.de> Tests and reports on Windows installation issues.
Contributed a true Windows binary installer.

• Mike Salib <msalib-AT-mit.edu> Help fixing a subtle bug related to traceback printing.

• W.J. van der Laan <gnufnork-AT-hetdigitalegat.nl> Bash-like prompt specials.

• Antoon Pardon <Antoon.Pardon-AT-rece.vub.ac.be> Critical fix for the multithreaded IPython.

• John Hunter <jdhunter-AT-nitace.bsd.uchicago.edu> Matplotlib author, helped with all the develop-
ment of support for matplotlib in IPyhton, including making necessary changes to matplotlib itself.

• Matthew Arnison <maffew-AT-cat.org.au> Bug reports, ‘%run -d’ idea.

942 Chapter 9. About IPython

IPython Documentation, Release 0.11

• Prabhu Ramachandran <prabhu_r-AT-users.sourceforge.net> Help with (X)Emacs support, threading
patches, ideas...

• Norbert Tretkowski <tretkowski-AT-inittab.de> help with Debian packaging and distribution.

• George Sakkis <gsakkis-AT-eden.rutgers.edu> New matcher for tab-completing named arguments of
user-defined functions.

• Jörgen Stenarson <jorgen.stenarson-AT-bostream.nu> Wildcard support implementation for searching
namespaces.

• Vivian De Smedt <vivian-AT-vdesmedt.com> Debugger enhancements, so that when pdb is activated
from within IPython, coloring, tab completion and other features continue to work seamlessly.

• Scott Tsai <scottt958-AT-yahoo.com.tw> Support for automatic editor invocation on syntax errors
(see http://www.scipy.net/roundup/ipython/issue36).

• Alexander Belchenko <bialix-AT-ukr.net> Improvements for win32 paging system.

• Will Maier <willmaier-AT-ml1.net> Official OpenBSD port.

• Ondrej Certik <ondrej-AT-certik.cz> Set up the IPython docs to use the new Sphinx system used by
Python, Matplotlib and many more projects.

• Stefan van der Walt <stefan-AT-sun.ac.za> Design and prototype of the Traits based config system.

9.2 History

9.2.1 Origins

IPython was starting in 2001 by Fernando Perez while he was a graduate student at the University of Col-
orado, Boulder. IPython as we know it today grew out of the following three projects:

• ipython by Fernando Pérez. Fernando began using Python and ipython began as an outgrowth of his
desire for things like Mathematica-style prompts, access to previous output (again like Mathematica’s
% syntax) and a flexible configuration system (something better than PYTHONSTARTUP).

• IPP by Janko Hauser. Very well organized, great usability. Had an old help system. IPP was used as
the “container” code into which Fernando added the functionality from ipython and LazyPython.

• LazyPython by Nathan Gray. Simple but very powerful. The quick syntax (auto parens, auto quotes)
and verbose/colored tracebacks were all taken from here.

Here is how Fernando describes the early history of IPython:

When I found out about IPP and LazyPython I tried to join all three into a unified system. I
thought this could provide a very nice working environment, both for regular programming
and scientific computing: shell-like features, IDL/Matlab numerics, Mathematica-type prompt
history and great object introspection and help facilities. I think it worked reasonably well,
though it was a lot more work than I had initially planned.

9.2. History 943

http://www.scipy.net/roundup/ipython/issue36

IPython Documentation, Release 0.11

9.3 License and Copyright

9.3.1 License

IPython is licensed under the terms of the new or revised BSD license, as follows:

Copyright (c) 2011, IPython Development Team

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

Neither the name of the IPython Development Team nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9.3.2 About the IPython Development Team

Fernando Perez began IPython in 2001 based on code from Janko Hauser <jhauser-AT-zscout.de> and
Nathaniel Gray <n8gray-AT-caltech.edu>. Fernando is still the project lead.

The IPython Development Team is the set of all contributors to the IPython project. This includes all of the
IPython subprojects. Here is a list of the currently active contributors:

• Matthieu Brucher

• Ondrej Certik

• Laurent Dufrechou

• Robert Kern

944 Chapter 9. About IPython

IPython Documentation, Release 0.11

• Thomas Kluyver

• Brian E. Granger

• Evan Patterson

• Fernando Perez (project leader)

• Benjamin Ragan-Kelley

• Ville M. Vainio

• Gael Varoququx

• Stefan van der Walt

• Barry Wark

If your name is missing, please add it.

9.3.3 Our Copyright Policy

IPython uses a shared copyright model. Each contributor maintains copyright over their contributions to
IPython. But, it is important to note that these contributions are typically only changes (diffs/commits) to
the repositories. Thus, the IPython source code, in its entirety is not the copyright of any single person or
institution. Instead, it is the collective copyright of the entire IPython Development Team. If individual
contributors want to maintain a record of what changes/contributions they have specific copyright on, they
should indicate their copyright in the commit message of the change, when they commit the change to one
of the IPython repositories.

Any new code contributed to IPython must be licensed under the BSD license or a similar (MIT) open source
license.

9.3.4 Miscellaneous

Some files (DPyGetOpt.py, for example) may be licensed under different conditions. Ultimately each file
indicates clearly the conditions under which its author/authors have decided to publish the code.

Versions of IPython up to and including 0.6.3 were released under the GNU Lesser General Public License
(LGPL), available at http://www.gnu.org/copyleft/lesser.html.

9.3. License and Copyright 945

http://www.gnu.org/copyleft/lesser.html

IPython Documentation, Release 0.11

946 Chapter 9. About IPython

BIBLIOGRAPHY

[ZeroMQ] ZeroMQ. http://www.zeromq.org

[paramiko] paramiko. https://github.com/robey/paramiko

[pygments] Pygments syntax highlighting. http://pygments.org

[pexpect] Pexpect. http://www.noah.org/wiki/Pexpect

[PyQt] PyQt4 http://www.riverbankcomputing.co.uk/software/pyqt/download

[pygments] Pygments http://pygments.org/

[ZeroMQ] ZeroMQ. http://www.zeromq.org

[MongoDB] MongoDB database http://www.mongodb.org

[PBS] Portable Batch System http://www.openpbs.org

[SSH] SSH-Agent http://en.wikipedia.org/wiki/ssh-agent

[MPI] Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/

[mpi4py] MPI for Python. mpi4py: http://mpi4py.scipy.org/

[OpenMPI] Open MPI. http://www.open-mpi.org/

[PyTrilinos] PyTrilinos. http://trilinos.sandia.gov/packages/pytrilinos/

[RFC5246] <http://tools.ietf.org/html/rfc5246>

[OpenSSH] <http://www.openssh.com/>

[Paramiko] <http://www.lag.net/paramiko/>

[HMAC] <http://tools.ietf.org/html/rfc2104.html>

[Emacs] Emacs. http://www.gnu.org/software/emacs/

[TextMate] TextMate: the missing editor. http://macromates.com/

[vim] vim. http://www.vim.org/

[Git] The Git version control system.

[Github.com] Github.com. http://github.com

947

http://www.zeromq.org
https://github.com/robey/paramiko
http://pygments.org
http://www.noah.org/wiki/Pexpect
http://www.riverbankcomputing.co.uk/software/pyqt/download
http://pygments.org/
http://www.zeromq.org
http://www.mongodb.org
http://www.openpbs.org
http://en.wikipedia.org/wiki/ssh-agent
http://www-unix.mcs.anl.gov/mpi/
http://mpi4py.scipy.org/
http://www.open-mpi.org/
http://trilinos.sandia.gov/packages/pytrilinos/
http://tools.ietf.org/html/rfc5246
http://www.openssh.com/
http://www.lag.net/paramiko/
http://tools.ietf.org/html/rfc2104.html
http://www.gnu.org/software/emacs/
http://macromates.com/
http://www.vim.org/
http://github.com

IPython Documentation, Release 0.11

[PEP8] Python Enhancement Proposal 8. http://www.python.org/peps/pep-0008.html

[reStructuredText] reStructuredText. http://docutils.sourceforge.net/rst.html

[Sphinx] Sphinx. http://sphinx.pocoo.org/

[MatplotlibDocGuide] http://matplotlib.sourceforge.net/devel/documenting_mpl.html

[PEP257] PEP 257. http://www.python.org/peps/pep-0257.html

[NumPyDocGuide] NumPy documentation guide. http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines

[NumPyExampleDocstring] NumPy example docstring. http://projects.scipy.org/numpy/browser/trunk/doc/EXAMPLE_DOCSTRING.txt

948 Bibliography

http://www.python.org/peps/pep-0008.html
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/
http://matplotlib.sourceforge.net/devel/documenting_mpl.html
http://www.python.org/peps/pep-0257.html
http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines
http://projects.scipy.org/numpy/browser/trunk/doc/EXAMPLE_DOCSTRING.txt

PYTHON MODULE INDEX

i
IPython.config.application, 263
IPython.config.configurable, 268
IPython.config.loader, 276
IPython.core.alias, 283
IPython.core.application, 287
IPython.core.autocall, 292
IPython.core.builtin_trap, 294
IPython.core.compilerop, 296
IPython.core.completer, 297
IPython.core.completerlib, 303
IPython.core.crashhandler, 304
IPython.core.debugger, 306
IPython.core.display, 315
IPython.core.display_trap, 316
IPython.core.displayhook, 318
IPython.core.displaypub, 322
IPython.core.error, 326
IPython.core.excolors, 327
IPython.core.extensions, 328
IPython.core.formatters, 330
IPython.core.history, 358
IPython.core.hooks, 366
IPython.core.inputsplitter, 368
IPython.core.interactiveshell, 375
IPython.core.ipapi, 417
IPython.core.logger, 417
IPython.core.macro, 419
IPython.core.magic, 420
IPython.core.magic_arguments, 444
IPython.core.oinspect, 448
IPython.core.page, 452
IPython.core.payload, 453
IPython.core.payloadpage, 456
IPython.core.plugin, 457
IPython.core.prefilter, 461

IPython.core.profileapp, 512
IPython.core.profiledir, 525
IPython.core.prompts, 529
IPython.core.shellapp, 532
IPython.core.splitinput, 535
IPython.core.ultratb, 536
IPython.lib.backgroundjobs, 547
IPython.lib.clipboard, 553
IPython.lib.deepreload, 553
IPython.lib.demo, 554
IPython.lib.guisupport, 568
IPython.lib.inputhook, 570
IPython.lib.irunner, 573
IPython.lib.latextools, 579
IPython.lib.pretty, 580
IPython.lib.pylabtools, 585
IPython.parallel.apps.baseapp, 587
IPython.parallel.apps.ipclusterapp,

593
IPython.parallel.apps.ipcontrollerapp,

615
IPython.parallel.apps.ipengineapp,

621
IPython.parallel.apps.iploggerapp,

630
IPython.parallel.apps.launcher, 636
IPython.parallel.apps.logwatcher,

717
IPython.parallel.apps.win32support,

720
IPython.parallel.apps.winhpcjob, 721
IPython.parallel.client.asyncresult,

739
IPython.parallel.client.client, 743
IPython.parallel.client.map, 752
IPython.parallel.client.remotefunction,

754

949

IPython Documentation, Release 0.11

IPython.parallel.client.view, 756
IPython.parallel.controller.dependency,

772
IPython.parallel.controller.dictdb,

775
IPython.parallel.controller.heartmonitor,

781
IPython.parallel.controller.hub, 784
IPython.parallel.controller.scheduler,

794
IPython.parallel.controller.sqlitedb,

800
IPython.parallel.engine.engine, 803
IPython.parallel.engine.kernelstarter,

806
IPython.parallel.engine.streamkernel,

808
IPython.parallel.error, 812
IPython.parallel.factory, 823
IPython.parallel.util, 826
IPython.testing, 829
IPython.testing.decorators, 830
IPython.testing.globalipapp, 832
IPython.testing.iptest, 835
IPython.testing.ipunittest, 836
IPython.testing.mkdoctests, 838
IPython.testing.nosepatch, 840
IPython.testing.plugin.dtexample,

840
IPython.testing.plugin.show_refs,

842
IPython.testing.plugin.simple, 843
IPython.testing.plugin.test_ipdoctest,

843
IPython.testing.plugin.test_refs,

844
IPython.testing.skipdoctest, 845
IPython.testing.tools, 845
IPython.utils.attic, 850
IPython.utils.autoattr, 851
IPython.utils.codeutil, 854
IPython.utils.coloransi, 854
IPython.utils.daemonize, 859
IPython.utils.data, 859
IPython.utils.decorators, 860
IPython.utils.dir2, 860
IPython.utils.doctestreload, 860
IPython.utils.frame, 861

IPython.utils.generics, 862
IPython.utils.growl, 863
IPython.utils.importstring, 864
IPython.utils.io, 864
IPython.utils.ipstruct, 867
IPython.utils.jsonutil, 871
IPython.utils.newserialized, 873
IPython.utils.notification, 875
IPython.utils.path, 877
IPython.utils.pickleshare, 880
IPython.utils.pickleutil, 882
IPython.utils.process, 884
IPython.utils.PyColorize, 848
IPython.utils.strdispatch, 885
IPython.utils.sysinfo, 886
IPython.utils.syspathcontext, 887
IPython.utils.terminal, 888
IPython.utils.text, 889
IPython.utils.timing, 899
IPython.utils.traitlets, 900
IPython.utils.upgradedir, 935
IPython.utils.warn, 935
IPython.utils.wildcard, 936

950 Python Module Index

INDEX

Symbols
%PATH%, 140
__init__() (IPython.config.application.Application

method), 263
__init__() (IPython.config.application.ApplicationError

method), 267
__init__() (IPython.config.configurable.Configurable

method), 268
__init__() (IPython.config.configurable.ConfigurableError

method), 270
__init__() (IPython.config.configurable.LoggingConfigurable

method), 271
__init__() (IPython.config.configurable.MultipleInstanceError

method), 272
__init__() (IPython.config.configurable.SingletonConfigurable

method), 273
__init__() (IPython.config.loader.ArgParseConfigLoader

method), 276
__init__() (IPython.config.loader.ArgumentError

method), 277
__init__() (IPython.config.loader.ArgumentParser

method), 277
__init__() (IPython.config.loader.CommandLineConfigLoader

method), 278
__init__() (IPython.config.loader.Config method),

279
__init__() (IPython.config.loader.ConfigError

method), 280
__init__() (IPython.config.loader.ConfigLoader

method), 280
__init__() (IPython.config.loader.ConfigLoaderError

method), 281
__init__() (IPython.config.loader.FileConfigLoader

method), 281
__init__() (IPython.config.loader.KeyValueConfigLoader

method), 282

__init__() (IPython.config.loader.PyFileConfigLoader
method), 283

__init__() (IPython.core.alias.AliasError method),
284

__init__() (IPython.core.alias.AliasManager
method), 284

__init__() (IPython.core.alias.InvalidAliasError
method), 286

__init__() (IPython.core.application.BaseIPythonApplication
method), 287

__init__() (IPython.core.autocall.ExitAutocall
method), 293

__init__() (IPython.core.autocall.IPyAutocall
method), 293

__init__() (IPython.core.autocall.ZMQExitAutocall
method), 293

__init__() (IPython.core.builtin_trap.BuiltinTrap
method), 294

__init__() (IPython.core.compilerop.CachingCompiler
method), 296

__init__() (IPython.core.completer.Bunch method),
298

__init__() (IPython.core.completer.Completer
method), 298

__init__() (IPython.core.completer.CompletionSplitter
method), 299

__init__() (IPython.core.completer.IPCompleter
method), 300

__init__() (IPython.core.crashhandler.CrashHandler
method), 304

__init__() (IPython.core.debugger.Pdb method), 306
__init__() (IPython.core.debugger.Tracer method),

314
__init__() (IPython.core.display_trap.DisplayTrap

method), 317
__init__() (IPython.core.displayhook.DisplayHook

method), 319

951

IPython Documentation, Release 0.11

__init__() (IPython.core.displaypub.DisplayPublisher
method), 322

__init__() (IPython.core.error.IPythonCoreError
method), 326

__init__() (IPython.core.error.TryNext method), 326
__init__() (IPython.core.error.UsageError method),

327
__init__() (IPython.core.extensions.ExtensionManager

method), 328
__init__() (IPython.core.formatters.BaseFormatter

method), 331
__init__() (IPython.core.formatters.DisplayFormatter

method), 334
__init__() (IPython.core.formatters.FormatterABC

method), 336
__init__() (IPython.core.formatters.HTMLFormatter

method), 337
__init__() (IPython.core.formatters.JSONFormatter

method), 340
__init__() (IPython.core.formatters.JavascriptFormatter

method), 343
__init__() (IPython.core.formatters.LatexFormatter

method), 345
__init__() (IPython.core.formatters.PNGFormatter

method), 348
__init__() (IPython.core.formatters.PlainTextFormatter

method), 351
__init__() (IPython.core.formatters.SVGFormatter

method), 355
__init__() (IPython.core.history.HistoryManager

method), 359
__init__() (IPython.core.history.HistorySavingThread

method), 363
__init__() (IPython.core.hooks.CommandChainDispatcher

method), 367
__init__() (IPython.core.inputsplitter.EscapedTransformer

method), 369
__init__() (IPython.core.inputsplitter.IPythonInputSplitter

method), 369
__init__() (IPython.core.inputsplitter.InputSplitter

method), 371
__init__() (IPython.core.inputsplitter.LineInfo

method), 373
__init__() (IPython.core.interactiveshell.InteractiveShell

method), 375
__init__() (IPython.core.interactiveshell.InteractiveShellABC

method), 415
__init__() (IPython.core.interactiveshell.ReadlineNoRecord

method), 415
__init__() (IPython.core.interactiveshell.SeparateUnicode

method), 416
__init__() (IPython.core.interactiveshell.SpaceInInput

method), 417
__init__() (IPython.core.logger.Logger method),

418
__init__() (IPython.core.macro.Macro method), 419
__init__() (IPython.core.magic.MacroToEdit

method), 420
__init__() (IPython.core.magic.Magic method), 420
__init__() (IPython.core.magic_arguments.ArgDecorator

method), 445
__init__() (IPython.core.magic_arguments.MagicArgumentParser

method), 446
__init__() (IPython.core.magic_arguments.argument

method), 447
__init__() (IPython.core.magic_arguments.argument_group

method), 447
__init__() (IPython.core.magic_arguments.kwds

method), 447
__init__() (IPython.core.magic_arguments.magic_arguments

method), 447
__init__() (IPython.core.oinspect.Inspector method),

449
__init__() (IPython.core.payload.PayloadManager

method), 454
__init__() (IPython.core.plugin.Plugin method), 457
__init__() (IPython.core.plugin.PluginManager

method), 459
__init__() (IPython.core.prefilter.AliasChecker

method), 462
__init__() (IPython.core.prefilter.AliasHandler

method), 463
__init__() (IPython.core.prefilter.AssignMagicTransformer

method), 465
__init__() (IPython.core.prefilter.AssignSystemTransformer

method), 467
__init__() (IPython.core.prefilter.AssignmentChecker

method), 469
__init__() (IPython.core.prefilter.AutoHandler

method), 471
__init__() (IPython.core.prefilter.AutoMagicChecker

method), 473
__init__() (IPython.core.prefilter.AutocallChecker

method), 474
__init__() (IPython.core.prefilter.EmacsChecker

method), 476

952 Index

IPython Documentation, Release 0.11

__init__() (IPython.core.prefilter.EmacsHandler
method), 478

__init__() (IPython.core.prefilter.EscCharsChecker
method), 480

__init__() (IPython.core.prefilter.HelpHandler
method), 482

__init__() (IPython.core.prefilter.IPyAutocallChecker
method), 484

__init__() (IPython.core.prefilter.IPyPromptTransformer
method), 485

__init__() (IPython.core.prefilter.LineInfo method),
488

__init__() (IPython.core.prefilter.MacroChecker
method), 488

__init__() (IPython.core.prefilter.MacroHandler
method), 490

__init__() (IPython.core.prefilter.MagicHandler
method), 492

__init__() (IPython.core.prefilter.MultiLineMagicChecker
method), 493

__init__() (IPython.core.prefilter.PrefilterChecker
method), 495

__init__() (IPython.core.prefilter.PrefilterError
method), 497

__init__() (IPython.core.prefilter.PrefilterHandler
method), 497

__init__() (IPython.core.prefilter.PrefilterManager
method), 500

__init__() (IPython.core.prefilter.PrefilterTransformer
method), 503

__init__() (IPython.core.prefilter.PyPromptTransformer
method), 505

__init__() (IPython.core.prefilter.PythonOpsChecker
method), 506

__init__() (IPython.core.prefilter.ShellEscapeChecker
method), 508

__init__() (IPython.core.prefilter.ShellEscapeHandler
method), 510

__init__() (IPython.core.profileapp.ProfileApp
method), 513

__init__() (IPython.core.profileapp.ProfileCreate
method), 516

__init__() (IPython.core.profileapp.ProfileList
method), 521

__init__() (IPython.core.profiledir.ProfileDir
method), 526

__init__() (IPython.core.profiledir.ProfileDirError
method), 529

__init__() (IPython.core.prompts.BasePrompt
method), 530

__init__() (IPython.core.prompts.Prompt1 method),
530

__init__() (IPython.core.prompts.Prompt2 method),
531

__init__() (IPython.core.prompts.PromptOut
method), 531

__init__() (IPython.core.shellapp.InteractiveShellApp
method), 533

__init__() (IPython.core.ultratb.AutoFormattedTB
method), 537

__init__() (IPython.core.ultratb.ColorTB method),
539

__init__() (IPython.core.ultratb.FormattedTB
method), 540

__init__() (IPython.core.ultratb.ListTB method),
542

__init__() (IPython.core.ultratb.SyntaxTB method),
543

__init__() (IPython.core.ultratb.TBTools method),
545

__init__() (IPython.core.ultratb.VerboseTB
method), 546

__init__() (IPython.lib.backgroundjobs.BackgroundJobBase
method), 548

__init__() (IPython.lib.backgroundjobs.BackgroundJobExpr
method), 549

__init__() (IPython.lib.backgroundjobs.BackgroundJobFunc
method), 550

__init__() (IPython.lib.backgroundjobs.BackgroundJobManager
method), 551

__init__() (IPython.lib.demo.ClearDemo method),
557

__init__() (IPython.lib.demo.ClearIPDemo method),
559

__init__() (IPython.lib.demo.ClearMixin method),
560

__init__() (IPython.lib.demo.Demo method), 561
__init__() (IPython.lib.demo.DemoError method),

562
__init__() (IPython.lib.demo.IPythonDemo

method), 563
__init__() (IPython.lib.demo.IPythonLineDemo

method), 565
__init__() (IPython.lib.demo.LineDemo method),

566
__init__() (IPython.lib.inputhook.InputHookManager

Index 953

IPython Documentation, Release 0.11

method), 570
__init__() (IPython.lib.irunner.IPythonRunner

method), 574
__init__() (IPython.lib.irunner.InteractiveRunner

method), 575
__init__() (IPython.lib.irunner.PythonRunner

method), 576
__init__() (IPython.lib.irunner.RunnerFactory

method), 577
__init__() (IPython.lib.irunner.SAGERunner

method), 577
__init__() (IPython.lib.pretty.Breakable method),

582
__init__() (IPython.lib.pretty.Group method), 582
__init__() (IPython.lib.pretty.GroupQueue method),

582
__init__() (IPython.lib.pretty.PrettyPrinter method),

582
__init__() (IPython.lib.pretty.Printable method), 583
__init__() (IPython.lib.pretty.RepresentationPrinter

method), 583
__init__() (IPython.lib.pretty.Text method), 584
__init__() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 587
__init__() (IPython.parallel.apps.baseapp.PIDFileError

method), 593
__init__() (IPython.parallel.apps.baseapp.ParallelCrashHandler

method), 593
__init__() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 594
__init__() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 597
__init__() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 603
__init__() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 609
__init__() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 615
__init__() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 622
__init__() (IPython.parallel.apps.ipengineapp.MPI

method), 627
__init__() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 630
__init__() (IPython.parallel.apps.launcher.BaseLauncher

method), 636
__init__() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 639

__init__() (IPython.parallel.apps.launcher.IPClusterLauncher
method), 642

__init__() (IPython.parallel.apps.launcher.LSFControllerLauncher
method), 645

__init__() (IPython.parallel.apps.launcher.LSFEngineSetLauncher
method), 649

__init__() (IPython.parallel.apps.launcher.LSFLauncher
method), 652

__init__() (IPython.parallel.apps.launcher.LauncherError
method), 656

__init__() (IPython.parallel.apps.launcher.LocalControllerLauncher
method), 656

__init__() (IPython.parallel.apps.launcher.LocalEngineLauncher
method), 659

__init__() (IPython.parallel.apps.launcher.LocalEngineSetLauncher
method), 661

__init__() (IPython.parallel.apps.launcher.LocalProcessLauncher
method), 664

__init__() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
method), 667

__init__() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
method), 670

__init__() (IPython.parallel.apps.launcher.MPIExecLauncher
method), 673

__init__() (IPython.parallel.apps.launcher.PBSControllerLauncher
method), 676

__init__() (IPython.parallel.apps.launcher.PBSEngineSetLauncher
method), 679

__init__() (IPython.parallel.apps.launcher.PBSLauncher
method), 683

__init__() (IPython.parallel.apps.launcher.ProcessStateError
method), 686

__init__() (IPython.parallel.apps.launcher.SGEControllerLauncher
method), 686

__init__() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
method), 690

__init__() (IPython.parallel.apps.launcher.SGELauncher
method), 693

__init__() (IPython.parallel.apps.launcher.SSHControllerLauncher
method), 697

__init__() (IPython.parallel.apps.launcher.SSHEngineLauncher
method), 700

__init__() (IPython.parallel.apps.launcher.SSHEngineSetLauncher
method), 703

__init__() (IPython.parallel.apps.launcher.SSHLauncher
method), 705

__init__() (IPython.parallel.apps.launcher.UnknownStatus
method), 708

954 Index

IPython Documentation, Release 0.11

__init__() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
method), 709

__init__() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
method), 712

__init__() (IPython.parallel.apps.launcher.WindowsHPCLauncher
method), 714

__init__() (IPython.parallel.apps.logwatcher.LogWatcher
method), 718

__init__() (IPython.parallel.apps.win32support.ForwarderThread
method), 720

__init__() (IPython.parallel.apps.winhpcjob.IPControllerJob
method), 721

__init__() (IPython.parallel.apps.winhpcjob.IPControllerTask
method), 725

__init__() (IPython.parallel.apps.winhpcjob.IPEngineSetJob
method), 727

__init__() (IPython.parallel.apps.winhpcjob.IPEngineTask
method), 730

__init__() (IPython.parallel.apps.winhpcjob.WinHPCJob
method), 733

__init__() (IPython.parallel.apps.winhpcjob.WinHPCTask
method), 736

__init__() (IPython.parallel.client.asyncresult.AsyncHubResult
method), 740

__init__() (IPython.parallel.client.asyncresult.AsyncMapResult
method), 741

__init__() (IPython.parallel.client.asyncresult.AsyncResult
method), 742

__init__() (IPython.parallel.client.client.Client
method), 746

__init__() (IPython.parallel.client.client.Metadata
method), 751

__init__() (IPython.parallel.client.remotefunction.ParallelFunction
method), 755

__init__() (IPython.parallel.client.remotefunction.RemoteFunction
method), 755

__init__() (IPython.parallel.client.view.DirectView
method), 757

__init__() (IPython.parallel.client.view.LoadBalancedView
method), 762

__init__() (IPython.parallel.client.view.View
method), 768

__init__() (IPython.parallel.controller.dependency.Dependency
method), 773

__init__() (IPython.parallel.controller.dependency.depend
method), 774

__init__() (IPython.parallel.controller.dependency.dependent
method), 775

__init__() (IPython.parallel.controller.dictdb.BaseDB
method), 776

__init__() (IPython.parallel.controller.dictdb.CompositeFilter
method), 778

__init__() (IPython.parallel.controller.dictdb.DictDB
method), 778

__init__() (IPython.parallel.controller.heartmonitor.Heart
method), 781

__init__() (IPython.parallel.controller.heartmonitor.HeartMonitor
method), 781

__init__() (IPython.parallel.controller.hub.EngineConnector
method), 784

__init__() (IPython.parallel.controller.hub.Hub
method), 786

__init__() (IPython.parallel.controller.hub.HubFactory
method), 791

__init__() (IPython.parallel.controller.scheduler.TaskScheduler
method), 795

__init__() (IPython.parallel.controller.sqlitedb.SQLiteDB
method), 800

__init__() (IPython.parallel.engine.engine.EngineFactory
method), 803

__init__() (IPython.parallel.engine.kernelstarter.KernelStarter
method), 806

__init__() (IPython.parallel.engine.streamkernel.Kernel
method), 808

__init__() (IPython.parallel.error.AbortedPendingDeferredError
method), 813

__init__() (IPython.parallel.error.ClientError
method), 813

__init__() (IPython.parallel.error.CompositeError
method), 813

__init__() (IPython.parallel.error.ConnectionError
method), 814

__init__() (IPython.parallel.error.ControllerCreationError
method), 814

__init__() (IPython.parallel.error.ControllerError
method), 814

__init__() (IPython.parallel.error.DependencyTimeout
method), 814

__init__() (IPython.parallel.error.EngineCreationError
method), 815

__init__() (IPython.parallel.error.EngineError
method), 815

__init__() (IPython.parallel.error.FileTimeoutError
method), 815

__init__() (IPython.parallel.error.IPythonError
method), 815

Index 955

IPython Documentation, Release 0.11

__init__() (IPython.parallel.error.IdInUse method),
816

__init__() (IPython.parallel.error.ImpossibleDependency
method), 816

__init__() (IPython.parallel.error.InvalidClientID
method), 816

__init__() (IPython.parallel.error.InvalidDeferredID
method), 816

__init__() (IPython.parallel.error.InvalidDependency
method), 817

__init__() (IPython.parallel.error.InvalidEngineID
method), 817

__init__() (IPython.parallel.error.InvalidProperty
method), 817

__init__() (IPython.parallel.error.KernelError
method), 817

__init__() (IPython.parallel.error.MessageSizeError
method), 818

__init__() (IPython.parallel.error.MissingBlockArgument
method), 818

__init__() (IPython.parallel.error.NoEnginesRegistered
method), 818

__init__() (IPython.parallel.error.NotAPendingResult
method), 818

__init__() (IPython.parallel.error.NotDefined
method), 819

__init__() (IPython.parallel.error.PBMessageSizeError
method), 819

__init__() (IPython.parallel.error.ProtocolError
method), 819

__init__() (IPython.parallel.error.QueueCleared
method), 819

__init__() (IPython.parallel.error.RemoteError
method), 820

__init__() (IPython.parallel.error.ResultAlreadyRetrieved
method), 820

__init__() (IPython.parallel.error.ResultNotCompleted
method), 820

__init__() (IPython.parallel.error.SecurityError
method), 820

__init__() (IPython.parallel.error.SerializationError
method), 821

__init__() (IPython.parallel.error.StopLocalExecution
method), 821

__init__() (IPython.parallel.error.TaskAborted
method), 821

__init__() (IPython.parallel.error.TaskRejectError
method), 822

__init__() (IPython.parallel.error.TaskTimeout
method), 822

__init__() (IPython.parallel.error.TimeoutError
method), 822

__init__() (IPython.parallel.error.UnmetDependency
method), 822

__init__() (IPython.parallel.error.UnpickleableException
method), 822

__init__() (IPython.parallel.factory.RegistrationFactory
method), 823

__init__() (IPython.parallel.util.Namespace
method), 826

__init__() (IPython.parallel.util.ReverseDict
method), 827

__init__() (IPython.testing.globalipapp.StreamProxy
method), 833

__init__() (IPython.testing.globalipapp.ipnsdict
method), 833

__init__() (IPython.testing.globalipapp.py_file_finder
method), 834

__init__() (IPython.testing.iptest.IPTester method),
835

__init__() (IPython.testing.ipunittest.Doc2UnitTester
method), 837

__init__() (IPython.testing.ipunittest.IPython2PythonConverter
method), 837

__init__() (IPython.testing.mkdoctests.IndentOut
method), 839

__init__() (IPython.testing.mkdoctests.RunnerFactory
method), 839

__init__() (IPython.testing.plugin.show_refs.C
method), 842

__init__() (IPython.testing.tools.TempFileMixin
method), 846

__init__() (IPython.utils.PyColorize.Parser method),
849

__init__() (IPython.utils.autoattr.OneTimeProperty
method), 852

__init__() (IPython.utils.autoattr.ResetMixin
method), 853

__init__() (IPython.utils.coloransi.ColorScheme
method), 855

__init__() (IPython.utils.coloransi.ColorSchemeTable
method), 855

__init__() (IPython.utils.growl.IPythonGrowlError
method), 863

__init__() (IPython.utils.growl.Notifier method),
863

956 Index

IPython Documentation, Release 0.11

__init__() (IPython.utils.io.IOStream method), 865
__init__() (IPython.utils.io.IOTerm method), 865
__init__() (IPython.utils.io.NLprinter method), 865
__init__() (IPython.utils.io.Tee method), 865
__init__() (IPython.utils.ipstruct.Struct method),

868
__init__() (IPython.utils.newserialized.SerializationError

method), 874
__init__() (IPython.utils.newserialized.SerializeIt

method), 874
__init__() (IPython.utils.newserialized.Serialized

method), 874
__init__() (IPython.utils.newserialized.UnSerializeIt

method), 874
__init__() (IPython.utils.newserialized.UnSerialized

method), 875
__init__() (IPython.utils.notification.NotificationCenter

method), 876
__init__() (IPython.utils.notification.NotificationError

method), 877
__init__() (IPython.utils.path.HomeDirError

method), 877
__init__() (IPython.utils.pickleshare.PickleShareDB

method), 881
__init__() (IPython.utils.pickleshare.PickleShareLink

method), 882
__init__() (IPython.utils.pickleutil.CannedFunction

method), 883
__init__() (IPython.utils.pickleutil.CannedObject

method), 883
__init__() (IPython.utils.pickleutil.Reference

method), 883
__init__() (IPython.utils.process.FindCmdError

method), 884
__init__() (IPython.utils.strdispatch.StrDispatch

method), 886
__init__() (IPython.utils.syspathcontext.appended_to_syspath

method), 888
__init__() (IPython.utils.syspathcontext.prepended_to_syspath

method), 888
__init__() (IPython.utils.text.EvalFormatter

method), 890
__init__() (IPython.utils.text.LSString method), 890
__init__() (IPython.utils.text.SList method), 895
__init__() (IPython.utils.traitlets.Any method), 901
__init__() (IPython.utils.traitlets.Bool method), 902
__init__() (IPython.utils.traitlets.Bytes method), 903
__init__() (IPython.utils.traitlets.CBool method),

904
__init__() (IPython.utils.traitlets.CBytes method),

905
__init__() (IPython.utils.traitlets.CComplex

method), 906
__init__() (IPython.utils.traitlets.CFloat method),

907
__init__() (IPython.utils.traitlets.CInt method), 908
__init__() (IPython.utils.traitlets.CLong method),

909
__init__() (IPython.utils.traitlets.CUnicode method),

910
__init__() (IPython.utils.traitlets.CaselessStrEnum

method), 911
__init__() (IPython.utils.traitlets.ClassBasedTraitType

method), 912
__init__() (IPython.utils.traitlets.Complex method),

913
__init__() (IPython.utils.traitlets.Container method),

914
__init__() (IPython.utils.traitlets.DefaultValueGenerator

method), 915
__init__() (IPython.utils.traitlets.Dict method), 915
__init__() (IPython.utils.traitlets.DottedObjectName

method), 916
__init__() (IPython.utils.traitlets.Enum method),

917
__init__() (IPython.utils.traitlets.Float method), 918
__init__() (IPython.utils.traitlets.HasTraits method),

919
__init__() (IPython.utils.traitlets.Instance method),

920
__init__() (IPython.utils.traitlets.Int method), 921
__init__() (IPython.utils.traitlets.List method), 922
__init__() (IPython.utils.traitlets.Long method), 924
__init__() (IPython.utils.traitlets.MetaHasTraits

method), 925
__init__() (IPython.utils.traitlets.ObjectName

method), 925
__init__() (IPython.utils.traitlets.Set method), 926
__init__() (IPython.utils.traitlets.TCPAddress

method), 928
__init__() (IPython.utils.traitlets.This method), 928
__init__() (IPython.utils.traitlets.TraitError method),

929
__init__() (IPython.utils.traitlets.TraitType method),

930
__init__() (IPython.utils.traitlets.Tuple method), 931

Index 957

IPython Documentation, Release 0.11

__init__() (IPython.utils.traitlets.Type method), 932
__init__() (IPython.utils.traitlets.Unicode method),

933

A
abbrev_cwd() (in module IPython.utils.process), 884
abort() (IPython.parallel.client.asyncresult.AsyncHubResult

method), 740
abort() (IPython.parallel.client.asyncresult.AsyncMapResult

method), 741
abort() (IPython.parallel.client.asyncresult.AsyncResult

method), 742
abort() (IPython.parallel.client.client.Client

method), 746
abort() (IPython.parallel.client.view.DirectView

method), 757
abort() (IPython.parallel.client.view.LoadBalancedView

method), 763
abort() (IPython.parallel.client.view.View method),

768
abort() (IPython.parallel.engine.engine.EngineFactory

method), 803
abort_queue() (IPython.parallel.engine.streamkernel.Kernel

method), 808
abort_queues() (IPython.parallel.engine.streamkernel.Kernel

method), 808
abort_request() (IPython.parallel.engine.streamkernel.Kernel

method), 808
aborted (IPython.parallel.engine.streamkernel.Kernel

attribute), 808
AbortedPendingDeferredError (class in

IPython.parallel.error), 813
activate() (IPython.core.builtin_trap.BuiltinTrap

method), 294
activate() (IPython.parallel.client.view.DirectView

method), 757
activate_matplotlib() (in module

IPython.lib.pylabtools), 585
add (IPython.parallel.controller.dependency.Dependency

attribute), 773
add() (IPython.core.hooks.CommandChainDispatcher

method), 367
add() (IPython.lib.pretty.Text method), 584
add_argument() (IPython.config.loader.ArgumentParser

method), 277
add_argument() (IPython.core.magic_arguments.MagicArgumentParser

method), 446
add_argument_group()

(IPython.config.loader.ArgumentParser
method), 278

add_argument_group()
(IPython.core.magic_arguments.MagicArgumentParser
method), 446

add_article() (in module IPython.utils.traitlets), 934
add_builtin() (IPython.core.builtin_trap.BuiltinTrap

method), 294
add_heart_failure_handler()

(IPython.parallel.controller.heartmonitor.HeartMonitor
method), 782

add_job() (IPython.parallel.controller.scheduler.TaskScheduler
method), 795

add_mutually_exclusive_group()
(IPython.config.loader.ArgumentParser
method), 278

add_mutually_exclusive_group()
(IPython.core.magic_arguments.MagicArgumentParser
method), 446

add_new_heart_handler()
(IPython.parallel.controller.heartmonitor.HeartMonitor
method), 782

add_observer() (IPython.utils.notification.NotificationCenter
method), 876

add_re() (IPython.utils.strdispatch.StrDispatch
method), 886

add_record() (IPython.parallel.controller.dictdb.DictDB
method), 778

add_record() (IPython.parallel.controller.sqlitedb.SQLiteDB
method), 800

add_s() (IPython.utils.strdispatch.StrDispatch
method), 886

add_scheme() (IPython.utils.coloransi.ColorSchemeTable
method), 855

add_subparsers() (IPython.config.loader.ArgumentParser
method), 278

add_subparsers() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

add_task() (IPython.parallel.apps.winhpcjob.IPControllerJob
method), 722

add_task() (IPython.parallel.apps.winhpcjob.IPEngineSetJob
method), 728

add_task() (IPython.parallel.apps.winhpcjob.WinHPCJob
method), 733

add_to_parser() (IPython.core.magic_arguments.ArgDecorator
method), 445

add_to_parser() (IPython.core.magic_arguments.argument
method), 447

958 Index

IPython Documentation, Release 0.11

add_to_parser() (IPython.core.magic_arguments.argument_group
method), 447

add_to_parser() (IPython.core.magic_arguments.kwds
method), 447

add_to_parser() (IPython.core.magic_arguments.magic_arguments
method), 447

after (IPython.parallel.client.view.LoadBalancedView
attribute), 763

again() (IPython.lib.demo.ClearDemo method), 557
again() (IPython.lib.demo.ClearIPDemo method),

559
again() (IPython.lib.demo.Demo method), 561
again() (IPython.lib.demo.IPythonDemo method),

563
again() (IPython.lib.demo.IPythonLineDemo

method), 565
again() (IPython.lib.demo.LineDemo method), 567
alias_manager (IPython.core.interactiveshell.InteractiveShell

attribute), 375
alias_matches() (IPython.core.completer.IPCompleter

method), 300
AliasChecker (class in IPython.core.prefilter), 462
AliasError (class in IPython.core.alias), 284
aliases (IPython.config.application.Application at-

tribute), 263
aliases (IPython.core.alias.AliasManager attribute),

284
aliases (IPython.core.application.BaseIPythonApplication

attribute), 287
aliases (IPython.core.profileapp.ProfileApp at-

tribute), 513
aliases (IPython.core.profileapp.ProfileCreate

attribute), 516
aliases (IPython.core.profileapp.ProfileList at-

tribute), 521
aliases (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 587
aliases (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 594
aliases (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 597
aliases (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 603
aliases (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 609
aliases (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 615
aliases (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 622
aliases (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 630
AliasHandler (class in IPython.core.prefilter), 463
AliasManager (class in IPython.core.alias), 284
all (IPython.parallel.controller.dependency.Dependency

attribute), 773
all_belong() (in module IPython.utils.attic), 850
all_completed (IPython.parallel.controller.hub.Hub

attribute), 786
all_completed (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 795
all_completions() (IPython.core.completer.IPCompleter

method), 300
all_done (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 795
all_failed (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 795
all_ids (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 795
allow_new_attr() (IPython.utils.ipstruct.Struct

method), 868
Any (class in IPython.utils.traitlets), 901
append (IPython.utils.text.SList attribute), 895
appended_to_syspath (class in

IPython.utils.syspathcontext), 888
Application (class in IPython.config.application),

263
ApplicationError (class in

IPython.config.application), 267
apply() (IPython.parallel.client.view.DirectView

method), 757
apply() (IPython.parallel.client.view.LoadBalancedView

method), 763
apply() (IPython.parallel.client.view.View method),

768
apply_async() (IPython.parallel.client.view.DirectView

method), 757
apply_async() (IPython.parallel.client.view.LoadBalancedView

method), 763
apply_async() (IPython.parallel.client.view.View

method), 768
apply_request() (IPython.parallel.engine.streamkernel.Kernel

method), 808
apply_sync() (IPython.parallel.client.view.DirectView

method), 757
apply_sync() (IPython.parallel.client.view.LoadBalancedView

method), 763

Index 959

IPython Documentation, Release 0.11

apply_sync() (IPython.parallel.client.view.View
method), 768

apply_wrapper() (in module
IPython.testing.decorators), 830

arg_err() (IPython.core.interactiveshell.InteractiveShell
method), 375

arg_err() (IPython.core.magic.Magic method), 420
arg_split() (in module IPython.utils.process), 884
arg_str (IPython.parallel.apps.launcher.BaseLauncher

attribute), 636
arg_str (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 639
arg_str (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 642
arg_str (IPython.parallel.apps.launcher.LocalControllerLauncher

attribute), 656
arg_str (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 659
arg_str (IPython.parallel.apps.launcher.LocalEngineSetLauncher

attribute), 661
arg_str (IPython.parallel.apps.launcher.LocalProcessLauncher

attribute), 664
arg_str (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 645
arg_str (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 649
arg_str (IPython.parallel.apps.launcher.LSFLauncher

attribute), 652
arg_str (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 667
arg_str (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 670
arg_str (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 673
arg_str (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 676
arg_str (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 679
arg_str (IPython.parallel.apps.launcher.PBSLauncher

attribute), 683
arg_str (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 686
arg_str (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 690
arg_str (IPython.parallel.apps.launcher.SGELauncher

attribute), 693
arg_str (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 697

arg_str (IPython.parallel.apps.launcher.SSHEngineLauncher
attribute), 700

arg_str (IPython.parallel.apps.launcher.SSHEngineSetLauncher
attribute), 703

arg_str (IPython.parallel.apps.launcher.SSHLauncher
attribute), 705

arg_str (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
attribute), 709

arg_str (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
attribute), 712

arg_str (IPython.parallel.apps.launcher.WindowsHPCLauncher
attribute), 715

ArgDecorator (class in
IPython.core.magic_arguments), 445

ArgParseConfigLoader (class in
IPython.config.loader), 276

args (IPython.config.application.ApplicationError
attribute), 267

args (IPython.config.configurable.ConfigurableError
attribute), 270

args (IPython.config.configurable.MultipleInstanceError
attribute), 272

args (IPython.config.loader.ArgumentError at-
tribute), 277

args (IPython.config.loader.ConfigError attribute),
280

args (IPython.config.loader.ConfigLoaderError at-
tribute), 281

args (IPython.core.alias.AliasError attribute), 284
args (IPython.core.alias.InvalidAliasError attribute),

286
args (IPython.core.error.IPythonCoreError at-

tribute), 326
args (IPython.core.error.TryNext attribute), 326
args (IPython.core.error.UsageError attribute), 327
args (IPython.core.interactiveshell.SpaceInInput at-

tribute), 417
args (IPython.core.magic.MacroToEdit attribute),

420
args (IPython.core.prefilter.PrefilterError attribute),

497
args (IPython.core.profiledir.ProfileDirError at-

tribute), 529
args (IPython.lib.demo.DemoError attribute), 562
args (IPython.parallel.apps.baseapp.PIDFileError at-

tribute), 593
args (IPython.parallel.apps.launcher.BaseLauncher

attribute), 636

960 Index

IPython Documentation, Release 0.11

args (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 639

args (IPython.parallel.apps.launcher.IPClusterLauncher
attribute), 642

args (IPython.parallel.apps.launcher.LauncherError
attribute), 656

args (IPython.parallel.apps.launcher.LocalControllerLauncher
attribute), 656

args (IPython.parallel.apps.launcher.LocalEngineLauncher
attribute), 659

args (IPython.parallel.apps.launcher.LocalEngineSetLauncher
attribute), 662

args (IPython.parallel.apps.launcher.LocalProcessLauncher
attribute), 664

args (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 645

args (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 649

args (IPython.parallel.apps.launcher.LSFLauncher
attribute), 652

args (IPython.parallel.apps.launcher.MPIExecControllerLauncher
attribute), 667

args (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
attribute), 670

args (IPython.parallel.apps.launcher.MPIExecLauncher
attribute), 673

args (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 676

args (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 679

args (IPython.parallel.apps.launcher.PBSLauncher
attribute), 683

args (IPython.parallel.apps.launcher.ProcessStateError
attribute), 686

args (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 686

args (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 690

args (IPython.parallel.apps.launcher.SGELauncher
attribute), 693

args (IPython.parallel.apps.launcher.SSHControllerLauncher
attribute), 697

args (IPython.parallel.apps.launcher.SSHEngineLauncher
attribute), 700

args (IPython.parallel.apps.launcher.SSHEngineSetLauncher
attribute), 703

args (IPython.parallel.apps.launcher.SSHLauncher
attribute), 705

args (IPython.parallel.apps.launcher.UnknownStatus
attribute), 708

args (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
attribute), 709

args (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
attribute), 712

args (IPython.parallel.apps.launcher.WindowsHPCLauncher
attribute), 715

args (IPython.parallel.error.AbortedPendingDeferredError
attribute), 813

args (IPython.parallel.error.ClientError attribute),
813

args (IPython.parallel.error.CompositeError at-
tribute), 813

args (IPython.parallel.error.ConnectionError at-
tribute), 814

args (IPython.parallel.error.ControllerCreationError
attribute), 814

args (IPython.parallel.error.ControllerError at-
tribute), 814

args (IPython.parallel.error.DependencyTimeout at-
tribute), 814

args (IPython.parallel.error.EngineCreationError at-
tribute), 815

args (IPython.parallel.error.EngineError attribute),
815

args (IPython.parallel.error.FileTimeoutError at-
tribute), 815

args (IPython.parallel.error.IdInUse attribute), 816
args (IPython.parallel.error.ImpossibleDependency

attribute), 816
args (IPython.parallel.error.InvalidClientID at-

tribute), 816
args (IPython.parallel.error.InvalidDeferredID at-

tribute), 816
args (IPython.parallel.error.InvalidDependency at-

tribute), 817
args (IPython.parallel.error.InvalidEngineID at-

tribute), 817
args (IPython.parallel.error.InvalidProperty at-

tribute), 817
args (IPython.parallel.error.IPythonError attribute),

815
args (IPython.parallel.error.KernelError attribute),

817
args (IPython.parallel.error.MessageSizeError

attribute), 818
args (IPython.parallel.error.MissingBlockArgument

Index 961

IPython Documentation, Release 0.11

attribute), 818
args (IPython.parallel.error.NoEnginesRegistered at-

tribute), 818
args (IPython.parallel.error.NotAPendingResult at-

tribute), 818
args (IPython.parallel.error.NotDefined attribute),

819
args (IPython.parallel.error.PBMessageSizeError at-

tribute), 819
args (IPython.parallel.error.ProtocolError attribute),

819
args (IPython.parallel.error.QueueCleared attribute),

819
args (IPython.parallel.error.RemoteError attribute),

820
args (IPython.parallel.error.ResultAlreadyRetrieved

attribute), 820
args (IPython.parallel.error.ResultNotCompleted at-

tribute), 820
args (IPython.parallel.error.SecurityError attribute),

820
args (IPython.parallel.error.SerializationError

attribute), 821
args (IPython.parallel.error.StopLocalExecution at-

tribute), 821
args (IPython.parallel.error.TaskAborted attribute),

821
args (IPython.parallel.error.TaskRejectError at-

tribute), 822
args (IPython.parallel.error.TaskTimeout attribute),

822
args (IPython.parallel.error.TimeoutError attribute),

822
args (IPython.parallel.error.UnmetDependency at-

tribute), 822
args (IPython.parallel.error.UnpickleableException

attribute), 823
args (IPython.utils.growl.IPythonGrowlError at-

tribute), 863
args (IPython.utils.newserialized.SerializationError

attribute), 874
args (IPython.utils.notification.NotificationError at-

tribute), 877
args (IPython.utils.path.HomeDirError attribute),

877
args (IPython.utils.process.FindCmdError attribute),

884
args (IPython.utils.traitlets.TraitError attribute), 929

argument (class in IPython.core.magic_arguments),
447

argument_group (class in
IPython.core.magic_arguments), 447

ArgumentError (class in IPython.config.loader), 277
ArgumentParser (class in IPython.config.loader),

277
as_dict() (IPython.parallel.controller.dependency.Dependency

method), 773
as_element() (IPython.parallel.apps.winhpcjob.IPControllerJob

method), 722
as_element() (IPython.parallel.apps.winhpcjob.IPControllerTask

method), 725
as_element() (IPython.parallel.apps.winhpcjob.IPEngineSetJob

method), 728
as_element() (IPython.parallel.apps.winhpcjob.IPEngineTask

method), 730
as_element() (IPython.parallel.apps.winhpcjob.WinHPCJob

method), 733
as_element() (IPython.parallel.apps.winhpcjob.WinHPCTask

method), 737
as_str() (in module

IPython.parallel.apps.winhpcjob), 739
as_unittest() (in module IPython.testing.decorators),

830
asbytes() (in module IPython.parallel.util), 828
ask_yes_no() (in module IPython.utils.io), 866
ask_yes_no() (IPython.core.interactiveshell.InteractiveShell

method), 376
AssignMagicTransformer (class in

IPython.core.prefilter), 465
AssignmentChecker (class in IPython.core.prefilter),

469
AssignSystemTransformer (class in

IPython.core.prefilter), 467
AsyncHubResult (class in

IPython.parallel.client.asyncresult), 740
AsyncMapResult (class in

IPython.parallel.client.asyncresult), 741
AsyncResult (built-in class), 169
AsyncResult (class in

IPython.parallel.client.asyncresult), 742
atexit_operations() (IPython.core.interactiveshell.InteractiveShell

method), 376
attr_matches() (IPython.core.completer.Completer

method), 299
attr_matches() (IPython.core.completer.IPCompleter

method), 300

962 Index

IPython Documentation, Release 0.11

audit_timeouts() (IPython.parallel.controller.scheduler.TaskScheduler
method), 795

auditor (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 795

auto_attr() (in module IPython.utils.autoattr), 853
auto_calculate_max (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 722
auto_calculate_max (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 728
auto_calculate_max (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 733
auto_calculate_min (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 722
auto_calculate_min (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 728
auto_calculate_min (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 734
auto_create (IPython.core.application.BaseIPythonApplication

attribute), 287
auto_create (IPython.core.profileapp.ProfileCreate

attribute), 516
auto_create (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 587
auto_create (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 597
auto_create (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 603
auto_create (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 609
auto_create (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 615
auto_create (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 622
auto_create (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 630
auto_rewrite() (IPython.core.prompts.Prompt1

method), 530
auto_rewrite_input()

(IPython.core.interactiveshell.InteractiveShell
method), 376

auto_status (IPython.core.interactiveshell.InteractiveShell
attribute), 376

auto_status (IPython.core.magic.Magic attribute),
421

autocall (IPython.core.interactiveshell.InteractiveShell
attribute), 376

AutocallChecker (class in IPython.core.prefilter),
474

AutoFormattedTB (class in IPython.core.ultratb),
537

AutoHandler (class in IPython.core.prefilter), 471
autoindent (IPython.core.interactiveshell.InteractiveShell

attribute), 376
automagic (IPython.core.interactiveshell.InteractiveShell

attribute), 376
AutoMagicChecker (class in IPython.core.prefilter),

473

B
back() (IPython.lib.demo.ClearDemo method), 557
back() (IPython.lib.demo.ClearIPDemo method),

559
back() (IPython.lib.demo.Demo method), 561
back() (IPython.lib.demo.IPythonDemo method),

563
back() (IPython.lib.demo.IPythonLineDemo

method), 565
back() (IPython.lib.demo.LineDemo method), 567
BackgroundJobBase (class in

IPython.lib.backgroundjobs), 548
BackgroundJobExpr (class in

IPython.lib.backgroundjobs), 549
BackgroundJobFunc (class in

IPython.lib.backgroundjobs), 550
BackgroundJobManager (class in

IPython.lib.backgroundjobs), 551
BaseDB (class in IPython.parallel.controller.dictdb),

776
BaseFormatter (class in IPython.core.formatters),

331
BaseIPythonApplication (class in

IPython.core.application), 287
BaseLauncher (class in

IPython.parallel.apps.launcher), 636
BaseParallelApplication (class in

IPython.parallel.apps.baseapp), 587
BasePrompt (class in IPython.core.prompts), 530
batch_file (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 639
batch_file (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 645
batch_file (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 649
batch_file (IPython.parallel.apps.launcher.LSFLauncher

attribute), 652

Index 963

IPython Documentation, Release 0.11

batch_file (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 676

batch_file (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 679

batch_file (IPython.parallel.apps.launcher.PBSLauncher
attribute), 683

batch_file (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 687

batch_file (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 690

batch_file (IPython.parallel.apps.launcher.SGELauncher
attribute), 693

batch_file_name (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 639

batch_file_name (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 645

batch_file_name (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 649

batch_file_name (IPython.parallel.apps.launcher.LSFLauncher
attribute), 652

batch_file_name (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 676

batch_file_name (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 679

batch_file_name (IPython.parallel.apps.launcher.PBSLauncher
attribute), 683

batch_file_name (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 687

batch_file_name (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 690

batch_file_name (IPython.parallel.apps.launcher.SGELauncher
attribute), 693

batch_template (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 639

batch_template (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 645

batch_template (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 649

batch_template (IPython.parallel.apps.launcher.LSFLauncher
attribute), 652

batch_template (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 676

batch_template (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 679

batch_template (IPython.parallel.apps.launcher.PBSLauncher
attribute), 683

batch_template (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 687

batch_template (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 690

batch_template (IPython.parallel.apps.launcher.SGELauncher
attribute), 694

batch_template_file (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 639

batch_template_file (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 645

batch_template_file (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 649

batch_template_file (IPython.parallel.apps.launcher.LSFLauncher
attribute), 652

batch_template_file (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 676

batch_template_file (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 679

batch_template_file (IPython.parallel.apps.launcher.PBSLauncher
attribute), 683

batch_template_file (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 687

batch_template_file (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 690

batch_template_file (IPython.parallel.apps.launcher.SGELauncher
attribute), 694

BatchSystemLauncher (class in
IPython.parallel.apps.launcher), 639

BdbQuit_excepthook() (in module
IPython.core.debugger), 314

BdbQuit_IPython_excepthook() (in module
IPython.core.debugger), 314

beat() (IPython.parallel.controller.heartmonitor.HeartMonitor
method), 782

begin_group() (IPython.lib.pretty.PrettyPrinter
method), 582

begin_group() (IPython.lib.pretty.RepresentationPrinter
method), 583

belong() (in module IPython.utils.attic), 850
bident (IPython.parallel.engine.engine.EngineFactory

attribute), 803
bident (IPython.parallel.engine.streamkernel.Kernel

attribute), 808
Black (IPython.utils.coloransi.InputTermColors at-

tribute), 856
Black (IPython.utils.coloransi.TermColors at-

tribute), 857
blacklist (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 795
BlinkBlack (IPython.utils.coloransi.InputTermColors

964 Index

IPython Documentation, Release 0.11

attribute), 856
BlinkBlack (IPython.utils.coloransi.TermColors at-

tribute), 857
BlinkBlue (IPython.utils.coloransi.InputTermColors

attribute), 856
BlinkBlue (IPython.utils.coloransi.TermColors at-

tribute), 857
BlinkCyan (IPython.utils.coloransi.InputTermColors

attribute), 856
BlinkCyan (IPython.utils.coloransi.TermColors at-

tribute), 858
BlinkGreen (IPython.utils.coloransi.InputTermColors

attribute), 857
BlinkGreen (IPython.utils.coloransi.TermColors at-

tribute), 858
BlinkLightGray (IPython.utils.coloransi.InputTermColors

attribute), 857
BlinkLightGray (IPython.utils.coloransi.TermColors

attribute), 858
BlinkPurple (IPython.utils.coloransi.InputTermColors

attribute), 857
BlinkPurple (IPython.utils.coloransi.TermColors at-

tribute), 858
BlinkRed (IPython.utils.coloransi.InputTermColors

attribute), 857
BlinkRed (IPython.utils.coloransi.TermColors at-

tribute), 858
BlinkYellow (IPython.utils.coloransi.InputTermColors

attribute), 857
BlinkYellow (IPython.utils.coloransi.TermColors at-

tribute), 858
block (IPython.parallel.client.client.Client attribute),

746
block (IPython.parallel.client.remotefunction.ParallelFunction

attribute), 755
block (IPython.parallel.client.remotefunction.RemoteFunction

attribute), 755
block (IPython.parallel.client.view.DirectView at-

tribute), 757
block (IPython.parallel.client.view.LoadBalancedView

attribute), 763
block (IPython.parallel.client.view.View attribute),

768
Blue (IPython.utils.coloransi.InputTermColors at-

tribute), 857
Blue (IPython.utils.coloransi.TermColors attribute),

858
Bool (class in IPython.utils.traitlets), 902

boolean_flag() (in module
IPython.config.application), 267

bp_commands() (IPython.core.debugger.Pdb
method), 306

break_anywhere() (IPython.core.debugger.Pdb
method), 306

break_here() (IPython.core.debugger.Pdb method),
306

Breakable (class in IPython.lib.pretty), 582
breakable() (IPython.lib.pretty.PrettyPrinter

method), 583
breakable() (IPython.lib.pretty.RepresentationPrinter

method), 584
Brown (IPython.utils.coloransi.InputTermColors at-

tribute), 857
Brown (IPython.utils.coloransi.TermColors at-

tribute), 858
build_launcher() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 597
build_launcher() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 603
builtin_profile_dir (IPython.core.application.BaseIPythonApplication

attribute), 287
builtin_profile_dir (IPython.core.profileapp.ProfileCreate

attribute), 517
builtin_profile_dir (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 587
builtin_profile_dir (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 598
builtin_profile_dir (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 603
builtin_profile_dir (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 609
builtin_profile_dir (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 615
builtin_profile_dir (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 622
builtin_profile_dir (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 630
builtin_trap (IPython.core.interactiveshell.InteractiveShell

attribute), 376
BuiltinTrap (class in IPython.core.builtin_trap), 294
Bunch (class in IPython.core.completer), 298
Bunch (class in IPython.core.interactiveshell), 375
Bunch (class in IPython.core.magic), 420
by_ident (IPython.parallel.controller.hub.Hub

attribute), 787
Bytes (class in IPython.utils.traitlets), 903

Index 965

IPython Documentation, Release 0.11

C
C (class in IPython.testing.plugin.show_refs), 842
cache() (IPython.core.compilerop.CachingCompiler

method), 296
cache_main_mod() (IPython.core.interactiveshell.InteractiveShell

method), 376
cache_size (IPython.core.interactiveshell.InteractiveShell

attribute), 377
CachingCompiler (class in

IPython.core.compilerop), 296
call() (IPython.lib.backgroundjobs.BackgroundJobExpr

method), 549
call() (IPython.lib.backgroundjobs.BackgroundJobFunc

method), 550
call_alias() (IPython.core.alias.AliasManager

method), 284
call_args (IPython.testing.iptest.IPTester attribute),

835
call_pdb (IPython.core.interactiveshell.InteractiveShell

attribute), 377
call_tip() (in module IPython.core.oinspect), 451
can() (in module IPython.utils.pickleutil), 883
canDict() (in module IPython.utils.pickleutil), 883
CannedFunction (class in IPython.utils.pickleutil),

883
CannedObject (class in IPython.utils.pickleutil), 883
canonic() (IPython.core.debugger.Pdb method), 306
canSequence() (in module IPython.utils.pickleutil),

883
capitalize (IPython.utils.text.LSString attribute), 890
CaselessStrEnum (class in IPython.utils.traitlets),

911
CBool (class in IPython.utils.traitlets), 904
CBytes (class in IPython.utils.traitlets), 905
CComplex (class in IPython.utils.traitlets), 906
cd_completer() (in module

IPython.core.completerlib), 303
center (IPython.utils.text.LSString attribute), 890
CFloat (class in IPython.utils.traitlets), 907
check() (IPython.core.prefilter.AliasChecker

method), 462
check() (IPython.core.prefilter.AssignmentChecker

method), 469
check() (IPython.core.prefilter.AutocallChecker

method), 475
check() (IPython.core.prefilter.AutoMagicChecker

method), 473

check() (IPython.core.prefilter.EmacsChecker
method), 476

check() (IPython.core.prefilter.EscCharsChecker
method), 480

check() (IPython.core.prefilter.IPyAutocallChecker
method), 484

check() (IPython.core.prefilter.MacroChecker
method), 488

check() (IPython.core.prefilter.MultiLineMagicChecker
method), 493

check() (IPython.core.prefilter.PrefilterChecker
method), 495

check() (IPython.core.prefilter.PythonOpsChecker
method), 507

check() (IPython.core.prefilter.ShellEscapeChecker
method), 508

check() (IPython.parallel.controller.dependency.Dependency
method), 773

check_aborted() (IPython.parallel.engine.streamkernel.Kernel
method), 808

check_cache() (IPython.core.compilerop.CachingCompiler
method), 297

check_dependencies()
(IPython.parallel.engine.streamkernel.Kernel
method), 808

check_dirs() (IPython.core.profiledir.ProfileDir
method), 526

check_for_old_config() (in module
IPython.utils.path), 878

check_for_underscore()
(IPython.core.displayhook.DisplayHook
method), 319

check_load() (IPython.parallel.controller.hub.Hub
method), 787

check_log_dir() (IPython.core.profiledir.ProfileDir
method), 526

check_pairs() (in module IPython.testing.tools), 846
check_pid() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 587
check_pid() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 598
check_pid() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 603
check_pid() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 609
check_pid() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 615
check_pid() (IPython.parallel.apps.ipengineapp.IPEngineApp

966 Index

IPython Documentation, Release 0.11

method), 622
check_pid() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 630
check_pid_dir() (IPython.core.profiledir.ProfileDir

method), 526
check_ready() (in module

IPython.parallel.client.asyncresult), 743
check_security_dir()

(IPython.core.profiledir.ProfileDir
method), 526

check_unused_args()
(IPython.utils.text.EvalFormatter method),
890

checkers (IPython.core.prefilter.PrefilterManager at-
tribute), 500

checkline() (IPython.core.debugger.Pdb method),
306

children (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 615

chop() (in module IPython.utils.data), 859
chunksize (IPython.parallel.client.remotefunction.ParallelFunction

attribute), 755
CInt (class in IPython.utils.traitlets), 908
class_config_section()

(IPython.config.application.Application
class method), 263

class_config_section()
(IPython.config.configurable.Configurable
class method), 269

class_config_section()
(IPython.config.configurable.LoggingConfigurable
class method), 271

class_config_section()
(IPython.config.configurable.SingletonConfigurable
class method), 273

class_config_section()
(IPython.core.alias.AliasManager class
method), 284

class_config_section()
(IPython.core.application.BaseIPythonApplication
class method), 287

class_config_section()
(IPython.core.builtin_trap.BuiltinTrap
class method), 294

class_config_section()
(IPython.core.display_trap.DisplayTrap
class method), 317

class_config_section()

(IPython.core.displayhook.DisplayHook
class method), 319

class_config_section()
(IPython.core.displaypub.DisplayPublisher
class method), 322

class_config_section()
(IPython.core.extensions.ExtensionManager
class method), 328

class_config_section()
(IPython.core.formatters.BaseFormatter
class method), 331

class_config_section()
(IPython.core.formatters.DisplayFormatter
class method), 334

class_config_section()
(IPython.core.formatters.HTMLFormatter
class method), 337

class_config_section()
(IPython.core.formatters.JavascriptFormatter
class method), 343

class_config_section()
(IPython.core.formatters.JSONFormatter
class method), 340

class_config_section()
(IPython.core.formatters.LatexFormatter
class method), 346

class_config_section()
(IPython.core.formatters.PlainTextFormatter
class method), 352

class_config_section()
(IPython.core.formatters.PNGFormatter
class method), 349

class_config_section()
(IPython.core.formatters.SVGFormatter
class method), 355

class_config_section()
(IPython.core.history.HistoryManager
class method), 359

class_config_section()
(IPython.core.interactiveshell.InteractiveShell
class method), 377

class_config_section()
(IPython.core.payload.PayloadManager
class method), 454

class_config_section() (IPython.core.plugin.Plugin
class method), 457

class_config_section()
(IPython.core.plugin.PluginManager

Index 967

IPython Documentation, Release 0.11

class method), 459
class_config_section()

(IPython.core.prefilter.AliasChecker
class method), 462

class_config_section()
(IPython.core.prefilter.AliasHandler class
method), 463

class_config_section()
(IPython.core.prefilter.AssignMagicTransformer
class method), 465

class_config_section()
(IPython.core.prefilter.AssignmentChecker
class method), 469

class_config_section()
(IPython.core.prefilter.AssignSystemTransformer
class method), 467

class_config_section()
(IPython.core.prefilter.AutocallChecker
class method), 475

class_config_section()
(IPython.core.prefilter.AutoHandler class
method), 471

class_config_section()
(IPython.core.prefilter.AutoMagicChecker
class method), 473

class_config_section()
(IPython.core.prefilter.EmacsChecker
class method), 476

class_config_section()
(IPython.core.prefilter.EmacsHandler
class method), 478

class_config_section()
(IPython.core.prefilter.EscCharsChecker
class method), 480

class_config_section()
(IPython.core.prefilter.HelpHandler class
method), 482

class_config_section()
(IPython.core.prefilter.IPyAutocallChecker
class method), 484

class_config_section()
(IPython.core.prefilter.IPyPromptTransformer
class method), 486

class_config_section()
(IPython.core.prefilter.MacroChecker
class method), 488

class_config_section()
(IPython.core.prefilter.MacroHandler

class method), 490
class_config_section()

(IPython.core.prefilter.MagicHandler
class method), 492

class_config_section()
(IPython.core.prefilter.MultiLineMagicChecker
class method), 493

class_config_section()
(IPython.core.prefilter.PrefilterChecker
class method), 495

class_config_section()
(IPython.core.prefilter.PrefilterHandler
class method), 497

class_config_section()
(IPython.core.prefilter.PrefilterManager
class method), 500

class_config_section()
(IPython.core.prefilter.PrefilterTransformer
class method), 503

class_config_section()
(IPython.core.prefilter.PyPromptTransformer
class method), 505

class_config_section()
(IPython.core.prefilter.PythonOpsChecker
class method), 507

class_config_section()
(IPython.core.prefilter.ShellEscapeChecker
class method), 508

class_config_section()
(IPython.core.prefilter.ShellEscapeHandler
class method), 510

class_config_section()
(IPython.core.profileapp.ProfileApp class
method), 513

class_config_section()
(IPython.core.profileapp.ProfileCreate
class method), 517

class_config_section()
(IPython.core.profileapp.ProfileList class
method), 521

class_config_section()
(IPython.core.profiledir.ProfileDir class
method), 526

class_config_section()
(IPython.core.shellapp.InteractiveShellApp
class method), 533

class_config_section()
(IPython.parallel.apps.baseapp.BaseParallelApplication

968 Index

IPython Documentation, Release 0.11

class method), 587
class_config_section()

(IPython.parallel.apps.ipclusterapp.IPClusterApp
class method), 594

class_config_section()
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
class method), 598

class_config_section()
(IPython.parallel.apps.ipclusterapp.IPClusterStart
class method), 603

class_config_section()
(IPython.parallel.apps.ipclusterapp.IPClusterStop
class method), 609

class_config_section()
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
class method), 615

class_config_section()
(IPython.parallel.apps.ipengineapp.IPEngineApp
class method), 622

class_config_section()
(IPython.parallel.apps.ipengineapp.MPI
class method), 628

class_config_section()
(IPython.parallel.apps.iploggerapp.IPLoggerApp
class method), 630

class_config_section()
(IPython.parallel.apps.launcher.BaseLauncher
class method), 636

class_config_section()
(IPython.parallel.apps.launcher.BatchSystemLauncher
class method), 639

class_config_section()
(IPython.parallel.apps.launcher.IPClusterLauncher
class method), 642

class_config_section()
(IPython.parallel.apps.launcher.LocalControllerLauncher
class method), 656

class_config_section()
(IPython.parallel.apps.launcher.LocalEngineLauncher
class method), 659

class_config_section()
(IPython.parallel.apps.launcher.LocalEngineSetLauncher
class method), 662

class_config_section()
(IPython.parallel.apps.launcher.LocalProcessLauncher
class method), 664

class_config_section()
(IPython.parallel.apps.launcher.LSFControllerLauncher

class method), 646
class_config_section()

(IPython.parallel.apps.launcher.LSFEngineSetLauncher
class method), 649

class_config_section()
(IPython.parallel.apps.launcher.LSFLauncher
class method), 652

class_config_section()
(IPython.parallel.apps.launcher.MPIExecControllerLauncher
class method), 667

class_config_section()
(IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
class method), 670

class_config_section()
(IPython.parallel.apps.launcher.MPIExecLauncher
class method), 673

class_config_section()
(IPython.parallel.apps.launcher.PBSControllerLauncher
class method), 676

class_config_section()
(IPython.parallel.apps.launcher.PBSEngineSetLauncher
class method), 680

class_config_section()
(IPython.parallel.apps.launcher.PBSLauncher
class method), 683

class_config_section()
(IPython.parallel.apps.launcher.SGEControllerLauncher
class method), 687

class_config_section()
(IPython.parallel.apps.launcher.SGEEngineSetLauncher
class method), 690

class_config_section()
(IPython.parallel.apps.launcher.SGELauncher
class method), 694

class_config_section()
(IPython.parallel.apps.launcher.SSHControllerLauncher
class method), 697

class_config_section()
(IPython.parallel.apps.launcher.SSHEngineLauncher
class method), 700

class_config_section()
(IPython.parallel.apps.launcher.SSHEngineSetLauncher
class method), 703

class_config_section()
(IPython.parallel.apps.launcher.SSHLauncher
class method), 706

class_config_section()
(IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

Index 969

IPython Documentation, Release 0.11

class method), 709
class_config_section()

(IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
class method), 712

class_config_section()
(IPython.parallel.apps.launcher.WindowsHPCLauncher
class method), 715

class_config_section()
(IPython.parallel.apps.logwatcher.LogWatcher
class method), 718

class_config_section()
(IPython.parallel.apps.winhpcjob.IPControllerJob
class method), 722

class_config_section()
(IPython.parallel.apps.winhpcjob.IPControllerTask
class method), 725

class_config_section()
(IPython.parallel.apps.winhpcjob.IPEngineSetJob
class method), 728

class_config_section()
(IPython.parallel.apps.winhpcjob.IPEngineTask
class method), 730

class_config_section()
(IPython.parallel.apps.winhpcjob.WinHPCJob
class method), 734

class_config_section()
(IPython.parallel.apps.winhpcjob.WinHPCTask
class method), 737

class_config_section()
(IPython.parallel.controller.dictdb.BaseDB
class method), 776

class_config_section()
(IPython.parallel.controller.dictdb.DictDB
class method), 779

class_config_section()
(IPython.parallel.controller.heartmonitor.HeartMonitor
class method), 782

class_config_section()
(IPython.parallel.controller.hub.Hub
class method), 787

class_config_section()
(IPython.parallel.controller.hub.HubFactory
class method), 791

class_config_section()
(IPython.parallel.controller.scheduler.TaskScheduler
class method), 795

class_config_section()
(IPython.parallel.controller.sqlitedb.SQLiteDB

class method), 800
class_config_section()

(IPython.parallel.engine.engine.EngineFactory
class method), 803

class_config_section()
(IPython.parallel.engine.streamkernel.Kernel
class method), 808

class_config_section()
(IPython.parallel.factory.RegistrationFactory
class method), 823

class_get_help() (IPython.config.application.Application
class method), 264

class_get_help() (IPython.config.configurable.Configurable
class method), 269

class_get_help() (IPython.config.configurable.LoggingConfigurable
class method), 271

class_get_help() (IPython.config.configurable.SingletonConfigurable
class method), 273

class_get_help() (IPython.core.alias.AliasManager
class method), 284

class_get_help() (IPython.core.application.BaseIPythonApplication
class method), 287

class_get_help() (IPython.core.builtin_trap.BuiltinTrap
class method), 294

class_get_help() (IPython.core.display_trap.DisplayTrap
class method), 317

class_get_help() (IPython.core.displayhook.DisplayHook
class method), 319

class_get_help() (IPython.core.displaypub.DisplayPublisher
class method), 323

class_get_help() (IPython.core.extensions.ExtensionManager
class method), 328

class_get_help() (IPython.core.formatters.BaseFormatter
class method), 331

class_get_help() (IPython.core.formatters.DisplayFormatter
class method), 334

class_get_help() (IPython.core.formatters.HTMLFormatter
class method), 337

class_get_help() (IPython.core.formatters.JavascriptFormatter
class method), 343

class_get_help() (IPython.core.formatters.JSONFormatter
class method), 340

class_get_help() (IPython.core.formatters.LatexFormatter
class method), 346

class_get_help() (IPython.core.formatters.PlainTextFormatter
class method), 352

class_get_help() (IPython.core.formatters.PNGFormatter
class method), 349

970 Index

IPython Documentation, Release 0.11

class_get_help() (IPython.core.formatters.SVGFormatter
class method), 355

class_get_help() (IPython.core.history.HistoryManager
class method), 359

class_get_help() (IPython.core.interactiveshell.InteractiveShell
class method), 377

class_get_help() (IPython.core.payload.PayloadManager
class method), 454

class_get_help() (IPython.core.plugin.Plugin class
method), 457

class_get_help() (IPython.core.plugin.PluginManager
class method), 459

class_get_help() (IPython.core.prefilter.AliasChecker
class method), 462

class_get_help() (IPython.core.prefilter.AliasHandler
class method), 464

class_get_help() (IPython.core.prefilter.AssignMagicTransformer
class method), 465

class_get_help() (IPython.core.prefilter.AssignmentChecker
class method), 469

class_get_help() (IPython.core.prefilter.AssignSystemTransformer
class method), 467

class_get_help() (IPython.core.prefilter.AutocallChecker
class method), 475

class_get_help() (IPython.core.prefilter.AutoHandler
class method), 471

class_get_help() (IPython.core.prefilter.AutoMagicChecker
class method), 473

class_get_help() (IPython.core.prefilter.EmacsChecker
class method), 476

class_get_help() (IPython.core.prefilter.EmacsHandler
class method), 478

class_get_help() (IPython.core.prefilter.EscCharsChecker
class method), 480

class_get_help() (IPython.core.prefilter.HelpHandler
class method), 482

class_get_help() (IPython.core.prefilter.IPyAutocallChecker
class method), 484

class_get_help() (IPython.core.prefilter.IPyPromptTransformer
class method), 486

class_get_help() (IPython.core.prefilter.MacroChecker
class method), 488

class_get_help() (IPython.core.prefilter.MacroHandler
class method), 490

class_get_help() (IPython.core.prefilter.MagicHandler
class method), 492

class_get_help() (IPython.core.prefilter.MultiLineMagicChecker
class method), 494

class_get_help() (IPython.core.prefilter.PrefilterChecker
class method), 495

class_get_help() (IPython.core.prefilter.PrefilterHandler
class method), 497

class_get_help() (IPython.core.prefilter.PrefilterManager
class method), 500

class_get_help() (IPython.core.prefilter.PrefilterTransformer
class method), 503

class_get_help() (IPython.core.prefilter.PyPromptTransformer
class method), 505

class_get_help() (IPython.core.prefilter.PythonOpsChecker
class method), 507

class_get_help() (IPython.core.prefilter.ShellEscapeChecker
class method), 508

class_get_help() (IPython.core.prefilter.ShellEscapeHandler
class method), 510

class_get_help() (IPython.core.profileapp.ProfileApp
class method), 513

class_get_help() (IPython.core.profileapp.ProfileCreate
class method), 517

class_get_help() (IPython.core.profileapp.ProfileList
class method), 521

class_get_help() (IPython.core.profiledir.ProfileDir
class method), 526

class_get_help() (IPython.core.shellapp.InteractiveShellApp
class method), 533

class_get_help() (IPython.parallel.apps.baseapp.BaseParallelApplication
class method), 587

class_get_help() (IPython.parallel.apps.ipclusterapp.IPClusterApp
class method), 594

class_get_help() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
class method), 598

class_get_help() (IPython.parallel.apps.ipclusterapp.IPClusterStart
class method), 603

class_get_help() (IPython.parallel.apps.ipclusterapp.IPClusterStop
class method), 609

class_get_help() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
class method), 615

class_get_help() (IPython.parallel.apps.ipengineapp.IPEngineApp
class method), 622

class_get_help() (IPython.parallel.apps.ipengineapp.MPI
class method), 628

class_get_help() (IPython.parallel.apps.iploggerapp.IPLoggerApp
class method), 630

class_get_help() (IPython.parallel.apps.launcher.BaseLauncher
class method), 636

class_get_help() (IPython.parallel.apps.launcher.BatchSystemLauncher
class method), 639

Index 971

IPython Documentation, Release 0.11

class_get_help() (IPython.parallel.apps.launcher.IPClusterLauncher
class method), 642

class_get_help() (IPython.parallel.apps.launcher.LocalControllerLauncher
class method), 656

class_get_help() (IPython.parallel.apps.launcher.LocalEngineLauncher
class method), 659

class_get_help() (IPython.parallel.apps.launcher.LocalEngineSetLauncher
class method), 662

class_get_help() (IPython.parallel.apps.launcher.LocalProcessLauncher
class method), 664

class_get_help() (IPython.parallel.apps.launcher.LSFControllerLauncher
class method), 646

class_get_help() (IPython.parallel.apps.launcher.LSFEngineSetLauncher
class method), 649

class_get_help() (IPython.parallel.apps.launcher.LSFLauncher
class method), 653

class_get_help() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
class method), 667

class_get_help() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
class method), 670

class_get_help() (IPython.parallel.apps.launcher.MPIExecLauncher
class method), 673

class_get_help() (IPython.parallel.apps.launcher.PBSControllerLauncher
class method), 676

class_get_help() (IPython.parallel.apps.launcher.PBSEngineSetLauncher
class method), 680

class_get_help() (IPython.parallel.apps.launcher.PBSLauncher
class method), 683

class_get_help() (IPython.parallel.apps.launcher.SGEControllerLauncher
class method), 687

class_get_help() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
class method), 690

class_get_help() (IPython.parallel.apps.launcher.SGELauncher
class method), 694

class_get_help() (IPython.parallel.apps.launcher.SSHControllerLauncher
class method), 697

class_get_help() (IPython.parallel.apps.launcher.SSHEngineLauncher
class method), 700

class_get_help() (IPython.parallel.apps.launcher.SSHEngineSetLauncher
class method), 703

class_get_help() (IPython.parallel.apps.launcher.SSHLauncher
class method), 706

class_get_help() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
class method), 709

class_get_help() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
class method), 712

class_get_help() (IPython.parallel.apps.launcher.WindowsHPCLauncher
class method), 715

class_get_help() (IPython.parallel.apps.logwatcher.LogWatcher
class method), 718

class_get_help() (IPython.parallel.apps.winhpcjob.IPControllerJob
class method), 722

class_get_help() (IPython.parallel.apps.winhpcjob.IPControllerTask
class method), 725

class_get_help() (IPython.parallel.apps.winhpcjob.IPEngineSetJob
class method), 728

class_get_help() (IPython.parallel.apps.winhpcjob.IPEngineTask
class method), 731

class_get_help() (IPython.parallel.apps.winhpcjob.WinHPCJob
class method), 734

class_get_help() (IPython.parallel.apps.winhpcjob.WinHPCTask
class method), 737

class_get_help() (IPython.parallel.controller.dictdb.BaseDB
class method), 776

class_get_help() (IPython.parallel.controller.dictdb.DictDB
class method), 779

class_get_help() (IPython.parallel.controller.heartmonitor.HeartMonitor
class method), 782

class_get_help() (IPython.parallel.controller.hub.Hub
class method), 787

class_get_help() (IPython.parallel.controller.hub.HubFactory
class method), 791

class_get_help() (IPython.parallel.controller.scheduler.TaskScheduler
class method), 795

class_get_help() (IPython.parallel.controller.sqlitedb.SQLiteDB
class method), 800

class_get_help() (IPython.parallel.engine.engine.EngineFactory
class method), 803

class_get_help() (IPython.parallel.engine.streamkernel.Kernel
class method), 808

class_get_help() (IPython.parallel.factory.RegistrationFactory
class method), 823

class_get_trait_help()
(IPython.config.application.Application
class method), 264

class_get_trait_help()
(IPython.config.configurable.Configurable
class method), 269

class_get_trait_help()
(IPython.config.configurable.LoggingConfigurable
class method), 271

class_get_trait_help()
(IPython.config.configurable.SingletonConfigurable
class method), 273

class_get_trait_help()
(IPython.core.alias.AliasManager class

972 Index

IPython Documentation, Release 0.11

method), 284
class_get_trait_help()

(IPython.core.application.BaseIPythonApplication
class method), 288

class_get_trait_help()
(IPython.core.builtin_trap.BuiltinTrap
class method), 294

class_get_trait_help()
(IPython.core.display_trap.DisplayTrap
class method), 317

class_get_trait_help()
(IPython.core.displayhook.DisplayHook
class method), 319

class_get_trait_help()
(IPython.core.displaypub.DisplayPublisher
class method), 323

class_get_trait_help()
(IPython.core.extensions.ExtensionManager
class method), 328

class_get_trait_help()
(IPython.core.formatters.BaseFormatter
class method), 332

class_get_trait_help()
(IPython.core.formatters.DisplayFormatter
class method), 334

class_get_trait_help()
(IPython.core.formatters.HTMLFormatter
class method), 337

class_get_trait_help()
(IPython.core.formatters.JavascriptFormatter
class method), 343

class_get_trait_help()
(IPython.core.formatters.JSONFormatter
class method), 340

class_get_trait_help()
(IPython.core.formatters.LatexFormatter
class method), 346

class_get_trait_help()
(IPython.core.formatters.PlainTextFormatter
class method), 352

class_get_trait_help()
(IPython.core.formatters.PNGFormatter
class method), 349

class_get_trait_help()
(IPython.core.formatters.SVGFormatter
class method), 355

class_get_trait_help()
(IPython.core.history.HistoryManager

class method), 359
class_get_trait_help()

(IPython.core.interactiveshell.InteractiveShell
class method), 377

class_get_trait_help()
(IPython.core.payload.PayloadManager
class method), 454

class_get_trait_help() (IPython.core.plugin.Plugin
class method), 457

class_get_trait_help()
(IPython.core.plugin.PluginManager
class method), 459

class_get_trait_help()
(IPython.core.prefilter.AliasChecker
class method), 462

class_get_trait_help()
(IPython.core.prefilter.AliasHandler class
method), 464

class_get_trait_help()
(IPython.core.prefilter.AssignMagicTransformer
class method), 465

class_get_trait_help()
(IPython.core.prefilter.AssignmentChecker
class method), 469

class_get_trait_help()
(IPython.core.prefilter.AssignSystemTransformer
class method), 467

class_get_trait_help()
(IPython.core.prefilter.AutocallChecker
class method), 475

class_get_trait_help()
(IPython.core.prefilter.AutoHandler class
method), 471

class_get_trait_help()
(IPython.core.prefilter.AutoMagicChecker
class method), 473

class_get_trait_help()
(IPython.core.prefilter.EmacsChecker
class method), 476

class_get_trait_help()
(IPython.core.prefilter.EmacsHandler
class method), 478

class_get_trait_help()
(IPython.core.prefilter.EscCharsChecker
class method), 480

class_get_trait_help()
(IPython.core.prefilter.HelpHandler class
method), 482

Index 973

IPython Documentation, Release 0.11

class_get_trait_help()
(IPython.core.prefilter.IPyAutocallChecker
class method), 484

class_get_trait_help()
(IPython.core.prefilter.IPyPromptTransformer
class method), 486

class_get_trait_help()
(IPython.core.prefilter.MacroChecker
class method), 488

class_get_trait_help()
(IPython.core.prefilter.MacroHandler
class method), 490

class_get_trait_help()
(IPython.core.prefilter.MagicHandler
class method), 492

class_get_trait_help()
(IPython.core.prefilter.MultiLineMagicChecker
class method), 494

class_get_trait_help()
(IPython.core.prefilter.PrefilterChecker
class method), 495

class_get_trait_help()
(IPython.core.prefilter.PrefilterHandler
class method), 497

class_get_trait_help()
(IPython.core.prefilter.PrefilterManager
class method), 500

class_get_trait_help()
(IPython.core.prefilter.PrefilterTransformer
class method), 503

class_get_trait_help()
(IPython.core.prefilter.PyPromptTransformer
class method), 505

class_get_trait_help()
(IPython.core.prefilter.PythonOpsChecker
class method), 507

class_get_trait_help()
(IPython.core.prefilter.ShellEscapeChecker
class method), 509

class_get_trait_help()
(IPython.core.prefilter.ShellEscapeHandler
class method), 510

class_get_trait_help()
(IPython.core.profileapp.ProfileApp class
method), 513

class_get_trait_help()
(IPython.core.profileapp.ProfileCreate
class method), 517

class_get_trait_help()
(IPython.core.profileapp.ProfileList class
method), 521

class_get_trait_help()
(IPython.core.profiledir.ProfileDir class
method), 526

class_get_trait_help()
(IPython.core.shellapp.InteractiveShellApp
class method), 533

class_get_trait_help()
(IPython.parallel.apps.baseapp.BaseParallelApplication
class method), 587

class_get_trait_help()
(IPython.parallel.apps.ipclusterapp.IPClusterApp
class method), 594

class_get_trait_help()
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
class method), 598

class_get_trait_help()
(IPython.parallel.apps.ipclusterapp.IPClusterStart
class method), 604

class_get_trait_help()
(IPython.parallel.apps.ipclusterapp.IPClusterStop
class method), 609

class_get_trait_help()
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
class method), 615

class_get_trait_help()
(IPython.parallel.apps.ipengineapp.IPEngineApp
class method), 622

class_get_trait_help()
(IPython.parallel.apps.ipengineapp.MPI
class method), 628

class_get_trait_help()
(IPython.parallel.apps.iploggerapp.IPLoggerApp
class method), 630

class_get_trait_help()
(IPython.parallel.apps.launcher.BaseLauncher
class method), 636

class_get_trait_help()
(IPython.parallel.apps.launcher.BatchSystemLauncher
class method), 639

class_get_trait_help()
(IPython.parallel.apps.launcher.IPClusterLauncher
class method), 643

class_get_trait_help()
(IPython.parallel.apps.launcher.LocalControllerLauncher
class method), 656

974 Index

IPython Documentation, Release 0.11

class_get_trait_help()
(IPython.parallel.apps.launcher.LocalEngineLauncher
class method), 659

class_get_trait_help()
(IPython.parallel.apps.launcher.LocalEngineSetLauncher
class method), 662

class_get_trait_help()
(IPython.parallel.apps.launcher.LocalProcessLauncher
class method), 664

class_get_trait_help()
(IPython.parallel.apps.launcher.LSFControllerLauncher
class method), 646

class_get_trait_help()
(IPython.parallel.apps.launcher.LSFEngineSetLauncher
class method), 649

class_get_trait_help()
(IPython.parallel.apps.launcher.LSFLauncher
class method), 653

class_get_trait_help()
(IPython.parallel.apps.launcher.MPIExecControllerLauncher
class method), 667

class_get_trait_help()
(IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
class method), 670

class_get_trait_help()
(IPython.parallel.apps.launcher.MPIExecLauncher
class method), 673

class_get_trait_help()
(IPython.parallel.apps.launcher.PBSControllerLauncher
class method), 676

class_get_trait_help()
(IPython.parallel.apps.launcher.PBSEngineSetLauncher
class method), 680

class_get_trait_help()
(IPython.parallel.apps.launcher.PBSLauncher
class method), 683

class_get_trait_help()
(IPython.parallel.apps.launcher.SGEControllerLauncher
class method), 687

class_get_trait_help()
(IPython.parallel.apps.launcher.SGEEngineSetLauncher
class method), 690

class_get_trait_help()
(IPython.parallel.apps.launcher.SGELauncher
class method), 694

class_get_trait_help()
(IPython.parallel.apps.launcher.SSHControllerLauncher
class method), 697

class_get_trait_help()
(IPython.parallel.apps.launcher.SSHEngineLauncher
class method), 700

class_get_trait_help()
(IPython.parallel.apps.launcher.SSHEngineSetLauncher
class method), 703

class_get_trait_help()
(IPython.parallel.apps.launcher.SSHLauncher
class method), 706

class_get_trait_help()
(IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
class method), 709

class_get_trait_help()
(IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
class method), 712

class_get_trait_help()
(IPython.parallel.apps.launcher.WindowsHPCLauncher
class method), 715

class_get_trait_help()
(IPython.parallel.apps.logwatcher.LogWatcher
class method), 718

class_get_trait_help()
(IPython.parallel.apps.winhpcjob.IPControllerJob
class method), 722

class_get_trait_help()
(IPython.parallel.apps.winhpcjob.IPControllerTask
class method), 725

class_get_trait_help()
(IPython.parallel.apps.winhpcjob.IPEngineSetJob
class method), 728

class_get_trait_help()
(IPython.parallel.apps.winhpcjob.IPEngineTask
class method), 731

class_get_trait_help()
(IPython.parallel.apps.winhpcjob.WinHPCJob
class method), 734

class_get_trait_help()
(IPython.parallel.apps.winhpcjob.WinHPCTask
class method), 737

class_get_trait_help()
(IPython.parallel.controller.dictdb.BaseDB
class method), 776

class_get_trait_help()
(IPython.parallel.controller.dictdb.DictDB
class method), 779

class_get_trait_help()
(IPython.parallel.controller.heartmonitor.HeartMonitor
class method), 782

Index 975

IPython Documentation, Release 0.11

class_get_trait_help()
(IPython.parallel.controller.hub.Hub
class method), 787

class_get_trait_help()
(IPython.parallel.controller.hub.HubFactory
class method), 791

class_get_trait_help()
(IPython.parallel.controller.scheduler.TaskScheduler
class method), 795

class_get_trait_help()
(IPython.parallel.controller.sqlitedb.SQLiteDB
class method), 800

class_get_trait_help()
(IPython.parallel.engine.engine.EngineFactory
class method), 803

class_get_trait_help()
(IPython.parallel.engine.streamkernel.Kernel
class method), 808

class_get_trait_help()
(IPython.parallel.factory.RegistrationFactory
class method), 823

class_of() (in module IPython.utils.traitlets), 934
class_print_help() (IPython.config.application.Application

class method), 264
class_print_help() (IPython.config.configurable.Configurable

class method), 269
class_print_help() (IPython.config.configurable.LoggingConfigurable

class method), 271
class_print_help() (IPython.config.configurable.SingletonConfigurable

class method), 273
class_print_help() (IPython.core.alias.AliasManager

class method), 284
class_print_help() (IPython.core.application.BaseIPythonApplication

class method), 288
class_print_help() (IPython.core.builtin_trap.BuiltinTrap

class method), 294
class_print_help() (IPython.core.display_trap.DisplayTrap

class method), 317
class_print_help() (IPython.core.displayhook.DisplayHook

class method), 319
class_print_help() (IPython.core.displaypub.DisplayPublisher

class method), 323
class_print_help() (IPython.core.extensions.ExtensionManager

class method), 328
class_print_help() (IPython.core.formatters.BaseFormatter

class method), 332
class_print_help() (IPython.core.formatters.DisplayFormatter

class method), 334

class_print_help() (IPython.core.formatters.HTMLFormatter
class method), 337

class_print_help() (IPython.core.formatters.JavascriptFormatter
class method), 343

class_print_help() (IPython.core.formatters.JSONFormatter
class method), 340

class_print_help() (IPython.core.formatters.LatexFormatter
class method), 346

class_print_help() (IPython.core.formatters.PlainTextFormatter
class method), 352

class_print_help() (IPython.core.formatters.PNGFormatter
class method), 349

class_print_help() (IPython.core.formatters.SVGFormatter
class method), 355

class_print_help() (IPython.core.history.HistoryManager
class method), 359

class_print_help() (IPython.core.interactiveshell.InteractiveShell
class method), 377

class_print_help() (IPython.core.payload.PayloadManager
class method), 454

class_print_help() (IPython.core.plugin.Plugin class
method), 458

class_print_help() (IPython.core.plugin.PluginManager
class method), 459

class_print_help() (IPython.core.prefilter.AliasChecker
class method), 462

class_print_help() (IPython.core.prefilter.AliasHandler
class method), 464

class_print_help() (IPython.core.prefilter.AssignMagicTransformer
class method), 465

class_print_help() (IPython.core.prefilter.AssignmentChecker
class method), 469

class_print_help() (IPython.core.prefilter.AssignSystemTransformer
class method), 467

class_print_help() (IPython.core.prefilter.AutocallChecker
class method), 475

class_print_help() (IPython.core.prefilter.AutoHandler
class method), 471

class_print_help() (IPython.core.prefilter.AutoMagicChecker
class method), 473

class_print_help() (IPython.core.prefilter.EmacsChecker
class method), 477

class_print_help() (IPython.core.prefilter.EmacsHandler
class method), 478

class_print_help() (IPython.core.prefilter.EscCharsChecker
class method), 480

class_print_help() (IPython.core.prefilter.HelpHandler
class method), 482

976 Index

IPython Documentation, Release 0.11

class_print_help() (IPython.core.prefilter.IPyAutocallChecker
class method), 484

class_print_help() (IPython.core.prefilter.IPyPromptTransformer
class method), 486

class_print_help() (IPython.core.prefilter.MacroChecker
class method), 488

class_print_help() (IPython.core.prefilter.MacroHandler
class method), 490

class_print_help() (IPython.core.prefilter.MagicHandler
class method), 492

class_print_help() (IPython.core.prefilter.MultiLineMagicChecker
class method), 494

class_print_help() (IPython.core.prefilter.PrefilterChecker
class method), 495

class_print_help() (IPython.core.prefilter.PrefilterHandler
class method), 497

class_print_help() (IPython.core.prefilter.PrefilterManager
class method), 500

class_print_help() (IPython.core.prefilter.PrefilterTransformer
class method), 503

class_print_help() (IPython.core.prefilter.PyPromptTransformer
class method), 505

class_print_help() (IPython.core.prefilter.PythonOpsChecker
class method), 507

class_print_help() (IPython.core.prefilter.ShellEscapeChecker
class method), 509

class_print_help() (IPython.core.prefilter.ShellEscapeHandler
class method), 510

class_print_help() (IPython.core.profileapp.ProfileApp
class method), 513

class_print_help() (IPython.core.profileapp.ProfileCreate
class method), 517

class_print_help() (IPython.core.profileapp.ProfileList
class method), 521

class_print_help() (IPython.core.profiledir.ProfileDir
class method), 526

class_print_help() (IPython.core.shellapp.InteractiveShellApp
class method), 533

class_print_help() (IPython.parallel.apps.baseapp.BaseParallelApplication
class method), 587

class_print_help() (IPython.parallel.apps.ipclusterapp.IPClusterApp
class method), 594

class_print_help() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
class method), 598

class_print_help() (IPython.parallel.apps.ipclusterapp.IPClusterStart
class method), 604

class_print_help() (IPython.parallel.apps.ipclusterapp.IPClusterStop
class method), 609

class_print_help() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
class method), 615

class_print_help() (IPython.parallel.apps.ipengineapp.IPEngineApp
class method), 622

class_print_help() (IPython.parallel.apps.ipengineapp.MPI
class method), 628

class_print_help() (IPython.parallel.apps.iploggerapp.IPLoggerApp
class method), 630

class_print_help() (IPython.parallel.apps.launcher.BaseLauncher
class method), 636

class_print_help() (IPython.parallel.apps.launcher.BatchSystemLauncher
class method), 639

class_print_help() (IPython.parallel.apps.launcher.IPClusterLauncher
class method), 643

class_print_help() (IPython.parallel.apps.launcher.LocalControllerLauncher
class method), 656

class_print_help() (IPython.parallel.apps.launcher.LocalEngineLauncher
class method), 659

class_print_help() (IPython.parallel.apps.launcher.LocalEngineSetLauncher
class method), 662

class_print_help() (IPython.parallel.apps.launcher.LocalProcessLauncher
class method), 664

class_print_help() (IPython.parallel.apps.launcher.LSFControllerLauncher
class method), 646

class_print_help() (IPython.parallel.apps.launcher.LSFEngineSetLauncher
class method), 649

class_print_help() (IPython.parallel.apps.launcher.LSFLauncher
class method), 653

class_print_help() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
class method), 667

class_print_help() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
class method), 670

class_print_help() (IPython.parallel.apps.launcher.MPIExecLauncher
class method), 673

class_print_help() (IPython.parallel.apps.launcher.PBSControllerLauncher
class method), 676

class_print_help() (IPython.parallel.apps.launcher.PBSEngineSetLauncher
class method), 680

class_print_help() (IPython.parallel.apps.launcher.PBSLauncher
class method), 683

class_print_help() (IPython.parallel.apps.launcher.SGEControllerLauncher
class method), 687

class_print_help() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
class method), 690

class_print_help() (IPython.parallel.apps.launcher.SGELauncher
class method), 694

class_print_help() (IPython.parallel.apps.launcher.SSHControllerLauncher
class method), 697

Index 977

IPython Documentation, Release 0.11

class_print_help() (IPython.parallel.apps.launcher.SSHEngineLauncher
class method), 700

class_print_help() (IPython.parallel.apps.launcher.SSHEngineSetLauncher
class method), 703

class_print_help() (IPython.parallel.apps.launcher.SSHLauncher
class method), 706

class_print_help() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
class method), 709

class_print_help() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
class method), 712

class_print_help() (IPython.parallel.apps.launcher.WindowsHPCLauncher
class method), 715

class_print_help() (IPython.parallel.apps.logwatcher.LogWatcher
class method), 718

class_print_help() (IPython.parallel.apps.winhpcjob.IPControllerJob
class method), 722

class_print_help() (IPython.parallel.apps.winhpcjob.IPControllerTask
class method), 725

class_print_help() (IPython.parallel.apps.winhpcjob.IPEngineSetJob
class method), 728

class_print_help() (IPython.parallel.apps.winhpcjob.IPEngineTask
class method), 731

class_print_help() (IPython.parallel.apps.winhpcjob.WinHPCJob
class method), 734

class_print_help() (IPython.parallel.apps.winhpcjob.WinHPCTask
class method), 737

class_print_help() (IPython.parallel.controller.dictdb.BaseDB
class method), 776

class_print_help() (IPython.parallel.controller.dictdb.DictDB
class method), 779

class_print_help() (IPython.parallel.controller.heartmonitor.HeartMonitor
class method), 782

class_print_help() (IPython.parallel.controller.hub.Hub
class method), 787

class_print_help() (IPython.parallel.controller.hub.HubFactory
class method), 791

class_print_help() (IPython.parallel.controller.scheduler.TaskScheduler
class method), 796

class_print_help() (IPython.parallel.controller.sqlitedb.SQLiteDB
class method), 801

class_print_help() (IPython.parallel.engine.engine.EngineFactory
class method), 803

class_print_help() (IPython.parallel.engine.streamkernel.Kernel
class method), 808

class_print_help() (IPython.parallel.factory.RegistrationFactory
class method), 824

class_trait_names() (IPython.config.application.Application
class method), 264

class_trait_names() (IPython.config.configurable.Configurable
class method), 269

class_trait_names() (IPython.config.configurable.LoggingConfigurable
class method), 271

class_trait_names() (IPython.config.configurable.SingletonConfigurable
class method), 273

class_trait_names() (IPython.core.alias.AliasManager
class method), 284

class_trait_names() (IPython.core.application.BaseIPythonApplication
class method), 288

class_trait_names() (IPython.core.builtin_trap.BuiltinTrap
class method), 294

class_trait_names() (IPython.core.display_trap.DisplayTrap
class method), 317

class_trait_names() (IPython.core.displayhook.DisplayHook
class method), 319

class_trait_names() (IPython.core.displaypub.DisplayPublisher
class method), 323

class_trait_names() (IPython.core.extensions.ExtensionManager
class method), 328

class_trait_names() (IPython.core.formatters.BaseFormatter
class method), 332

class_trait_names() (IPython.core.formatters.DisplayFormatter
class method), 334

class_trait_names() (IPython.core.formatters.HTMLFormatter
class method), 337

class_trait_names() (IPython.core.formatters.JavascriptFormatter
class method), 343

class_trait_names() (IPython.core.formatters.JSONFormatter
class method), 340

class_trait_names() (IPython.core.formatters.LatexFormatter
class method), 346

class_trait_names() (IPython.core.formatters.PlainTextFormatter
class method), 352

class_trait_names() (IPython.core.formatters.PNGFormatter
class method), 349

class_trait_names() (IPython.core.formatters.SVGFormatter
class method), 355

class_trait_names() (IPython.core.history.HistoryManager
class method), 359

class_trait_names() (IPython.core.interactiveshell.InteractiveShell
class method), 377

class_trait_names() (IPython.core.payload.PayloadManager
class method), 454

class_trait_names() (IPython.core.plugin.Plugin
class method), 458

class_trait_names() (IPython.core.plugin.PluginManager
class method), 459

978 Index

IPython Documentation, Release 0.11

class_trait_names() (IPython.core.prefilter.AliasChecker
class method), 462

class_trait_names() (IPython.core.prefilter.AliasHandler
class method), 464

class_trait_names() (IPython.core.prefilter.AssignMagicTransformer
class method), 466

class_trait_names() (IPython.core.prefilter.AssignmentChecker
class method), 469

class_trait_names() (IPython.core.prefilter.AssignSystemTransformer
class method), 467

class_trait_names() (IPython.core.prefilter.AutocallChecker
class method), 475

class_trait_names() (IPython.core.prefilter.AutoHandler
class method), 471

class_trait_names() (IPython.core.prefilter.AutoMagicChecker
class method), 473

class_trait_names() (IPython.core.prefilter.EmacsChecker
class method), 477

class_trait_names() (IPython.core.prefilter.EmacsHandler
class method), 478

class_trait_names() (IPython.core.prefilter.EscCharsChecker
class method), 480

class_trait_names() (IPython.core.prefilter.HelpHandler
class method), 482

class_trait_names() (IPython.core.prefilter.IPyAutocallChecker
class method), 484

class_trait_names() (IPython.core.prefilter.IPyPromptTransformer
class method), 486

class_trait_names() (IPython.core.prefilter.MacroChecker
class method), 488

class_trait_names() (IPython.core.prefilter.MacroHandler
class method), 490

class_trait_names() (IPython.core.prefilter.MagicHandler
class method), 492

class_trait_names() (IPython.core.prefilter.MultiLineMagicChecker
class method), 494

class_trait_names() (IPython.core.prefilter.PrefilterChecker
class method), 496

class_trait_names() (IPython.core.prefilter.PrefilterHandler
class method), 498

class_trait_names() (IPython.core.prefilter.PrefilterManager
class method), 500

class_trait_names() (IPython.core.prefilter.PrefilterTransformer
class method), 503

class_trait_names() (IPython.core.prefilter.PyPromptTransformer
class method), 505

class_trait_names() (IPython.core.prefilter.PythonOpsChecker
class method), 507

class_trait_names() (IPython.core.prefilter.ShellEscapeChecker
class method), 509

class_trait_names() (IPython.core.prefilter.ShellEscapeHandler
class method), 510

class_trait_names() (IPython.core.profileapp.ProfileApp
class method), 513

class_trait_names() (IPython.core.profileapp.ProfileCreate
class method), 517

class_trait_names() (IPython.core.profileapp.ProfileList
class method), 521

class_trait_names() (IPython.core.profiledir.ProfileDir
class method), 526

class_trait_names() (IPython.core.shellapp.InteractiveShellApp
class method), 533

class_trait_names() (IPython.parallel.apps.baseapp.BaseParallelApplication
class method), 588

class_trait_names() (IPython.parallel.apps.ipclusterapp.IPClusterApp
class method), 594

class_trait_names() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
class method), 598

class_trait_names() (IPython.parallel.apps.ipclusterapp.IPClusterStart
class method), 604

class_trait_names() (IPython.parallel.apps.ipclusterapp.IPClusterStop
class method), 610

class_trait_names() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
class method), 615

class_trait_names() (IPython.parallel.apps.ipengineapp.IPEngineApp
class method), 622

class_trait_names() (IPython.parallel.apps.ipengineapp.MPI
class method), 628

class_trait_names() (IPython.parallel.apps.iploggerapp.IPLoggerApp
class method), 630

class_trait_names() (IPython.parallel.apps.launcher.BaseLauncher
class method), 636

class_trait_names() (IPython.parallel.apps.launcher.BatchSystemLauncher
class method), 639

class_trait_names() (IPython.parallel.apps.launcher.IPClusterLauncher
class method), 643

class_trait_names() (IPython.parallel.apps.launcher.LocalControllerLauncher
class method), 656

class_trait_names() (IPython.parallel.apps.launcher.LocalEngineLauncher
class method), 659

class_trait_names() (IPython.parallel.apps.launcher.LocalEngineSetLauncher
class method), 662

class_trait_names() (IPython.parallel.apps.launcher.LocalProcessLauncher
class method), 665

class_trait_names() (IPython.parallel.apps.launcher.LSFControllerLauncher
class method), 646

Index 979

IPython Documentation, Release 0.11

class_trait_names() (IPython.parallel.apps.launcher.LSFEngineSetLauncher
class method), 649

class_trait_names() (IPython.parallel.apps.launcher.LSFLauncher
class method), 653

class_trait_names() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
class method), 667

class_trait_names() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
class method), 670

class_trait_names() (IPython.parallel.apps.launcher.MPIExecLauncher
class method), 673

class_trait_names() (IPython.parallel.apps.launcher.PBSControllerLauncher
class method), 676

class_trait_names() (IPython.parallel.apps.launcher.PBSEngineSetLauncher
class method), 680

class_trait_names() (IPython.parallel.apps.launcher.PBSLauncher
class method), 683

class_trait_names() (IPython.parallel.apps.launcher.SGEControllerLauncher
class method), 687

class_trait_names() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
class method), 690

class_trait_names() (IPython.parallel.apps.launcher.SGELauncher
class method), 694

class_trait_names() (IPython.parallel.apps.launcher.SSHControllerLauncher
class method), 697

class_trait_names() (IPython.parallel.apps.launcher.SSHEngineLauncher
class method), 700

class_trait_names() (IPython.parallel.apps.launcher.SSHEngineSetLauncher
class method), 703

class_trait_names() (IPython.parallel.apps.launcher.SSHLauncher
class method), 706

class_trait_names() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
class method), 709

class_trait_names() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
class method), 712

class_trait_names() (IPython.parallel.apps.launcher.WindowsHPCLauncher
class method), 715

class_trait_names() (IPython.parallel.apps.logwatcher.LogWatcher
class method), 718

class_trait_names() (IPython.parallel.apps.winhpcjob.IPControllerJob
class method), 722

class_trait_names() (IPython.parallel.apps.winhpcjob.IPControllerTask
class method), 725

class_trait_names() (IPython.parallel.apps.winhpcjob.IPEngineSetJob
class method), 728

class_trait_names() (IPython.parallel.apps.winhpcjob.IPEngineTask
class method), 731

class_trait_names() (IPython.parallel.apps.winhpcjob.WinHPCJob
class method), 734

class_trait_names() (IPython.parallel.apps.winhpcjob.WinHPCTask
class method), 737

class_trait_names() (IPython.parallel.client.client.Client
class method), 746

class_trait_names() (IPython.parallel.client.view.DirectView
class method), 757

class_trait_names() (IPython.parallel.client.view.LoadBalancedView
class method), 763

class_trait_names() (IPython.parallel.client.view.View
class method), 768

class_trait_names() (IPython.parallel.controller.dictdb.BaseDB
class method), 776

class_trait_names() (IPython.parallel.controller.dictdb.DictDB
class method), 779

class_trait_names() (IPython.parallel.controller.heartmonitor.HeartMonitor
class method), 782

class_trait_names() (IPython.parallel.controller.hub.EngineConnector
class method), 784

class_trait_names() (IPython.parallel.controller.hub.Hub
class method), 787

class_trait_names() (IPython.parallel.controller.hub.HubFactory
class method), 791

class_trait_names() (IPython.parallel.controller.scheduler.TaskScheduler
class method), 796

class_trait_names() (IPython.parallel.controller.sqlitedb.SQLiteDB
class method), 801

class_trait_names() (IPython.parallel.engine.engine.EngineFactory
class method), 803

class_trait_names() (IPython.parallel.engine.streamkernel.Kernel
class method), 809

class_trait_names() (IPython.parallel.factory.RegistrationFactory
class method), 824

class_trait_names() (IPython.utils.traitlets.HasTraits
class method), 919

class_traits() (IPython.config.application.Application
class method), 264

class_traits() (IPython.config.configurable.Configurable
class method), 269

class_traits() (IPython.config.configurable.LoggingConfigurable
class method), 271

class_traits() (IPython.config.configurable.SingletonConfigurable
class method), 273

class_traits() (IPython.core.alias.AliasManager class
method), 284

class_traits() (IPython.core.application.BaseIPythonApplication
class method), 288

class_traits() (IPython.core.builtin_trap.BuiltinTrap
class method), 295

980 Index

IPython Documentation, Release 0.11

class_traits() (IPython.core.display_trap.DisplayTrap
class method), 317

class_traits() (IPython.core.displayhook.DisplayHook
class method), 319

class_traits() (IPython.core.displaypub.DisplayPublisher
class method), 323

class_traits() (IPython.core.extensions.ExtensionManager
class method), 329

class_traits() (IPython.core.formatters.BaseFormatter
class method), 332

class_traits() (IPython.core.formatters.DisplayFormatter
class method), 334

class_traits() (IPython.core.formatters.HTMLFormatter
class method), 338

class_traits() (IPython.core.formatters.JavascriptFormatter
class method), 343

class_traits() (IPython.core.formatters.JSONFormatter
class method), 340

class_traits() (IPython.core.formatters.LatexFormatter
class method), 346

class_traits() (IPython.core.formatters.PlainTextFormatter
class method), 352

class_traits() (IPython.core.formatters.PNGFormatter
class method), 349

class_traits() (IPython.core.formatters.SVGFormatter
class method), 355

class_traits() (IPython.core.history.HistoryManager
class method), 359

class_traits() (IPython.core.interactiveshell.InteractiveShell
class method), 377

class_traits() (IPython.core.payload.PayloadManager
class method), 454

class_traits() (IPython.core.plugin.Plugin class
method), 458

class_traits() (IPython.core.plugin.PluginManager
class method), 459

class_traits() (IPython.core.prefilter.AliasChecker
class method), 462

class_traits() (IPython.core.prefilter.AliasHandler
class method), 464

class_traits() (IPython.core.prefilter.AssignMagicTransformer
class method), 466

class_traits() (IPython.core.prefilter.AssignmentChecker
class method), 469

class_traits() (IPython.core.prefilter.AssignSystemTransformer
class method), 467

class_traits() (IPython.core.prefilter.AutocallChecker
class method), 475

class_traits() (IPython.core.prefilter.AutoHandler
class method), 471

class_traits() (IPython.core.prefilter.AutoMagicChecker
class method), 473

class_traits() (IPython.core.prefilter.EmacsChecker
class method), 477

class_traits() (IPython.core.prefilter.EmacsHandler
class method), 478

class_traits() (IPython.core.prefilter.EscCharsChecker
class method), 480

class_traits() (IPython.core.prefilter.HelpHandler
class method), 482

class_traits() (IPython.core.prefilter.IPyAutocallChecker
class method), 484

class_traits() (IPython.core.prefilter.IPyPromptTransformer
class method), 486

class_traits() (IPython.core.prefilter.MacroChecker
class method), 488

class_traits() (IPython.core.prefilter.MacroHandler
class method), 490

class_traits() (IPython.core.prefilter.MagicHandler
class method), 492

class_traits() (IPython.core.prefilter.MultiLineMagicChecker
class method), 494

class_traits() (IPython.core.prefilter.PrefilterChecker
class method), 496

class_traits() (IPython.core.prefilter.PrefilterHandler
class method), 498

class_traits() (IPython.core.prefilter.PrefilterManager
class method), 500

class_traits() (IPython.core.prefilter.PrefilterTransformer
class method), 503

class_traits() (IPython.core.prefilter.PyPromptTransformer
class method), 505

class_traits() (IPython.core.prefilter.PythonOpsChecker
class method), 507

class_traits() (IPython.core.prefilter.ShellEscapeChecker
class method), 509

class_traits() (IPython.core.prefilter.ShellEscapeHandler
class method), 510

class_traits() (IPython.core.profileapp.ProfileApp
class method), 513

class_traits() (IPython.core.profileapp.ProfileCreate
class method), 517

class_traits() (IPython.core.profileapp.ProfileList
class method), 521

class_traits() (IPython.core.profiledir.ProfileDir
class method), 526

Index 981

IPython Documentation, Release 0.11

class_traits() (IPython.core.shellapp.InteractiveShellApp
class method), 533

class_traits() (IPython.parallel.apps.baseapp.BaseParallelApplication
class method), 588

class_traits() (IPython.parallel.apps.ipclusterapp.IPClusterApp
class method), 594

class_traits() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
class method), 598

class_traits() (IPython.parallel.apps.ipclusterapp.IPClusterStart
class method), 604

class_traits() (IPython.parallel.apps.ipclusterapp.IPClusterStop
class method), 610

class_traits() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
class method), 616

class_traits() (IPython.parallel.apps.ipengineapp.IPEngineApp
class method), 622

class_traits() (IPython.parallel.apps.ipengineapp.MPI
class method), 628

class_traits() (IPython.parallel.apps.iploggerapp.IPLoggerApp
class method), 630

class_traits() (IPython.parallel.apps.launcher.BaseLauncher
class method), 637

class_traits() (IPython.parallel.apps.launcher.BatchSystemLauncher
class method), 640

class_traits() (IPython.parallel.apps.launcher.IPClusterLauncher
class method), 643

class_traits() (IPython.parallel.apps.launcher.LocalControllerLauncher
class method), 656

class_traits() (IPython.parallel.apps.launcher.LocalEngineLauncher
class method), 659

class_traits() (IPython.parallel.apps.launcher.LocalEngineSetLauncher
class method), 662

class_traits() (IPython.parallel.apps.launcher.LocalProcessLauncher
class method), 665

class_traits() (IPython.parallel.apps.launcher.LSFControllerLauncher
class method), 646

class_traits() (IPython.parallel.apps.launcher.LSFEngineSetLauncher
class method), 649

class_traits() (IPython.parallel.apps.launcher.LSFLauncher
class method), 653

class_traits() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
class method), 667

class_traits() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
class method), 670

class_traits() (IPython.parallel.apps.launcher.MPIExecLauncher
class method), 673

class_traits() (IPython.parallel.apps.launcher.PBSControllerLauncher
class method), 676

class_traits() (IPython.parallel.apps.launcher.PBSEngineSetLauncher
class method), 680

class_traits() (IPython.parallel.apps.launcher.PBSLauncher
class method), 683

class_traits() (IPython.parallel.apps.launcher.SGEControllerLauncher
class method), 687

class_traits() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
class method), 690

class_traits() (IPython.parallel.apps.launcher.SGELauncher
class method), 694

class_traits() (IPython.parallel.apps.launcher.SSHControllerLauncher
class method), 697

class_traits() (IPython.parallel.apps.launcher.SSHEngineLauncher
class method), 700

class_traits() (IPython.parallel.apps.launcher.SSHEngineSetLauncher
class method), 703

class_traits() (IPython.parallel.apps.launcher.SSHLauncher
class method), 706

class_traits() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
class method), 709

class_traits() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
class method), 712

class_traits() (IPython.parallel.apps.launcher.WindowsHPCLauncher
class method), 715

class_traits() (IPython.parallel.apps.logwatcher.LogWatcher
class method), 718

class_traits() (IPython.parallel.apps.winhpcjob.IPControllerJob
class method), 722

class_traits() (IPython.parallel.apps.winhpcjob.IPControllerTask
class method), 725

class_traits() (IPython.parallel.apps.winhpcjob.IPEngineSetJob
class method), 728

class_traits() (IPython.parallel.apps.winhpcjob.IPEngineTask
class method), 731

class_traits() (IPython.parallel.apps.winhpcjob.WinHPCJob
class method), 734

class_traits() (IPython.parallel.apps.winhpcjob.WinHPCTask
class method), 737

class_traits() (IPython.parallel.client.client.Client
class method), 747

class_traits() (IPython.parallel.client.view.DirectView
class method), 757

class_traits() (IPython.parallel.client.view.LoadBalancedView
class method), 763

class_traits() (IPython.parallel.client.view.View
class method), 768

class_traits() (IPython.parallel.controller.dictdb.BaseDB
class method), 777

982 Index

IPython Documentation, Release 0.11

class_traits() (IPython.parallel.controller.dictdb.DictDB
class method), 779

class_traits() (IPython.parallel.controller.heartmonitor.HeartMonitor
class method), 782

class_traits() (IPython.parallel.controller.hub.EngineConnector
class method), 785

class_traits() (IPython.parallel.controller.hub.Hub
class method), 787

class_traits() (IPython.parallel.controller.hub.HubFactory
class method), 791

class_traits() (IPython.parallel.controller.scheduler.TaskScheduler
class method), 796

class_traits() (IPython.parallel.controller.sqlitedb.SQLiteDB
class method), 801

class_traits() (IPython.parallel.engine.engine.EngineFactory
class method), 803

class_traits() (IPython.parallel.engine.streamkernel.Kernel
class method), 809

class_traits() (IPython.parallel.factory.RegistrationFactory
class method), 824

class_traits() (IPython.utils.traitlets.HasTraits class
method), 919

ClassBasedTraitType (class in
IPython.utils.traitlets), 912

classes (IPython.config.application.Application at-
tribute), 264

classes (IPython.core.application.BaseIPythonApplication
attribute), 288

classes (IPython.core.profileapp.ProfileApp at-
tribute), 513

classes (IPython.core.profileapp.ProfileCreate
attribute), 517

classes (IPython.core.profileapp.ProfileList at-
tribute), 522

classes (IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 588

classes (IPython.parallel.apps.ipclusterapp.IPClusterApp
attribute), 594

classes (IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 598

classes (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 604

classes (IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 610

classes (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 616

classes (IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 622

classes (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 631

clean_logs (IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 588

clean_logs (IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 598

clean_logs (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 604

clean_logs (IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 610

clean_logs (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 616

clean_logs (IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 622

clean_logs (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 631

cleanup() (IPython.core.interactiveshell.InteractiveShell
method), 377

clear (IPython.config.loader.Config attribute), 279
clear (IPython.parallel.client.client.Metadata at-

tribute), 751
clear (IPython.parallel.controller.dependency.Dependency

attribute), 773
clear (IPython.parallel.util.Namespace attribute),

826
clear (IPython.parallel.util.ReverseDict attribute),

827
clear (IPython.utils.coloransi.ColorSchemeTable at-

tribute), 855
clear (IPython.utils.ipstruct.Struct attribute), 868
clear() (IPython.config.loader.ArgParseConfigLoader

method), 277
clear() (IPython.config.loader.CommandLineConfigLoader

method), 278
clear() (IPython.config.loader.ConfigLoader

method), 280
clear() (IPython.config.loader.FileConfigLoader

method), 281
clear() (IPython.config.loader.KeyValueConfigLoader

method), 282
clear() (IPython.config.loader.PyFileConfigLoader

method), 283
clear() (IPython.parallel.client.client.Client method),

747
clear() (IPython.parallel.client.view.DirectView

method), 758
clear() (IPython.testing.globalipapp.ipnsdict

method), 833

Index 983

IPython Documentation, Release 0.11

clear() (IPython.utils.pickleshare.PickleShareDB
method), 881

clear_aliases() (IPython.core.alias.AliasManager
method), 284

clear_all_breaks() (IPython.core.debugger.Pdb
method), 307

clear_all_file_breaks() (IPython.core.debugger.Pdb
method), 307

clear_app_refs() (IPython.lib.inputhook.InputHookManager
method), 570

clear_bpbynumber() (IPython.core.debugger.Pdb
method), 307

clear_break() (IPython.core.debugger.Pdb method),
307

clear_err_state() (IPython.core.ultratb.SyntaxTB
method), 543

clear_inputhook() (IPython.lib.inputhook.InputHookManager
method), 570

clear_instance() (IPython.config.application.Application
class method), 264

clear_instance() (IPython.config.configurable.SingletonConfigurable
class method), 274

clear_instance() (IPython.core.application.BaseIPythonApplication
class method), 288

clear_instance() (IPython.core.interactiveshell.InteractiveShell
class method), 377

clear_instance() (IPython.core.profileapp.ProfileApp
class method), 513

clear_instance() (IPython.core.profileapp.ProfileCreate
class method), 517

clear_instance() (IPython.core.profileapp.ProfileList
class method), 522

clear_instance() (IPython.parallel.apps.baseapp.BaseParallelApplication
class method), 588

clear_instance() (IPython.parallel.apps.ipclusterapp.IPClusterApp
class method), 594

clear_instance() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
class method), 598

clear_instance() (IPython.parallel.apps.ipclusterapp.IPClusterStart
class method), 604

clear_instance() (IPython.parallel.apps.ipclusterapp.IPClusterStop
class method), 610

clear_instance() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
class method), 616

clear_instance() (IPython.parallel.apps.ipengineapp.IPEngineApp
class method), 622

clear_instance() (IPython.parallel.apps.iploggerapp.IPLoggerApp
class method), 631

clear_main_mod_cache()
(IPython.core.interactiveshell.InteractiveShell
method), 377

clear_payload() (IPython.core.payload.PayloadManager
method), 455

clear_request() (IPython.parallel.engine.streamkernel.Kernel
method), 809

ClearDemo (class in IPython.lib.demo), 557
ClearIPDemo (class in IPython.lib.demo), 559
ClearMixin (class in IPython.lib.demo), 560
Client (class in IPython.parallel.client.client), 744
client (IPython.parallel.client.view.DirectView at-

tribute), 758
client (IPython.parallel.client.view.LoadBalancedView

attribute), 763
client (IPython.parallel.client.view.View attribute),

768
client (IPython.parallel.engine.streamkernel.Kernel

attribute), 809
client_info (IPython.parallel.controller.hub.Hub at-

tribute), 787
client_ip (IPython.parallel.controller.hub.HubFactory

attribute), 792
client_stream (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 796
client_transport (IPython.parallel.controller.hub.HubFactory

attribute), 792
ClientError (class in IPython.parallel.error), 813
clients (IPython.parallel.controller.hub.Hub at-

tribute), 787
clients (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 796
clipboard_get() (in module IPython.core.hooks), 367
CLong (class in IPython.utils.traitlets), 909
close() (IPython.lib.irunner.InteractiveRunner

method), 575
close() (IPython.lib.irunner.IPythonRunner method),

574
close() (IPython.lib.irunner.PythonRunner method),

576
close() (IPython.lib.irunner.SAGERunner method),

578
close() (IPython.parallel.client.client.Client

method), 747
close() (IPython.testing.globalipapp.StreamProxy

method), 833
close() (IPython.testing.mkdoctests.IndentOut

method), 839

984 Index

IPython Documentation, Release 0.11

close() (IPython.utils.io.IOStream method), 865
close() (IPython.utils.io.Tee method), 866
close_log() (IPython.core.logger.Logger method),

418
closed (IPython.testing.globalipapp.StreamProxy at-

tribute), 833
closed (IPython.utils.io.IOStream attribute), 865
cmd_and_args (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 643
cmd_and_args (IPython.parallel.apps.launcher.LocalControllerLauncher

attribute), 657
cmd_and_args (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 659
cmd_and_args (IPython.parallel.apps.launcher.LocalProcessLauncher

attribute), 665
cmd_and_args (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 667
cmd_and_args (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 671
cmd_and_args (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 673
cmd_and_args (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 697
cmd_and_args (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 700
cmd_and_args (IPython.parallel.apps.launcher.SSHLauncher

attribute), 706
cmdloop() (IPython.core.debugger.Pdb method),

307
code (IPython.core.inputsplitter.InputSplitter at-

tribute), 371
code (IPython.core.inputsplitter.IPythonInputSplitter

attribute), 369
code_ctor() (in module IPython.utils.codeutil), 854
code_name() (in module IPython.core.compilerop),

297
code_to_run (IPython.core.shellapp.InteractiveShellApp

attribute), 534
coerce_str() (IPython.utils.traitlets.DottedObjectName

method), 916
coerce_str() (IPython.utils.traitlets.ObjectName

method), 925
collect_exceptions() (in module

IPython.parallel.error), 823
color_info (IPython.core.interactiveshell.InteractiveShell

attribute), 378
color_toggle() (IPython.core.ultratb.AutoFormattedTB

method), 537

color_toggle() (IPython.core.ultratb.ColorTB
method), 539

color_toggle() (IPython.core.ultratb.FormattedTB
method), 540

color_toggle() (IPython.core.ultratb.ListTB
method), 542

color_toggle() (IPython.core.ultratb.SyntaxTB
method), 543

color_toggle() (IPython.core.ultratb.TBTools
method), 545

color_toggle() (IPython.core.ultratb.VerboseTB
method), 546

colors (IPython.core.interactiveshell.InteractiveShell
attribute), 378

ColorScheme (class in IPython.utils.coloransi), 855
ColorSchemeTable (class in IPython.utils.coloransi),

855
ColorTB (class in IPython.core.ultratb), 539
columnize() (IPython.core.debugger.Pdb method),

307
command_line (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 725
command_line (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 731
command_line (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 737
CommandChainDispatcher (class in

IPython.core.hooks), 367
CommandLineConfigLoader (class in

IPython.config.loader), 278
commands_resuming (IPython.core.debugger.Pdb

attribute), 307
compiler (IPython.parallel.engine.streamkernel.Kernel

attribute), 809
compiler_flags (IPython.core.compilerop.CachingCompiler

attribute), 297
complete() (IPython.core.completer.Completer

method), 299
complete() (IPython.core.completer.IPCompleter

method), 301
complete() (IPython.core.debugger.Pdb method),

307
complete() (IPython.core.interactiveshell.InteractiveShell

method), 378
complete() (IPython.parallel.engine.streamkernel.Kernel

method), 809
complete_help() (IPython.core.debugger.Pdb

method), 307

Index 985

IPython Documentation, Release 0.11

complete_object() (in module
IPython.utils.generics), 862

complete_registration()
(IPython.parallel.engine.engine.EngineFactory
method), 804

complete_request() (IPython.parallel.engine.streamkernel.Kernel
method), 809

completed (IPython.parallel.controller.hub.Hub at-
tribute), 787

completed (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 796

completedefault() (IPython.core.debugger.Pdb
method), 307

completenames() (IPython.core.debugger.Pdb
method), 307

Completer (class in IPython.core.completer), 298
completer (IPython.parallel.engine.streamkernel.Kernel

attribute), 809
CompletionSplitter (class in

IPython.core.completer), 299
Complex (class in IPython.utils.traitlets), 913
CompositeError (class in IPython.parallel.error), 813
CompositeFilter (class in

IPython.parallel.controller.dictdb), 778
compress_dhist() (in module IPython.core.magic),

444
compress_user() (in module

IPython.core.completer), 302
compute_format_data()

(IPython.core.displayhook.DisplayHook
method), 319

concatenate() (IPython.parallel.client.map.Map
method), 753

concatenate() (IPython.parallel.client.map.RoundRobinMap
method), 753

Config (class in IPython.config.loader), 279
config (IPython.config.application.Application at-

tribute), 264
config (IPython.config.configurable.Configurable at-

tribute), 269
config (IPython.config.configurable.LoggingConfigurable

attribute), 271
config (IPython.config.configurable.SingletonConfigurable

attribute), 274
config (IPython.core.alias.AliasManager attribute),

285
config (IPython.core.application.BaseIPythonApplication

attribute), 288

config (IPython.core.builtin_trap.BuiltinTrap at-
tribute), 295

config (IPython.core.display_trap.DisplayTrap at-
tribute), 317

config (IPython.core.displayhook.DisplayHook at-
tribute), 320

config (IPython.core.displaypub.DisplayPublisher
attribute), 323

config (IPython.core.extensions.ExtensionManager
attribute), 329

config (IPython.core.formatters.BaseFormatter at-
tribute), 332

config (IPython.core.formatters.DisplayFormatter
attribute), 335

config (IPython.core.formatters.HTMLFormatter at-
tribute), 338

config (IPython.core.formatters.JavascriptFormatter
attribute), 343

config (IPython.core.formatters.JSONFormatter at-
tribute), 341

config (IPython.core.formatters.LatexFormatter at-
tribute), 346

config (IPython.core.formatters.PlainTextFormatter
attribute), 352

config (IPython.core.formatters.PNGFormatter at-
tribute), 349

config (IPython.core.formatters.SVGFormatter at-
tribute), 356

config (IPython.core.history.HistoryManager at-
tribute), 359

config (IPython.core.interactiveshell.InteractiveShell
attribute), 379

config (IPython.core.payload.PayloadManager at-
tribute), 455

config (IPython.core.plugin.Plugin attribute), 458
config (IPython.core.plugin.PluginManager at-

tribute), 459
config (IPython.core.prefilter.AliasChecker at-

tribute), 462
config (IPython.core.prefilter.AliasHandler at-

tribute), 464
config (IPython.core.prefilter.AssignMagicTransformer

attribute), 466
config (IPython.core.prefilter.AssignmentChecker

attribute), 470
config (IPython.core.prefilter.AssignSystemTransformer

attribute), 468
config (IPython.core.prefilter.AutocallChecker at-

986 Index

IPython Documentation, Release 0.11

tribute), 475
config (IPython.core.prefilter.AutoHandler at-

tribute), 471
config (IPython.core.prefilter.AutoMagicChecker at-

tribute), 473
config (IPython.core.prefilter.EmacsChecker at-

tribute), 477
config (IPython.core.prefilter.EmacsHandler at-

tribute), 479
config (IPython.core.prefilter.EscCharsChecker at-

tribute), 480
config (IPython.core.prefilter.HelpHandler at-

tribute), 482
config (IPython.core.prefilter.IPyAutocallChecker

attribute), 484
config (IPython.core.prefilter.IPyPromptTransformer

attribute), 486
config (IPython.core.prefilter.MacroChecker at-

tribute), 489
config (IPython.core.prefilter.MacroHandler at-

tribute), 490
config (IPython.core.prefilter.MagicHandler at-

tribute), 492
config (IPython.core.prefilter.MultiLineMagicChecker

attribute), 494
config (IPython.core.prefilter.PrefilterChecker

attribute), 496
config (IPython.core.prefilter.PrefilterHandler

attribute), 498
config (IPython.core.prefilter.PrefilterManager at-

tribute), 500
config (IPython.core.prefilter.PrefilterTransformer

attribute), 503
config (IPython.core.prefilter.PyPromptTransformer

attribute), 505
config (IPython.core.prefilter.PythonOpsChecker at-

tribute), 507
config (IPython.core.prefilter.ShellEscapeChecker

attribute), 509
config (IPython.core.prefilter.ShellEscapeHandler

attribute), 511
config (IPython.core.profileapp.ProfileApp at-

tribute), 513
config (IPython.core.profileapp.ProfileCreate at-

tribute), 517
config (IPython.core.profileapp.ProfileList at-

tribute), 522
config (IPython.core.profiledir.ProfileDir attribute),

527
config (IPython.core.shellapp.InteractiveShellApp

attribute), 534
config (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 588
config (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 594
config (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 598
config (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 604
config (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 610
config (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 616
config (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 623
config (IPython.parallel.apps.ipengineapp.MPI at-

tribute), 628
config (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 631
config (IPython.parallel.apps.launcher.BaseLauncher

attribute), 637
config (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 640
config (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 643
config (IPython.parallel.apps.launcher.LocalControllerLauncher

attribute), 657
config (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 659
config (IPython.parallel.apps.launcher.LocalEngineSetLauncher

attribute), 662
config (IPython.parallel.apps.launcher.LocalProcessLauncher

attribute), 665
config (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 646
config (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 650
config (IPython.parallel.apps.launcher.LSFLauncher

attribute), 653
config (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 668
config (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 671
config (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 674
config (IPython.parallel.apps.launcher.PBSControllerLauncher

Index 987

IPython Documentation, Release 0.11

attribute), 677
config (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 680
config (IPython.parallel.apps.launcher.PBSLauncher

attribute), 684
config (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 687
config (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 691
config (IPython.parallel.apps.launcher.SGELauncher

attribute), 694
config (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 697
config (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 700
config (IPython.parallel.apps.launcher.SSHEngineSetLauncher

attribute), 703
config (IPython.parallel.apps.launcher.SSHLauncher

attribute), 706
config (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

attribute), 709
config (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

attribute), 712
config (IPython.parallel.apps.launcher.WindowsHPCLauncher

attribute), 715
config (IPython.parallel.apps.logwatcher.LogWatcher

attribute), 718
config (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 723
config (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 725
config (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 728
config (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 731
config (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 734
config (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 737
config (IPython.parallel.controller.dictdb.BaseDB

attribute), 777
config (IPython.parallel.controller.dictdb.DictDB at-

tribute), 779
config (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 782
config (IPython.parallel.controller.hub.Hub at-

tribute), 787
config (IPython.parallel.controller.hub.HubFactory

attribute), 792
config (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 796
config (IPython.parallel.controller.sqlitedb.SQLiteDB

attribute), 801
config (IPython.parallel.engine.engine.EngineFactory

attribute), 804
config (IPython.parallel.engine.streamkernel.Kernel

attribute), 809
config (IPython.parallel.factory.RegistrationFactory

attribute), 824
config_file_name (IPython.core.application.BaseIPythonApplication

attribute), 288
config_file_name (IPython.core.profileapp.ProfileCreate

attribute), 517
config_file_name (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 588
config_file_name (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 598
config_file_name (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 604
config_file_name (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 610
config_file_name (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 616
config_file_name (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 623
config_file_name (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 631
config_file_paths (IPython.core.application.BaseIPythonApplication

attribute), 288
config_file_paths (IPython.core.profileapp.ProfileCreate

attribute), 517
config_file_paths (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 588
config_file_paths (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 598
config_file_paths (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 604
config_file_paths (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 610
config_file_paths (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 616
config_file_paths (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 623
config_file_paths (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 631
config_file_specified

988 Index

IPython Documentation, Release 0.11

(IPython.core.application.BaseIPythonApplication
attribute), 288

config_file_specified
(IPython.core.profileapp.ProfileCreate
attribute), 517

config_file_specified
(IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 588

config_file_specified
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 598

config_file_specified
(IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 604

config_file_specified
(IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 610

config_file_specified
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 616

config_file_specified
(IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 623

config_file_specified
(IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 631

config_files (IPython.core.application.BaseIPythonApplication
attribute), 288

config_files (IPython.core.profileapp.ProfileCreate
attribute), 517

config_files (IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 588

config_files (IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 599

config_files (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 604

config_files (IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 610

config_files (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 616

config_files (IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 623

config_files (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 631

ConfigError (class in IPython.config.loader), 280
ConfigLoader (class in IPython.config.loader), 280
ConfigLoaderError (class in IPython.config.loader),

281

Configurable (class in IPython.config.configurable),
268

ConfigurableError (class in
IPython.config.configurable), 270

connect_engine_logger() (in module
IPython.parallel.util), 828

connect_logger() (in module IPython.parallel.util),
828

connection_request()
(IPython.parallel.controller.hub.Hub
method), 787

ConnectionError (class in IPython.parallel.error),
814

construct() (IPython.parallel.controller.hub.HubFactory
method), 792

construct_parser() (in module
IPython.core.magic_arguments), 448

Container (class in IPython.utils.traitlets), 914
context (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 640
context (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 646
context (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 650
context (IPython.parallel.apps.launcher.LSFLauncher

attribute), 653
context (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 677
context (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 680
context (IPython.parallel.apps.launcher.PBSLauncher

attribute), 684
context (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 687
context (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 691
context (IPython.parallel.apps.launcher.SGELauncher

attribute), 694
context (IPython.parallel.apps.logwatcher.LogWatcher

attribute), 718
context (IPython.parallel.controller.hub.Hub at-

tribute), 787
context (IPython.parallel.controller.hub.HubFactory

attribute), 792
context (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 796
context (IPython.parallel.engine.engine.EngineFactory

attribute), 804

Index 989

IPython Documentation, Release 0.11

context (IPython.parallel.engine.streamkernel.Kernel
attribute), 809

context (IPython.parallel.factory.RegistrationFactory
attribute), 824

context() (IPython.core.ultratb.AutoFormattedTB
method), 537

context() (IPython.core.ultratb.ColorTB method),
539

context() (IPython.core.ultratb.FormattedTB
method), 540

control (IPython.parallel.controller.hub.EngineConnector
attribute), 785

control (IPython.parallel.controller.hub.HubFactory
attribute), 792

control_handlers (IPython.parallel.engine.streamkernel.Kernel
attribute), 809

control_stream (IPython.parallel.engine.streamkernel.Kernel
attribute), 809

controller_args (IPython.parallel.apps.launcher.LocalControllerLauncher
attribute), 657

controller_args (IPython.parallel.apps.launcher.MPIExecControllerLauncher
attribute), 668

controller_args (IPython.parallel.apps.winhpcjob.IPControllerTask
attribute), 725

controller_cmd (IPython.parallel.apps.launcher.LocalControllerLauncher
attribute), 657

controller_cmd (IPython.parallel.apps.launcher.MPIExecControllerLauncher
attribute), 668

controller_cmd (IPython.parallel.apps.winhpcjob.IPControllerTask
attribute), 725

controller_launcher_class
(IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 604

ControllerCreationError (class in
IPython.parallel.error), 814

ControllerError (class in IPython.parallel.error), 814
convert_field() (IPython.utils.text.EvalFormatter

method), 890
copy (IPython.parallel.client.client.Metadata at-

tribute), 751
copy (IPython.parallel.controller.dependency.Dependency

attribute), 773
copy (IPython.parallel.util.Namespace attribute),

826
copy (IPython.parallel.util.ReverseDict attribute),

827
copy (IPython.testing.globalipapp.ipnsdict at-

tribute), 833

copy() (IPython.config.loader.Config method), 279
copy() (IPython.utils.coloransi.ColorScheme

method), 855
copy() (IPython.utils.coloransi.ColorSchemeTable

method), 855
copy() (IPython.utils.ipstruct.Struct method), 868
copy_config_file() (IPython.core.profiledir.ProfileDir

method), 527
copy_config_files (IPython.core.application.BaseIPythonApplication

attribute), 288
copy_config_files (IPython.core.profileapp.ProfileCreate

attribute), 517
copy_config_files (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 588
copy_config_files (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 599
copy_config_files (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 604
copy_config_files (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 610
copy_config_files (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 616
copy_config_files (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 623
copy_config_files (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 631
count (IPython.utils.text.LSString attribute), 890
count (IPython.utils.text.SList attribute), 895
count_failures() (in module

IPython.testing.ipunittest), 838
crash_handler_class

(IPython.core.application.BaseIPythonApplication
attribute), 288

crash_handler_class
(IPython.core.profileapp.ProfileCreate
attribute), 518

crash_handler_class
(IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 588

crash_handler_class
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 599

crash_handler_class
(IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 604

crash_handler_class
(IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 610

990 Index

IPython Documentation, Release 0.11

crash_handler_class
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 616

crash_handler_class
(IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 623

crash_handler_class
(IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 631

CrashHandler (class in IPython.core.crashhandler),
304

create_profile_dir() (IPython.core.profiledir.ProfileDir
class method), 527

create_profile_dir_by_name()
(IPython.core.profiledir.ProfileDir class
method), 527

create_typestr2type_dicts() (in module
IPython.utils.wildcard), 936

created (IPython.config.application.Application at-
tribute), 264

created (IPython.config.configurable.Configurable
attribute), 269

created (IPython.config.configurable.LoggingConfigurable
attribute), 272

created (IPython.config.configurable.SingletonConfigurable
attribute), 274

created (IPython.core.alias.AliasManager attribute),
285

created (IPython.core.application.BaseIPythonApplication
attribute), 288

created (IPython.core.builtin_trap.BuiltinTrap at-
tribute), 295

created (IPython.core.display_trap.DisplayTrap at-
tribute), 317

created (IPython.core.displayhook.DisplayHook at-
tribute), 320

created (IPython.core.displaypub.DisplayPublisher
attribute), 323

created (IPython.core.extensions.ExtensionManager
attribute), 329

created (IPython.core.formatters.BaseFormatter at-
tribute), 332

created (IPython.core.formatters.DisplayFormatter
attribute), 335

created (IPython.core.formatters.HTMLFormatter
attribute), 338

created (IPython.core.formatters.JavascriptFormatter
attribute), 344

created (IPython.core.formatters.JSONFormatter at-
tribute), 341

created (IPython.core.formatters.LatexFormatter at-
tribute), 346

created (IPython.core.formatters.PlainTextFormatter
attribute), 352

created (IPython.core.formatters.PNGFormatter at-
tribute), 349

created (IPython.core.formatters.SVGFormatter at-
tribute), 356

created (IPython.core.history.HistoryManager
attribute), 359

created (IPython.core.interactiveshell.InteractiveShell
attribute), 379

created (IPython.core.payload.PayloadManager at-
tribute), 455

created (IPython.core.plugin.Plugin attribute), 458
created (IPython.core.plugin.PluginManager at-

tribute), 459
created (IPython.core.prefilter.AliasChecker at-

tribute), 462
created (IPython.core.prefilter.AliasHandler at-

tribute), 464
created (IPython.core.prefilter.AssignMagicTransformer

attribute), 466
created (IPython.core.prefilter.AssignmentChecker

attribute), 470
created (IPython.core.prefilter.AssignSystemTransformer

attribute), 468
created (IPython.core.prefilter.AutocallChecker at-

tribute), 475
created (IPython.core.prefilter.AutoHandler at-

tribute), 471
created (IPython.core.prefilter.AutoMagicChecker

attribute), 473
created (IPython.core.prefilter.EmacsChecker

attribute), 477
created (IPython.core.prefilter.EmacsHandler

attribute), 479
created (IPython.core.prefilter.EscCharsChecker at-

tribute), 481
created (IPython.core.prefilter.HelpHandler at-

tribute), 482
created (IPython.core.prefilter.IPyAutocallChecker

attribute), 484
created (IPython.core.prefilter.IPyPromptTransformer

attribute), 486
created (IPython.core.prefilter.MacroChecker

Index 991

IPython Documentation, Release 0.11

attribute), 489
created (IPython.core.prefilter.MacroHandler at-

tribute), 490
created (IPython.core.prefilter.MagicHandler at-

tribute), 492
created (IPython.core.prefilter.MultiLineMagicChecker

attribute), 494
created (IPython.core.prefilter.PrefilterChecker at-

tribute), 496
created (IPython.core.prefilter.PrefilterHandler at-

tribute), 498
created (IPython.core.prefilter.PrefilterManager at-

tribute), 500
created (IPython.core.prefilter.PrefilterTransformer

attribute), 503
created (IPython.core.prefilter.PyPromptTransformer

attribute), 505
created (IPython.core.prefilter.PythonOpsChecker

attribute), 507
created (IPython.core.prefilter.ShellEscapeChecker

attribute), 509
created (IPython.core.prefilter.ShellEscapeHandler

attribute), 511
created (IPython.core.profileapp.ProfileApp at-

tribute), 513
created (IPython.core.profileapp.ProfileCreate at-

tribute), 518
created (IPython.core.profileapp.ProfileList at-

tribute), 522
created (IPython.core.profiledir.ProfileDir attribute),

527
created (IPython.core.shellapp.InteractiveShellApp

attribute), 534
created (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 588
created (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 594
created (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 599
created (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 605
created (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 610
created (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 616
created (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 623
created (IPython.parallel.apps.ipengineapp.MPI at-

tribute), 628
created (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 631
created (IPython.parallel.apps.launcher.BaseLauncher

attribute), 637
created (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 640
created (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 643
created (IPython.parallel.apps.launcher.LocalControllerLauncher

attribute), 657
created (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 659
created (IPython.parallel.apps.launcher.LocalEngineSetLauncher

attribute), 662
created (IPython.parallel.apps.launcher.LocalProcessLauncher

attribute), 665
created (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 646
created (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 650
created (IPython.parallel.apps.launcher.LSFLauncher

attribute), 653
created (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 668
created (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 671
created (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 674
created (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 677
created (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 680
created (IPython.parallel.apps.launcher.PBSLauncher

attribute), 684
created (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 687
created (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 691
created (IPython.parallel.apps.launcher.SGELauncher

attribute), 694
created (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 697
created (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 700
created (IPython.parallel.apps.launcher.SSHEngineSetLauncher

attribute), 703
created (IPython.parallel.apps.launcher.SSHLauncher

992 Index

IPython Documentation, Release 0.11

attribute), 706
created (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

attribute), 709
created (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

attribute), 712
created (IPython.parallel.apps.launcher.WindowsHPCLauncher

attribute), 715
created (IPython.parallel.apps.logwatcher.LogWatcher

attribute), 718
created (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 723
created (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 725
created (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 728
created (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 731
created (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 734
created (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 737
created (IPython.parallel.controller.dictdb.BaseDB

attribute), 777
created (IPython.parallel.controller.dictdb.DictDB

attribute), 779
created (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 782
created (IPython.parallel.controller.hub.Hub at-

tribute), 788
created (IPython.parallel.controller.hub.HubFactory

attribute), 792
created (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 796
created (IPython.parallel.controller.sqlitedb.SQLiteDB

attribute), 801
created (IPython.parallel.engine.engine.EngineFactory

attribute), 804
created (IPython.parallel.engine.streamkernel.Kernel

attribute), 810
created (IPython.parallel.factory.RegistrationFactory

attribute), 824
CUnicode (class in IPython.utils.traitlets), 910
current_gui() (IPython.lib.inputhook.InputHookManager

method), 570
current_length() (IPython.core.interactiveshell.ReadlineNoRecord

method), 415
cwd_filt() (IPython.core.prompts.BasePrompt

method), 530

cwd_filt() (IPython.core.prompts.Prompt1 method),
530

cwd_filt() (IPython.core.prompts.Prompt2 method),
531

cwd_filt() (IPython.core.prompts.PromptOut
method), 531

cwd_filt2() (IPython.core.prompts.BasePrompt
method), 530

cwd_filt2() (IPython.core.prompts.Prompt1
method), 530

cwd_filt2() (IPython.core.prompts.Prompt2
method), 531

cwd_filt2() (IPython.core.prompts.PromptOut
method), 532

Cyan (IPython.utils.coloransi.InputTermColors at-
tribute), 857

Cyan (IPython.utils.coloransi.TermColors attribute),
858

D
daemon (IPython.core.history.HistorySavingThread

attribute), 363
daemon (IPython.lib.backgroundjobs.BackgroundJobBase

attribute), 548
daemon (IPython.lib.backgroundjobs.BackgroundJobExpr

attribute), 549
daemon (IPython.lib.backgroundjobs.BackgroundJobFunc

attribute), 550
daemon (IPython.parallel.apps.win32support.ForwarderThread

attribute), 720
daemonize (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 599
daemonize (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 605
daemonize() (in module IPython.utils.daemonize),

859
DarkGray (IPython.utils.coloransi.InputTermColors

attribute), 857
DarkGray (IPython.utils.coloransi.TermColors at-

tribute), 858
date_default() (in module IPython.utils.jsonutil), 871
db (IPython.core.history.HistoryManager attribute),

359
db (IPython.parallel.controller.hub.Hub attribute),

788
db (IPython.parallel.controller.hub.HubFactory at-

tribute), 792

Index 993

IPython Documentation, Release 0.11

db_cache_size (IPython.core.history.HistoryManager
attribute), 359

db_class (IPython.parallel.controller.hub.HubFactory
attribute), 792

db_input_cache (IPython.core.history.HistoryManager
attribute), 359

db_log_output (IPython.core.history.HistoryManager
attribute), 360

db_output_cache (IPython.core.history.HistoryManager
attribute), 360

db_query() (IPython.parallel.client.client.Client
method), 747

db_query() (IPython.parallel.controller.hub.Hub
method), 788

deactivate() (IPython.core.builtin_trap.BuiltinTrap
method), 295

dead_engines (IPython.parallel.controller.hub.Hub
attribute), 788

debug (IPython.core.interactiveshell.InteractiveShell
attribute), 379

debug (IPython.parallel.client.client.Client at-
tribute), 747

debugger() (IPython.core.interactiveshell.InteractiveShell
method), 379

debugger() (IPython.core.ultratb.AutoFormattedTB
method), 537

debugger() (IPython.core.ultratb.ColorTB method),
539

debugger() (IPython.core.ultratb.FormattedTB
method), 541

debugger() (IPython.core.ultratb.VerboseTB
method), 546

debugx() (in module IPython.utils.frame), 861
decode (IPython.utils.text.LSString attribute), 891
decorate_fn_with_doc() (in module

IPython.core.debugger), 314
dedent() (in module IPython.utils.text), 897
deep_import_hook() (in module

IPython.lib.deepreload), 553
deep_reload (IPython.core.interactiveshell.InteractiveShell

attribute), 379
deep_reload_hook() (in module

IPython.lib.deepreload), 553
default() (IPython.core.debugger.Pdb method), 307
default_aliases (IPython.core.alias.AliasManager at-

tribute), 285
default_aliases() (in module IPython.core.alias), 287
default_argv() (in module IPython.testing.tools), 846

default_config() (in module IPython.testing.tools),
846

default_inits (IPython.parallel.apps.ipengineapp.MPI
attribute), 628

default_log_level (IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 599

default_log_level (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 605

default_option() (IPython.core.interactiveshell.InteractiveShell
method), 379

default_option() (IPython.core.magic.Magic
method), 421

default_template (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 640

default_template (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 646

default_template (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 650

default_template (IPython.parallel.apps.launcher.LSFLauncher
attribute), 653

default_template (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 677

default_template (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 680

default_template (IPython.parallel.apps.launcher.PBSLauncher
attribute), 684

default_template (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 687

default_template (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 691

default_template (IPython.parallel.apps.launcher.SGELauncher
attribute), 694

default_value (IPython.core.interactiveshell.SeparateUnicode
attribute), 416

default_value (IPython.utils.traitlets.Any attribute),
901

default_value (IPython.utils.traitlets.Bool attribute),
902

default_value (IPython.utils.traitlets.Bytes attribute),
903

default_value (IPython.utils.traitlets.CaselessStrEnum
attribute), 911

default_value (IPython.utils.traitlets.CBool at-
tribute), 904

default_value (IPython.utils.traitlets.CBytes at-
tribute), 905

default_value (IPython.utils.traitlets.CComplex at-
tribute), 906

994 Index

IPython Documentation, Release 0.11

default_value (IPython.utils.traitlets.CFloat at-
tribute), 907

default_value (IPython.utils.traitlets.CInt attribute),
908

default_value (IPython.utils.traitlets.ClassBasedTraitType
attribute), 912

default_value (IPython.utils.traitlets.CLong at-
tribute), 909

default_value (IPython.utils.traitlets.Complex
attribute), 913

default_value (IPython.utils.traitlets.Container at-
tribute), 914

default_value (IPython.utils.traitlets.CUnicode at-
tribute), 910

default_value (IPython.utils.traitlets.Dict attribute),
915

default_value (IPython.utils.traitlets.DottedObjectName
attribute), 916

default_value (IPython.utils.traitlets.Enum at-
tribute), 917

default_value (IPython.utils.traitlets.Float attribute),
918

default_value (IPython.utils.traitlets.Instance at-
tribute), 920

default_value (IPython.utils.traitlets.Int attribute),
921

default_value (IPython.utils.traitlets.List attribute),
923

default_value (IPython.utils.traitlets.Long attribute),
924

default_value (IPython.utils.traitlets.ObjectName at-
tribute), 925

default_value (IPython.utils.traitlets.Set attribute),
927

default_value (IPython.utils.traitlets.TCPAddress at-
tribute), 928

default_value (IPython.utils.traitlets.This attribute),
929

default_value (IPython.utils.traitlets.TraitType at-
tribute), 930

default_value (IPython.utils.traitlets.Tuple attribute),
931

default_value (IPython.utils.traitlets.Type attribute),
933

default_value (IPython.utils.traitlets.Unicode at-
tribute), 933

defaultFile() (IPython.core.debugger.Pdb method),
307

DefaultValueGenerator (class in
IPython.utils.traitlets), 915

deferred_printers (IPython.core.formatters.BaseFormatter
attribute), 332

deferred_printers (IPython.core.formatters.HTMLFormatter
attribute), 338

deferred_printers (IPython.core.formatters.JavascriptFormatter
attribute), 344

deferred_printers (IPython.core.formatters.JSONFormatter
attribute), 341

deferred_printers (IPython.core.formatters.LatexFormatter
attribute), 346

deferred_printers (IPython.core.formatters.PlainTextFormatter
attribute), 352

deferred_printers (IPython.core.formatters.PNGFormatter
attribute), 349

deferred_printers (IPython.core.formatters.SVGFormatter
attribute), 356

define_alias() (IPython.core.alias.AliasManager
method), 285

define_macro() (IPython.core.interactiveshell.InteractiveShell
method), 379

define_magic() (IPython.core.interactiveshell.InteractiveShell
method), 379

del_var() (IPython.core.interactiveshell.InteractiveShell
method), 379

delay (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 605

delete_command (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 640

delete_command (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 646

delete_command (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 650

delete_command (IPython.parallel.apps.launcher.LSFLauncher
attribute), 653

delete_command (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 677

delete_command (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 680

delete_command (IPython.parallel.apps.launcher.PBSLauncher
attribute), 684

delete_command (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 687

delete_command (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 691

delete_command (IPython.parallel.apps.launcher.SGELauncher
attribute), 694

Index 995

IPython Documentation, Release 0.11

Demo (class in IPython.lib.demo), 561
DemoError (class in IPython.lib.demo), 562
depend (class in IPython.parallel.controller.dependency),

774
Dependency (class in

IPython.parallel.controller.dependency),
772

DependencyTimeout (class in
IPython.parallel.error), 814

dependent (class in
IPython.parallel.controller.dependency),
775

depending (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 796

deq() (IPython.lib.pretty.GroupQueue method), 582
description (IPython.config.application.Application

attribute), 264
description (IPython.core.application.BaseIPythonApplication

attribute), 288
description (IPython.core.profileapp.ProfileApp at-

tribute), 513
description (IPython.core.profileapp.ProfileCreate

attribute), 518
description (IPython.core.profileapp.ProfileList at-

tribute), 522
description (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 588
description (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 594
description (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 599
description (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 605
description (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 610
description (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 616
description (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 623
description (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 631
destinations (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 796
determine_parent() (in module

IPython.lib.deepreload), 554
device (IPython.parallel.controller.heartmonitor.Heart

attribute), 781
dgrep() (in module IPython.utils.text), 897

dhook_wrap() (in module
IPython.utils.doctestreload), 861

Dict (class in IPython.utils.traitlets), 915
dict() (IPython.utils.ipstruct.Struct method), 868
dict_dir() (in module IPython.utils.wildcard), 936
DictDB (class in IPython.parallel.controller.dictdb),

778
difference (IPython.parallel.controller.dependency.Dependency

attribute), 773
difference_update (IPython.parallel.controller.dependency.Dependency

attribute), 773
dir2() (in module IPython.utils.dir2), 860
dir_hist (IPython.core.history.HistoryManager at-

tribute), 360
direct_view() (IPython.parallel.client.client.Client

method), 747
DirectView (class in IPython.parallel.client.view),

756
disable_gtk() (IPython.lib.inputhook.InputHookManager

method), 570
disable_qt4() (IPython.lib.inputhook.InputHookManager

method), 571
disable_tk() (IPython.lib.inputhook.InputHookManager

method), 571
disable_wx() (IPython.lib.inputhook.InputHookManager

method), 571
disambiguate_ip_address() (in module

IPython.parallel.util), 828
disambiguate_url() (in module IPython.parallel.util),

828
discard (IPython.parallel.controller.dependency.Dependency

attribute), 773
dispatch() (IPython.utils.strdispatch.StrDispatch

method), 886
dispatch_call() (IPython.core.debugger.Pdb

method), 307
dispatch_control() (IPython.parallel.engine.streamkernel.Kernel

method), 810
dispatch_custom_completer()

(IPython.core.completer.IPCompleter
method), 301

dispatch_db() (IPython.parallel.controller.hub.Hub
method), 788

dispatch_exception() (IPython.core.debugger.Pdb
method), 307

dispatch_line() (IPython.core.debugger.Pdb
method), 307

dispatch_monitor_traffic()

996 Index

IPython Documentation, Release 0.11

(IPython.parallel.controller.hub.Hub
method), 788

dispatch_notification()
(IPython.parallel.controller.scheduler.TaskScheduler
method), 796

dispatch_query() (IPython.parallel.controller.hub.Hub
method), 788

dispatch_queue() (IPython.parallel.engine.streamkernel.Kernel
method), 810

dispatch_reply() (IPython.parallel.engine.kernelstarter.KernelStarter
method), 806

dispatch_request() (IPython.parallel.engine.kernelstarter.KernelStarter
method), 806

dispatch_result() (IPython.parallel.controller.scheduler.TaskScheduler
method), 796

dispatch_return() (IPython.core.debugger.Pdb
method), 307

dispatch_submission()
(IPython.parallel.controller.scheduler.TaskScheduler
method), 796

display() (in module IPython.core.display), 315
display_formatter (IPython.core.interactiveshell.InteractiveShell

attribute), 380
display_hook_factory

(IPython.parallel.engine.engine.EngineFactory
attribute), 804

display_html() (in module IPython.core.display),
315

display_javascript() (in module
IPython.core.display), 315

display_json() (in module IPython.core.display), 315
display_latex() (in module IPython.core.display),

315
display_png() (in module IPython.core.display), 316
display_pretty() (in module IPython.core.display),

316
display_pub_class (IPython.core.interactiveshell.InteractiveShell

attribute), 380
display_svg() (in module IPython.core.display), 316
display_trap (IPython.core.interactiveshell.InteractiveShell

attribute), 380
DisplayFormatter (class in IPython.core.formatters),

334
DisplayHook (class in IPython.core.displayhook),

319
displayhook() (IPython.core.debugger.Pdb method),

307
displayhook_class (IPython.core.interactiveshell.InteractiveShell

attribute), 380
DisplayPublisher (class in IPython.core.displaypub),

322
DisplayTrap (class in IPython.core.display_trap),

316
do_a() (IPython.core.debugger.Pdb method), 307
do_alias() (IPython.core.debugger.Pdb method), 307
do_args() (IPython.core.debugger.Pdb method), 308
do_b() (IPython.core.debugger.Pdb method), 308
do_break() (IPython.core.debugger.Pdb method),

308
do_bt() (IPython.core.debugger.Pdb method), 308
do_c() (IPython.core.debugger.Pdb method), 308
do_cl() (IPython.core.debugger.Pdb method), 308
do_clear() (IPython.core.debugger.Pdb method), 308
do_commands() (IPython.core.debugger.Pdb

method), 308
do_condition() (IPython.core.debugger.Pdb

method), 308
do_cont() (IPython.core.debugger.Pdb method), 308
do_continue() (IPython.core.debugger.Pdb method),

308
do_d() (IPython.core.debugger.Pdb method), 308
do_debug() (IPython.core.debugger.Pdb method),

308
do_disable() (IPython.core.debugger.Pdb method),

308
do_down() (IPython.core.debugger.Pdb method),

308
do_enable() (IPython.core.debugger.Pdb method),

308
do_EOF() (IPython.core.debugger.Pdb method), 307
do_exit() (IPython.core.debugger.Pdb method), 308
do_h() (IPython.core.debugger.Pdb method), 308
do_help() (IPython.core.debugger.Pdb method), 308
do_ignore() (IPython.core.debugger.Pdb method),

308
do_import_statements()

(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 616

do_j() (IPython.core.debugger.Pdb method), 308
do_jump() (IPython.core.debugger.Pdb method),

308
do_l() (IPython.core.debugger.Pdb method), 308
do_list() (IPython.core.debugger.Pdb method), 308
do_n() (IPython.core.debugger.Pdb method), 308
do_next() (IPython.core.debugger.Pdb method), 308
do_p() (IPython.core.debugger.Pdb method), 309

Index 997

IPython Documentation, Release 0.11

do_pdef() (IPython.core.debugger.Pdb method), 309
do_pdoc() (IPython.core.debugger.Pdb method), 309
do_pinfo() (IPython.core.debugger.Pdb method),

309
do_pp() (IPython.core.debugger.Pdb method), 309
do_q() (IPython.core.debugger.Pdb method), 309
do_quit() (IPython.core.debugger.Pdb method), 309
do_r() (IPython.core.debugger.Pdb method), 309
do_restart() (IPython.core.debugger.Pdb method),

309
do_return() (IPython.core.debugger.Pdb method),

309
do_retval() (IPython.core.debugger.Pdb method),

309
do_run() (IPython.core.debugger.Pdb method), 309
do_rv() (IPython.core.debugger.Pdb method), 309
do_s() (IPython.core.debugger.Pdb method), 309
do_step() (IPython.core.debugger.Pdb method), 309
do_tbreak() (IPython.core.debugger.Pdb method),

309
do_u() (IPython.core.debugger.Pdb method), 309
do_unalias() (IPython.core.debugger.Pdb method),

309
do_unt() (IPython.core.debugger.Pdb method), 309
do_until() (IPython.core.debugger.Pdb method), 309
do_up() (IPython.core.debugger.Pdb method), 309
do_w() (IPython.core.debugger.Pdb method), 309
do_whatis() (IPython.core.debugger.Pdb method),

309
do_where() (IPython.core.debugger.Pdb method),

309
Doc2UnitTester (class in IPython.testing.ipunittest),

837
doc_header (IPython.core.debugger.Pdb attribute),

309
doc_leader (IPython.core.debugger.Pdb attribute),

309
doctest_ivars() (in module

IPython.testing.plugin.test_refs), 844
doctest_multiline1() (in module

IPython.testing.plugin.test_ipdoctest),
843

doctest_multiline2() (in module
IPython.testing.plugin.test_ipdoctest),
844

doctest_multiline3() (in module
IPython.testing.plugin.test_ipdoctest),
844

doctest_refs() (in module
IPython.testing.plugin.test_refs), 844

doctest_reload() (in module
IPython.utils.doctestreload), 861

doctest_run() (in module
IPython.testing.plugin.test_refs), 844

doctest_runvars() (in module
IPython.testing.plugin.test_refs), 845

doctest_simple() (in module
IPython.testing.plugin.test_ipdoctest),
844

DottedObjectName (class in IPython.utils.traitlets),
916

drop_matching_records()
(IPython.parallel.controller.dictdb.DictDB
method), 779

drop_matching_records()
(IPython.parallel.controller.sqlitedb.SQLiteDB
method), 801

drop_record() (IPython.parallel.controller.dictdb.DictDB
method), 779

drop_record() (IPython.parallel.controller.sqlitedb.SQLiteDB
method), 801

E
edit() (IPython.lib.demo.ClearDemo method), 557
edit() (IPython.lib.demo.ClearIPDemo method), 559
edit() (IPython.lib.demo.Demo method), 561
edit() (IPython.lib.demo.IPythonDemo method), 563
edit() (IPython.lib.demo.IPythonLineDemo

method), 565
edit() (IPython.lib.demo.LineDemo method), 567
EDITOR, 190
editor() (in module IPython.core.hooks), 367
element_error() (IPython.utils.traitlets.Container

method), 914
element_error() (IPython.utils.traitlets.List method),

923
element_error() (IPython.utils.traitlets.Set method),

927
element_error() (IPython.utils.traitlets.Tuple

method), 931
EmacsChecker (class in IPython.core.prefilter), 476
EmacsHandler (class in IPython.core.prefilter), 478
empty_record() (in module

IPython.parallel.controller.hub), 794
emptyline() (IPython.core.debugger.Pdb method),

309

998 Index

IPython Documentation, Release 0.11

enable_gtk() (IPython.lib.inputhook.InputHookManager
method), 571

enable_gui() (in module IPython.lib.inputhook), 572
enable_pylab() (IPython.core.interactiveshell.InteractiveShell

method), 380
enable_qt4() (IPython.lib.inputhook.InputHookManager

method), 571
enable_tk() (IPython.lib.inputhook.InputHookManager

method), 571
enable_wx() (IPython.lib.inputhook.InputHookManager

method), 572
enabled (IPython.core.formatters.BaseFormatter at-

tribute), 332
enabled (IPython.core.formatters.FormatterABC at-

tribute), 337
enabled (IPython.core.formatters.HTMLFormatter

attribute), 338
enabled (IPython.core.formatters.JavascriptFormatter

attribute), 344
enabled (IPython.core.formatters.JSONFormatter at-

tribute), 341
enabled (IPython.core.formatters.LatexFormatter at-

tribute), 347
enabled (IPython.core.formatters.PlainTextFormatter

attribute), 352
enabled (IPython.core.formatters.PNGFormatter at-

tribute), 349
enabled (IPython.core.formatters.SVGFormatter at-

tribute), 356
enabled (IPython.core.prefilter.AliasChecker at-

tribute), 462
enabled (IPython.core.prefilter.AssignMagicTransformer

attribute), 466
enabled (IPython.core.prefilter.AssignmentChecker

attribute), 470
enabled (IPython.core.prefilter.AssignSystemTransformer

attribute), 468
enabled (IPython.core.prefilter.AutocallChecker at-

tribute), 475
enabled (IPython.core.prefilter.AutoMagicChecker

attribute), 473
enabled (IPython.core.prefilter.EmacsChecker at-

tribute), 477
enabled (IPython.core.prefilter.EscCharsChecker at-

tribute), 481
enabled (IPython.core.prefilter.IPyAutocallChecker

attribute), 484
enabled (IPython.core.prefilter.IPyPromptTransformer

attribute), 486
enabled (IPython.core.prefilter.MacroChecker

attribute), 489
enabled (IPython.core.prefilter.MultiLineMagicChecker

attribute), 494
enabled (IPython.core.prefilter.PrefilterChecker at-

tribute), 496
enabled (IPython.core.prefilter.PrefilterTransformer

attribute), 503
enabled (IPython.core.prefilter.PyPromptTransformer

attribute), 505
enabled (IPython.core.prefilter.PythonOpsChecker

attribute), 507
enabled (IPython.core.prefilter.ShellEscapeChecker

attribute), 509
ename (IPython.parallel.error.CompositeError at-

tribute), 813
ename (IPython.parallel.error.RemoteError at-

tribute), 820
encode (IPython.utils.text.LSString attribute), 891
encoding (IPython.core.inputsplitter.InputSplitter at-

tribute), 371
encoding (IPython.core.inputsplitter.IPythonInputSplitter

attribute), 369
end_group() (IPython.lib.pretty.PrettyPrinter

method), 583
end_group() (IPython.lib.pretty.RepresentationPrinter

method), 584
end_session() (IPython.core.history.HistoryManager

method), 360
endswith (IPython.utils.text.LSString attribute), 891
engine_args (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 659
engine_args (IPython.parallel.apps.launcher.LocalEngineSetLauncher

attribute), 662
engine_args (IPython.parallel.apps.launcher.SSHEngineSetLauncher

attribute), 703
engine_args (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 731
engine_cmd (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 660
engine_cmd (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 731
engine_info (IPython.parallel.controller.hub.Hub at-

tribute), 788
engine_info (IPython.parallel.error.CompositeError

attribute), 813
engine_info (IPython.parallel.error.RemoteError at-

Index 999

IPython Documentation, Release 0.11

tribute), 820
engine_ip (IPython.parallel.controller.hub.HubFactory

attribute), 792
engine_launcher_class

(IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 599

engine_launcher_class
(IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 605

engine_stream (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 797

engine_transport (IPython.parallel.controller.hub.HubFactory
attribute), 792

EngineConnector (class in
IPython.parallel.controller.hub), 784

EngineCreationError (class in
IPython.parallel.error), 815

EngineError (class in IPython.parallel.error), 815
EngineFactory (class in

IPython.parallel.engine.engine), 803
engines (IPython.parallel.apps.launcher.SSHEngineSetLauncher

attribute), 703
engines (IPython.parallel.controller.hub.Hub at-

tribute), 788
enq() (IPython.lib.pretty.GroupQueue method), 582
ensure_fromlist() (in module

IPython.lib.deepreload), 554
Enum (class in IPython.utils.traitlets), 917
environment variable

%PATH%, 140
EDITOR, 190
IPYTHON_DIR, 183
PATH, 2
PYTHONSTARTUP, 943

environment_variables
(IPython.parallel.apps.winhpcjob.IPControllerTask
attribute), 725

environment_variables
(IPython.parallel.apps.winhpcjob.IPEngineTask
attribute), 731

environment_variables
(IPython.parallel.apps.winhpcjob.WinHPCTask
attribute), 737

error() (in module IPython.utils.warn), 935
error() (IPython.config.loader.ArgumentParser

method), 278
error() (IPython.core.interactiveshell.SeparateUnicode

method), 416

error() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

error() (IPython.utils.traitlets.Any method), 901
error() (IPython.utils.traitlets.Bool method), 902
error() (IPython.utils.traitlets.Bytes method), 903
error() (IPython.utils.traitlets.CaselessStrEnum

method), 911
error() (IPython.utils.traitlets.CBool method), 904
error() (IPython.utils.traitlets.CBytes method), 905
error() (IPython.utils.traitlets.CComplex method),

906
error() (IPython.utils.traitlets.CFloat method), 907
error() (IPython.utils.traitlets.CInt method), 908
error() (IPython.utils.traitlets.ClassBasedTraitType

method), 912
error() (IPython.utils.traitlets.CLong method), 909
error() (IPython.utils.traitlets.Complex method), 913
error() (IPython.utils.traitlets.Container method),

914
error() (IPython.utils.traitlets.CUnicode method),

910
error() (IPython.utils.traitlets.Dict method), 915
error() (IPython.utils.traitlets.DottedObjectName

method), 916
error() (IPython.utils.traitlets.Enum method), 917
error() (IPython.utils.traitlets.Float method), 918
error() (IPython.utils.traitlets.Instance method), 920
error() (IPython.utils.traitlets.Int method), 921
error() (IPython.utils.traitlets.List method), 923
error() (IPython.utils.traitlets.Long method), 924
error() (IPython.utils.traitlets.ObjectName method),

925
error() (IPython.utils.traitlets.Set method), 927
error() (IPython.utils.traitlets.TCPAddress method),

928
error() (IPython.utils.traitlets.This method), 929
error() (IPython.utils.traitlets.TraitType method),

930
error() (IPython.utils.traitlets.Tuple method), 931
error() (IPython.utils.traitlets.Type method), 933
error() (IPython.utils.traitlets.Unicode method), 934
esc_quotes() (in module IPython.utils.text), 897
esc_strings (IPython.core.prefilter.AliasHandler at-

tribute), 464
esc_strings (IPython.core.prefilter.AutoHandler at-

tribute), 471
esc_strings (IPython.core.prefilter.EmacsHandler at-

tribute), 479

1000 Index

IPython Documentation, Release 0.11

esc_strings (IPython.core.prefilter.HelpHandler at-
tribute), 482

esc_strings (IPython.core.prefilter.MacroHandler at-
tribute), 490

esc_strings (IPython.core.prefilter.MagicHandler at-
tribute), 492

esc_strings (IPython.core.prefilter.PrefilterHandler
attribute), 498

esc_strings (IPython.core.prefilter.ShellEscapeHandler
attribute), 511

EscapedTransformer (class in
IPython.core.inputsplitter), 369

EscCharsChecker (class in IPython.core.prefilter),
480

ev() (IPython.core.interactiveshell.InteractiveShell
method), 380

EvalDict (class in IPython.utils.attic), 850
EvalFormatter (class in IPython.utils.text), 889
evalue (IPython.parallel.error.CompositeError at-

tribute), 813
evalue (IPython.parallel.error.RemoteError at-

tribute), 820
ex() (IPython.core.interactiveshell.InteractiveShell

method), 380
examples (IPython.config.application.Application

attribute), 264
examples (IPython.core.application.BaseIPythonApplication

attribute), 289
examples (IPython.core.profileapp.ProfileApp at-

tribute), 513
examples (IPython.core.profileapp.ProfileCreate at-

tribute), 518
examples (IPython.core.profileapp.ProfileList

attribute), 522
examples (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 588
examples (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 594
examples (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 599
examples (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 605
examples (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 610
examples (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 616
examples (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 623

examples (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 631

excepthook() (IPython.core.interactiveshell.InteractiveShell
method), 380

exception_colors() (in module
IPython.core.excolors), 327

exclude_aliases() (IPython.core.alias.AliasManager
method), 285

exec_files (IPython.core.shellapp.InteractiveShellApp
attribute), 534

exec_lines (IPython.core.shellapp.InteractiveShellApp
attribute), 534

exec_lines (IPython.parallel.engine.streamkernel.Kernel
attribute), 810

execRcLines() (IPython.core.debugger.Pdb method),
310

execute() (IPython.parallel.client.view.DirectView
method), 758

execute_request() (IPython.parallel.engine.streamkernel.Kernel
method), 810

execution_count (IPython.core.interactiveshell.InteractiveShell
attribute), 380

exit() (IPython.config.application.Application
method), 264

exit() (IPython.config.loader.ArgumentParser
method), 278

exit() (IPython.core.application.BaseIPythonApplication
method), 289

exit() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

exit() (IPython.core.profileapp.ProfileApp method),
513

exit() (IPython.core.profileapp.ProfileCreate
method), 518

exit() (IPython.core.profileapp.ProfileList method),
522

exit() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 589

exit() (IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 594

exit() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 599

exit() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 605

exit() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 610

exit() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 616

Index 1001

IPython Documentation, Release 0.11

exit() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 623

exit() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 631

exit_now (IPython.core.interactiveshell.InteractiveShell
attribute), 380

ExitAutocall (class in IPython.core.autocall), 292
exiter (IPython.core.interactiveshell.InteractiveShell

attribute), 380
expand_alias() (IPython.core.alias.AliasManager

method), 285
expand_aliases() (IPython.core.alias.AliasManager

method), 285
expand_path() (in module IPython.utils.path), 878
expand_user() (in module IPython.core.completer),

302
expandtabs (IPython.utils.text.LSString attribute),

891
extend (IPython.utils.text.SList attribute), 895
extension_manager (IPython.core.interactiveshell.InteractiveShell

attribute), 381
ExtensionManager (class in

IPython.core.extensions), 328
extensions (IPython.core.shellapp.InteractiveShellApp

attribute), 534
extra_args (IPython.config.application.Application

attribute), 264
extra_args (IPython.core.application.BaseIPythonApplication

attribute), 289
extra_args (IPython.core.profileapp.ProfileApp at-

tribute), 514
extra_args (IPython.core.profileapp.ProfileCreate at-

tribute), 518
extra_args (IPython.core.profileapp.ProfileList at-

tribute), 522
extra_args (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 589
extra_args (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 595
extra_args (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 599
extra_args (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 605
extra_args (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 611
extra_args (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 616
extra_args (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 623
extra_args (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 631
extra_args (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

attribute), 709
extra_args (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

attribute), 712
extra_extension (IPython.core.shellapp.InteractiveShellApp

attribute), 534
extract_dates() (in module IPython.utils.jsonutil),

871
extract_hist_ranges() (in module

IPython.core.history), 364
extract_input_lines()

(IPython.core.interactiveshell.InteractiveShell
method), 381

extract_input_lines() (IPython.core.magic.Magic
method), 421

extract_vars() (in module IPython.utils.frame), 862
extract_vars_above() (in module

IPython.utils.frame), 862

F
fail_unreachable() (IPython.parallel.controller.scheduler.TaskScheduler

method), 797
failed (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 797
failure (IPython.parallel.controller.dependency.Dependency

attribute), 773
fatal() (in module IPython.utils.warn), 935
fields() (IPython.utils.text.SList method), 895
figsize() (in module IPython.lib.pylabtools), 585
file_matches() (IPython.core.completer.IPCompleter

method), 301
file_read() (in module IPython.utils.io), 866
file_readlines() (in module IPython.utils.io), 866
file_to_run (IPython.core.shellapp.InteractiveShellApp

attribute), 534
FileConfigLoader (class in IPython.config.loader),

281
filefind() (in module IPython.utils.path), 878
filehash() (in module IPython.utils.path), 878
filename (IPython.core.interactiveshell.InteractiveShell

attribute), 381
filename (IPython.parallel.controller.sqlitedb.SQLiteDB

attribute), 801
FileTimeoutError (class in IPython.parallel.error),

815

1002 Index

IPython Documentation, Release 0.11

filter_ns() (in module IPython.utils.wildcard), 936
find (IPython.utils.text.LSString attribute), 891
find_args() (IPython.parallel.apps.launcher.BaseLauncher

method), 637
find_args() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 640
find_args() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 643
find_args() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 657
find_args() (IPython.parallel.apps.launcher.LocalEngineLauncher

method), 660
find_args() (IPython.parallel.apps.launcher.LocalEngineSetLauncher

method), 662
find_args() (IPython.parallel.apps.launcher.LocalProcessLauncher

method), 665
find_args() (IPython.parallel.apps.launcher.LSFControllerLauncher

method), 646
find_args() (IPython.parallel.apps.launcher.LSFEngineSetLauncher

method), 650
find_args() (IPython.parallel.apps.launcher.LSFLauncher

method), 653
find_args() (IPython.parallel.apps.launcher.MPIExecControllerLauncher

method), 668
find_args() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

method), 671
find_args() (IPython.parallel.apps.launcher.MPIExecLauncher

method), 674
find_args() (IPython.parallel.apps.launcher.PBSControllerLauncher

method), 677
find_args() (IPython.parallel.apps.launcher.PBSEngineSetLauncher

method), 680
find_args() (IPython.parallel.apps.launcher.PBSLauncher

method), 684
find_args() (IPython.parallel.apps.launcher.SGEControllerLauncher

method), 688
find_args() (IPython.parallel.apps.launcher.SGEEngineSetLauncher

method), 691
find_args() (IPython.parallel.apps.launcher.SGELauncher

method), 694
find_args() (IPython.parallel.apps.launcher.SSHControllerLauncher

method), 697
find_args() (IPython.parallel.apps.launcher.SSHEngineLauncher

method), 700
find_args() (IPython.parallel.apps.launcher.SSHEngineSetLauncher

method), 704
find_args() (IPython.parallel.apps.launcher.SSHLauncher

method), 706

find_args() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
method), 709

find_args() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
method), 712

find_args() (IPython.parallel.apps.launcher.WindowsHPCLauncher
method), 715

find_cmd() (in module IPython.utils.process), 884
find_gui_and_backend() (in module

IPython.lib.pylabtools), 585
find_handler() (IPython.core.prefilter.PrefilterManager

method), 500
find_head_package() (in module

IPython.lib.deepreload), 554
find_job_cmd() (in module

IPython.parallel.apps.launcher), 717
find_profile_dir() (IPython.core.profiledir.ProfileDir

class method), 527
find_profile_dir_by_name()

(IPython.core.profiledir.ProfileDir class
method), 527

find_records() (IPython.parallel.controller.dictdb.DictDB
method), 779

find_records() (IPython.parallel.controller.sqlitedb.SQLiteDB
method), 801

find_url_file() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 623

find_user_code() (IPython.core.interactiveshell.InteractiveShell
method), 381

find_username() (in module
IPython.parallel.apps.winhpcjob), 739

FindCmdError (class in IPython.utils.process), 884
findsource() (in module IPython.core.ultratb), 547
finish_displayhook()

(IPython.core.displayhook.DisplayHook
method), 320

finish_job() (IPython.parallel.controller.scheduler.TaskScheduler
method), 797

finish_registration() (IPython.parallel.controller.hub.Hub
method), 788

fix_error_editor() (in module IPython.core.hooks),
367

fix_frame_records_filenames() (in module
IPython.core.ultratb), 547

flag_calls() (in module IPython.utils.decorators),
860

flags (IPython.config.application.Application at-
tribute), 264

flags (IPython.core.application.BaseIPythonApplication

Index 1003

IPython Documentation, Release 0.11

attribute), 289
flags (IPython.core.profileapp.ProfileApp attribute),

514
flags (IPython.core.profileapp.ProfileCreate at-

tribute), 518
flags (IPython.core.profileapp.ProfileList attribute),

522
flags (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 589
flags (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 595
flags (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 599
flags (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 605
flags (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 611
flags (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 617
flags (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 623
flags (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 631
flags (IPython.parallel.client.remotefunction.ParallelFunction

attribute), 755
flags (IPython.parallel.client.remotefunction.RemoteFunction

attribute), 755
flat_matches() (IPython.utils.strdispatch.StrDispatch

method), 886
flatten() (in module IPython.utils.data), 859
flatten_array() (IPython.parallel.client.map.RoundRobinMap

method), 753
flatten_list() (IPython.parallel.client.map.RoundRobinMap

method), 753
fload() (IPython.lib.demo.ClearDemo method), 558
fload() (IPython.lib.demo.ClearIPDemo method),

559
fload() (IPython.lib.demo.Demo method), 562
fload() (IPython.lib.demo.IPythonDemo method),

564
fload() (IPython.lib.demo.IPythonLineDemo

method), 565
fload() (IPython.lib.demo.LineDemo method), 567
Float (class in IPython.utils.traitlets), 918
float_format (IPython.core.formatters.PlainTextFormatter

attribute), 353
float_precision (IPython.core.formatters.PlainTextFormatter

attribute), 353

flush() (IPython.core.displayhook.DisplayHook
method), 320

flush() (IPython.lib.pretty.PrettyPrinter method), 583
flush() (IPython.lib.pretty.RepresentationPrinter

method), 584
flush() (IPython.testing.globalipapp.StreamProxy

method), 833
flush() (IPython.testing.mkdoctests.IndentOut

method), 839
flush() (IPython.utils.io.Tee method), 866
flush_finished() (IPython.lib.backgroundjobs.BackgroundJobManager

method), 551
follow (IPython.parallel.client.view.LoadBalancedView

attribute), 763
for_type() (in module IPython.lib.pretty), 584
for_type() (IPython.core.formatters.BaseFormatter

method), 332
for_type() (IPython.core.formatters.HTMLFormatter

method), 338
for_type() (IPython.core.formatters.JavascriptFormatter

method), 344
for_type() (IPython.core.formatters.JSONFormatter

method), 341
for_type() (IPython.core.formatters.LatexFormatter

method), 347
for_type() (IPython.core.formatters.PlainTextFormatter

method), 353
for_type() (IPython.core.formatters.PNGFormatter

method), 349
for_type() (IPython.core.formatters.SVGFormatter

method), 356
for_type_by_name() (in module IPython.lib.pretty),

584
for_type_by_name()

(IPython.core.formatters.BaseFormatter
method), 332

for_type_by_name()
(IPython.core.formatters.HTMLFormatter
method), 338

for_type_by_name()
(IPython.core.formatters.JavascriptFormatter
method), 344

for_type_by_name()
(IPython.core.formatters.JSONFormatter
method), 341

for_type_by_name()
(IPython.core.formatters.LatexFormatter
method), 347

1004 Index

IPython Documentation, Release 0.11

for_type_by_name()
(IPython.core.formatters.PlainTextFormatter
method), 353

for_type_by_name()
(IPython.core.formatters.PNGFormatter
method), 350

for_type_by_name()
(IPython.core.formatters.SVGFormatter
method), 356

forget() (IPython.core.debugger.Pdb method), 310
format (IPython.utils.text.LSString attribute), 891
format() (IPython.core.formatters.DisplayFormatter

method), 335
format() (IPython.utils.PyColorize.Parser method),

849
format() (IPython.utils.text.EvalFormatter method),

890
format2() (IPython.utils.PyColorize.Parser method),

849
format_argspec() (in module IPython.core.oinspect),

451
format_display_data() (in module

IPython.core.formatters), 357
format_field() (IPython.utils.text.EvalFormatter

method), 890
format_help() (IPython.config.loader.ArgumentParser

method), 278
format_help() (IPython.core.magic_arguments.MagicArgumentParser

method), 446
format_latex() (IPython.core.interactiveshell.InteractiveShell

method), 381
format_latex() (IPython.core.magic.Magic method),

421
format_screen() (in module IPython.utils.text), 897
format_stack_entry() (IPython.core.debugger.Pdb

method), 310
format_type (IPython.core.formatters.BaseFormatter

attribute), 333
format_type (IPython.core.formatters.FormatterABC

attribute), 337
format_type (IPython.core.formatters.HTMLFormatter

attribute), 339
format_type (IPython.core.formatters.JavascriptFormatter

attribute), 344
format_type (IPython.core.formatters.JSONFormatter

attribute), 341
format_type (IPython.core.formatters.LatexFormatter

attribute), 347

format_type (IPython.core.formatters.PlainTextFormatter
attribute), 353

format_type (IPython.core.formatters.PNGFormatter
attribute), 350

format_type (IPython.core.formatters.SVGFormatter
attribute), 356

format_types (IPython.core.formatters.DisplayFormatter
attribute), 335

format_usage() (IPython.config.loader.ArgumentParser
method), 278

format_usage() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

format_version() (IPython.config.loader.ArgumentParser
method), 278

format_version() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

FormattedTB (class in IPython.core.ultratb), 540
formatter (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 640
formatter (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 646
formatter (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 650
formatter (IPython.parallel.apps.launcher.LSFLauncher

attribute), 653
formatter (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 677
formatter (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 680
formatter (IPython.parallel.apps.launcher.PBSLauncher

attribute), 684
formatter (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 688
formatter (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 691
formatter (IPython.parallel.apps.launcher.SGELauncher

attribute), 694
FormatterABC (class in IPython.core.formatters),

336
formatters (IPython.core.formatters.DisplayFormatter

attribute), 335
forward_logging() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 617
forward_logging() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 623
forward_read_events() (in module

IPython.parallel.apps.win32support),
721

Index 1005

IPython Documentation, Release 0.11

ForwarderThread (class in
IPython.parallel.apps.win32support),
720

freeze_term_title() (in module
IPython.utils.terminal), 888

fromkeys() (IPython.config.loader.Config static
method), 279

fromkeys() (IPython.parallel.client.client.Metadata
static method), 751

fromkeys() (IPython.parallel.util.Namespace static
method), 826

fromkeys() (IPython.parallel.util.ReverseDict static
method), 827

fromkeys() (IPython.testing.globalipapp.ipnsdict
static method), 833

fromkeys() (IPython.utils.coloransi.ColorSchemeTable
static method), 855

fromkeys() (IPython.utils.ipstruct.Struct static
method), 868

full_path() (in module IPython.testing.tools), 846
func (IPython.parallel.client.remotefunction.ParallelFunction

attribute), 755
func (IPython.parallel.client.remotefunction.RemoteFunction

attribute), 755

G
gather() (IPython.parallel.client.view.DirectView

method), 758
generate() (IPython.utils.traitlets.DefaultValueGenerator

method), 915
generate_config_file()

(IPython.config.application.Application
method), 264

generate_config_file()
(IPython.core.application.BaseIPythonApplication
method), 289

generate_config_file()
(IPython.core.profileapp.ProfileApp
method), 514

generate_config_file()
(IPython.core.profileapp.ProfileCreate
method), 518

generate_config_file()
(IPython.core.profileapp.ProfileList
method), 522

generate_config_file()
(IPython.parallel.apps.baseapp.BaseParallelApplication
method), 589

generate_config_file()
(IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 595

generate_config_file()
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 599

generate_config_file()
(IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 605

generate_config_file()
(IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 611

generate_config_file()
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 617

generate_config_file()
(IPython.parallel.apps.ipengineapp.IPEngineApp
method), 623

generate_config_file()
(IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 631

generate_exec_key() (in module
IPython.parallel.util), 828

generate_prompt() (in module IPython.core.hooks),
367

get (IPython.config.loader.Config attribute), 279
get (IPython.parallel.client.client.Metadata at-

tribute), 751
get (IPython.parallel.util.Namespace attribute), 826
get (IPython.testing.globalipapp.ipnsdict attribute),

833
get (IPython.utils.coloransi.ColorSchemeTable at-

tribute), 855
get (IPython.utils.ipstruct.Struct attribute), 868
get() (AsyncResult method), 169
get() (in module IPython.core.ipapi), 417
get() (IPython.parallel.client.asyncresult.AsyncHubResult

method), 740
get() (IPython.parallel.client.asyncresult.AsyncMapResult

method), 741
get() (IPython.parallel.client.asyncresult.AsyncResult

method), 742
get() (IPython.parallel.client.view.DirectView

method), 758
get() (IPython.parallel.util.ReverseDict method),

827
get() (IPython.utils.pickleshare.PickleShareDB

method), 881

1006 Index

IPython Documentation, Release 0.11

get_all_breaks() (IPython.core.debugger.Pdb
method), 310

get_app_qt4() (in module IPython.lib.guisupport),
569

get_app_wx() (in module IPython.lib.guisupport),
569

get_break() (IPython.core.debugger.Pdb method),
310

get_breaks() (IPython.core.debugger.Pdb method),
310

get_class_members() (in module IPython.utils.dir2),
860

get_default_colors() (in module
IPython.core.interactiveshell), 417

get_default_value() (IPython.core.interactiveshell.SeparateUnicode
method), 416

get_default_value() (IPython.utils.traitlets.Any
method), 901

get_default_value() (IPython.utils.traitlets.Bool
method), 902

get_default_value() (IPython.utils.traitlets.Bytes
method), 903

get_default_value() (IPython.utils.traitlets.CaselessStrEnum
method), 911

get_default_value() (IPython.utils.traitlets.CBool
method), 904

get_default_value() (IPython.utils.traitlets.CBytes
method), 905

get_default_value() (IPython.utils.traitlets.CComplex
method), 906

get_default_value() (IPython.utils.traitlets.CFloat
method), 907

get_default_value() (IPython.utils.traitlets.CInt
method), 908

get_default_value() (IPython.utils.traitlets.ClassBasedTraitType
method), 912

get_default_value() (IPython.utils.traitlets.CLong
method), 909

get_default_value() (IPython.utils.traitlets.Complex
method), 913

get_default_value() (IPython.utils.traitlets.Container
method), 914

get_default_value() (IPython.utils.traitlets.CUnicode
method), 910

get_default_value() (IPython.utils.traitlets.Dict
method), 915

get_default_value() (IPython.utils.traitlets.DottedObjectName
method), 916

get_default_value() (IPython.utils.traitlets.Enum
method), 917

get_default_value() (IPython.utils.traitlets.Float
method), 918

get_default_value() (IPython.utils.traitlets.Instance
method), 920

get_default_value() (IPython.utils.traitlets.Int
method), 921

get_default_value() (IPython.utils.traitlets.List
method), 923

get_default_value() (IPython.utils.traitlets.Long
method), 924

get_default_value() (IPython.utils.traitlets.ObjectName
method), 925

get_default_value() (IPython.utils.traitlets.Set
method), 927

get_default_value() (IPython.utils.traitlets.TCPAddress
method), 928

get_default_value() (IPython.utils.traitlets.This
method), 929

get_default_value() (IPython.utils.traitlets.TraitType
method), 930

get_default_value() (IPython.utils.traitlets.Tuple
method), 931

get_default_value() (IPython.utils.traitlets.Type
method), 933

get_default_value() (IPython.utils.traitlets.Unicode
method), 934

get_delims() (IPython.core.completer.CompletionSplitter
method), 299

get_dict() (IPython.parallel.client.asyncresult.AsyncHubResult
method), 740

get_dict() (IPython.parallel.client.asyncresult.AsyncMapResult
method), 741

get_dict() (IPython.parallel.client.asyncresult.AsyncResult
method), 742

get_env_vars() (IPython.parallel.apps.winhpcjob.IPControllerTask
method), 726

get_env_vars() (IPython.parallel.apps.winhpcjob.IPEngineTask
method), 731

get_env_vars() (IPython.parallel.apps.winhpcjob.WinHPCTask
method), 737

get_exception_only()
(IPython.core.ultratb.AutoFormattedTB
method), 538

get_exception_only() (IPython.core.ultratb.ColorTB
method), 539

get_exception_only()

Index 1007

IPython Documentation, Release 0.11

(IPython.core.ultratb.FormattedTB
method), 541

get_exception_only() (IPython.core.ultratb.ListTB
method), 542

get_exception_only()
(IPython.core.ultratb.SyntaxTB method),
544

get_extra_args() (IPython.config.loader.ArgParseConfigLoader
method), 277

get_field() (IPython.utils.text.EvalFormatter
method), 890

get_file_breaks() (IPython.core.debugger.Pdb
method), 310

get_handler_by_esc()
(IPython.core.prefilter.PrefilterManager
method), 500

get_handler_by_name()
(IPython.core.prefilter.PrefilterManager
method), 500

get_history() (IPython.parallel.controller.dictdb.DictDB
method), 779

get_history() (IPython.parallel.controller.hub.Hub
method), 788

get_history() (IPython.parallel.controller.sqlitedb.SQLiteDB
method), 801

get_home_dir() (in module IPython.utils.path), 878
get_input_encoding() (in module

IPython.core.inputsplitter), 373
get_ipython() (in module

IPython.testing.globalipapp), 834
get_ipython() (IPython.core.interactiveshell.InteractiveShell

method), 382
get_ipython_dir() (in module IPython.utils.path),

879
get_ipython_module_path() (in module

IPython.utils.path), 879
get_ipython_package_dir() (in module

IPython.utils.path), 879
get_list() (IPython.utils.text.LSString method), 891
get_list() (IPython.utils.text.SList method), 896
get_long_path_name() (in module

IPython.utils.path), 879
get_metadata() (IPython.core.interactiveshell.SeparateUnicode

method), 416
get_metadata() (IPython.utils.traitlets.Any method),

901
get_metadata() (IPython.utils.traitlets.Bool method),

902

get_metadata() (IPython.utils.traitlets.Bytes
method), 903

get_metadata() (IPython.utils.traitlets.CaselessStrEnum
method), 911

get_metadata() (IPython.utils.traitlets.CBool
method), 904

get_metadata() (IPython.utils.traitlets.CBytes
method), 905

get_metadata() (IPython.utils.traitlets.CComplex
method), 906

get_metadata() (IPython.utils.traitlets.CFloat
method), 907

get_metadata() (IPython.utils.traitlets.CInt method),
908

get_metadata() (IPython.utils.traitlets.ClassBasedTraitType
method), 912

get_metadata() (IPython.utils.traitlets.CLong
method), 909

get_metadata() (IPython.utils.traitlets.Complex
method), 913

get_metadata() (IPython.utils.traitlets.Container
method), 914

get_metadata() (IPython.utils.traitlets.CUnicode
method), 910

get_metadata() (IPython.utils.traitlets.Dict method),
915

get_metadata() (IPython.utils.traitlets.DottedObjectName
method), 916

get_metadata() (IPython.utils.traitlets.Enum
method), 917

get_metadata() (IPython.utils.traitlets.Float method),
918

get_metadata() (IPython.utils.traitlets.Instance
method), 921

get_metadata() (IPython.utils.traitlets.Int method),
921

get_metadata() (IPython.utils.traitlets.List method),
923

get_metadata() (IPython.utils.traitlets.Long
method), 924

get_metadata() (IPython.utils.traitlets.ObjectName
method), 925

get_metadata() (IPython.utils.traitlets.Set method),
927

get_metadata() (IPython.utils.traitlets.TCPAddress
method), 928

get_metadata() (IPython.utils.traitlets.This method),
929

1008 Index

IPython Documentation, Release 0.11

get_metadata() (IPython.utils.traitlets.TraitType
method), 930

get_metadata() (IPython.utils.traitlets.Tuple
method), 932

get_metadata() (IPython.utils.traitlets.Type method),
933

get_metadata() (IPython.utils.traitlets.Unicode
method), 934

get_names() (IPython.core.debugger.Pdb method),
310

get_nlstr() (IPython.utils.text.LSString method), 891
get_nlstr() (IPython.utils.text.SList method), 896
get_pager_cmd() (in module IPython.core.page),

452
get_pager_start() (in module IPython.core.page),

452
get_paths() (IPython.utils.text.LSString method),

891
get_paths() (IPython.utils.text.SList method), 896
get_pid_from_file() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 589
get_pid_from_file() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 599
get_pid_from_file() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 605
get_pid_from_file() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 611
get_pid_from_file() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 617
get_pid_from_file() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 623
get_pid_from_file() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 632
get_plugin() (IPython.core.plugin.PluginManager

method), 459
get_py_filename() (in module IPython.utils.path),

879
get_pyos_inputhook()

(IPython.lib.inputhook.InputHookManager
method), 572

get_pyos_inputhook_as_func()
(IPython.lib.inputhook.InputHookManager
method), 572

get_range() (IPython.core.history.HistoryManager
method), 360

get_range_by_str() (IPython.core.history.HistoryManager
method), 360

get_readline_tail() (IPython.core.interactiveshell.ReadlineNoRecord

method), 415
get_record() (IPython.parallel.controller.dictdb.DictDB

method), 780
get_record() (IPython.parallel.controller.sqlitedb.SQLiteDB

method), 801
get_result() (IPython.parallel.client.client.Client

method), 747
get_result() (IPython.parallel.client.view.DirectView

method), 758
get_result() (IPython.parallel.client.view.LoadBalancedView

method), 763
get_result() (IPython.parallel.client.view.View

method), 769
get_results() (IPython.parallel.controller.hub.Hub

method), 788
get_root_modules() (in module

IPython.core.completerlib), 303
get_slice() (in module IPython.utils.data), 859
get_spstr() (IPython.utils.text.LSString method),

891
get_spstr() (IPython.utils.text.SList method), 896
get_stack() (IPython.core.debugger.Pdb method),

310
get_tail() (IPython.core.history.HistoryManager

method), 361
get_terminal_size() (in module

IPython.utils.terminal), 888
get_value() (IPython.utils.text.EvalFormatter

method), 890
get_xdg_dir() (in module IPython.utils.path), 879
getargspec() (in module IPython.core.oinspect), 451
getData() (IPython.utils.newserialized.ISerialized

method), 873
getData() (IPython.utils.newserialized.Serialized

method), 874
getData() (IPython.utils.newserialized.SerializeIt

method), 874
getDataSize() (IPython.utils.newserialized.ISerialized

method), 873
getDataSize() (IPython.utils.newserialized.Serialized

method), 874
getDataSize() (IPython.utils.newserialized.SerializeIt

method), 874
getdoc() (in module IPython.core.oinspect), 451
getfigs() (in module IPython.lib.pylabtools), 585
gethashfile() (in module IPython.utils.pickleshare),

882
getlink() (IPython.utils.pickleshare.PickleShareDB

Index 1009

IPython Documentation, Release 0.11

method), 881
getmembers() (in module IPython.utils.traitlets), 934
getMetadata() (IPython.utils.newserialized.ISerialized

method), 873
getMetadata() (IPython.utils.newserialized.Serialized

method), 874
getMetadata() (IPython.utils.newserialized.SerializeIt

method), 874
getName() (IPython.core.history.HistorySavingThread

method), 363
getName() (IPython.lib.backgroundjobs.BackgroundJobBase

method), 548
getName() (IPython.lib.backgroundjobs.BackgroundJobExpr

method), 549
getName() (IPython.lib.backgroundjobs.BackgroundJobFunc

method), 550
getName() (IPython.parallel.apps.win32support.ForwarderThread

method), 720
getObject() (IPython.utils.newserialized.IUnSerialized

method), 873
getObject() (IPython.utils.newserialized.UnSerialized

method), 875
getObject() (IPython.utils.newserialized.UnSerializeIt

method), 874
getObject() (IPython.utils.pickleutil.CannedFunction

method), 883
getObject() (IPython.utils.pickleutil.CannedObject

method), 883
getObject() (IPython.utils.pickleutil.Reference

method), 883
getoutput() (IPython.core.interactiveshell.InteractiveShell

method), 382
getPartition() (IPython.parallel.client.map.Map

method), 753
getPartition() (IPython.parallel.client.map.RoundRobinMap

method), 753
getsource() (in module IPython.core.oinspect), 452
getTestCaseNames() (in module

IPython.testing.nosepatch), 840
getTypeDescriptor()

(IPython.utils.newserialized.ISerialized
method), 873

getTypeDescriptor()
(IPython.utils.newserialized.Serialized
method), 874

getTypeDescriptor()
(IPython.utils.newserialized.SerializeIt
method), 874

global_matches() (IPython.core.completer.Completer
method), 299

global_matches() (IPython.core.completer.IPCompleter
method), 301

graph (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 797

Green (IPython.utils.coloransi.InputTermColors at-
tribute), 857

Green (IPython.utils.coloransi.TermColors at-
tribute), 858

grep() (in module IPython.utils.text), 897
grep() (IPython.utils.text.SList method), 896
Group (class in IPython.lib.pretty), 582
group() (IPython.lib.pretty.PrettyPrinter method),

583
group() (IPython.lib.pretty.RepresentationPrinter

method), 584
GroupQueue (class in IPython.lib.pretty), 582

H
handle() (IPython.core.prefilter.AliasHandler

method), 464
handle() (IPython.core.prefilter.AutoHandler

method), 472
handle() (IPython.core.prefilter.EmacsHandler

method), 479
handle() (IPython.core.prefilter.HelpHandler

method), 482
handle() (IPython.core.prefilter.MacroHandler

method), 490
handle() (IPython.core.prefilter.MagicHandler

method), 492
handle() (IPython.core.prefilter.PrefilterHandler

method), 498
handle() (IPython.core.prefilter.ShellEscapeHandler

method), 511
handle_command_def() (IPython.core.debugger.Pdb

method), 310
handle_heart_failure()

(IPython.parallel.controller.heartmonitor.HeartMonitor
method), 782

handle_heart_failure()
(IPython.parallel.controller.hub.Hub
method), 788

handle_new_heart() (IPython.parallel.controller.heartmonitor.HeartMonitor
method), 782

handle_new_heart() (IPython.parallel.controller.hub.Hub
method), 788

1010 Index

IPython Documentation, Release 0.11

handle_pong() (IPython.parallel.controller.heartmonitor.HeartMonitor
method), 782

handle_result() (IPython.parallel.controller.scheduler.TaskScheduler
method), 797

handle_stderr() (IPython.parallel.apps.launcher.IPClusterLauncher
method), 643

handle_stderr() (IPython.parallel.apps.launcher.LocalControllerLauncher
method), 657

handle_stderr() (IPython.parallel.apps.launcher.LocalEngineLauncher
method), 660

handle_stderr() (IPython.parallel.apps.launcher.LocalProcessLauncher
method), 665

handle_stderr() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
method), 668

handle_stderr() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
method), 671

handle_stderr() (IPython.parallel.apps.launcher.MPIExecLauncher
method), 674

handle_stderr() (IPython.parallel.apps.launcher.SSHControllerLauncher
method), 697

handle_stderr() (IPython.parallel.apps.launcher.SSHEngineLauncher
method), 700

handle_stderr() (IPython.parallel.apps.launcher.SSHLauncher
method), 706

handle_stdout() (IPython.parallel.apps.launcher.IPClusterLauncher
method), 643

handle_stdout() (IPython.parallel.apps.launcher.LocalControllerLauncher
method), 657

handle_stdout() (IPython.parallel.apps.launcher.LocalEngineLauncher
method), 660

handle_stdout() (IPython.parallel.apps.launcher.LocalProcessLauncher
method), 665

handle_stdout() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
method), 668

handle_stdout() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
method), 671

handle_stdout() (IPython.parallel.apps.launcher.MPIExecLauncher
method), 674

handle_stdout() (IPython.parallel.apps.launcher.SSHControllerLauncher
method), 698

handle_stdout() (IPython.parallel.apps.launcher.SSHEngineLauncher
method), 700

handle_stdout() (IPython.parallel.apps.launcher.SSHLauncher
method), 706

handle_stranded_tasks()
(IPython.parallel.controller.scheduler.TaskScheduler
method), 797

handle_unmet_dependency()

(IPython.parallel.controller.scheduler.TaskScheduler
method), 797

handler() (IPython.core.ultratb.AutoFormattedTB
method), 538

handler() (IPython.core.ultratb.ColorTB method),
539

handler() (IPython.core.ultratb.FormattedTB
method), 541

handler() (IPython.core.ultratb.VerboseTB method),
546

handler_name (IPython.core.prefilter.AliasHandler
attribute), 464

handler_name (IPython.core.prefilter.AutoHandler
attribute), 472

handler_name (IPython.core.prefilter.EmacsHandler
attribute), 479

handler_name (IPython.core.prefilter.HelpHandler
attribute), 482

handler_name (IPython.core.prefilter.MacroHandler
attribute), 490

handler_name (IPython.core.prefilter.MagicHandler
attribute), 492

handler_name (IPython.core.prefilter.PrefilterHandler
attribute), 498

handler_name (IPython.core.prefilter.ShellEscapeHandler
attribute), 511

handlers (IPython.core.prefilter.PrefilterManager at-
tribute), 501

has_comment() (in module
IPython.core.inputsplitter), 373

has_kernel (IPython.parallel.engine.kernelstarter.KernelStarter
attribute), 806

has_key (IPython.parallel.client.client.Metadata at-
tribute), 751

has_key (IPython.parallel.util.Namespace attribute),
826

has_key (IPython.parallel.util.ReverseDict at-
tribute), 827

has_key (IPython.testing.globalipapp.ipnsdict
attribute), 833

has_key (IPython.utils.coloransi.ColorSchemeTable
attribute), 855

has_key (IPython.utils.ipstruct.Struct attribute), 869
has_key() (IPython.config.loader.Config method),

279
has_key() (IPython.utils.pickleshare.PickleShareDB

method), 881
has_open_quotes() (in module

Index 1011

IPython Documentation, Release 0.11

IPython.core.completer), 302
hasattr() (IPython.utils.ipstruct.Struct method), 869
HasTraits (class in IPython.utils.traitlets), 919
hb (IPython.parallel.controller.hub.HubFactory at-

tribute), 792
hcompress() (IPython.utils.pickleshare.PickleShareDB

method), 881
hdict() (IPython.utils.pickleshare.PickleShareDB

method), 881
Heart (class in IPython.parallel.controller.heartmonitor),

781
heartbeat (IPython.parallel.controller.hub.EngineConnector

attribute), 785
HeartMonitor (class in

IPython.parallel.controller.heartmonitor),
781

heartmonitor (IPython.parallel.controller.hub.Hub
attribute), 788

heartmonitor (IPython.parallel.controller.hub.HubFactory
attribute), 792

hearts (IPython.parallel.controller.heartmonitor.HeartMonitor
attribute), 782

hearts (IPython.parallel.controller.hub.Hub at-
tribute), 788

help_a() (IPython.core.debugger.Pdb method), 310
help_alias() (IPython.core.debugger.Pdb method),

310
help_args() (IPython.core.debugger.Pdb method),

310
help_b() (IPython.core.debugger.Pdb method), 310
help_break() (IPython.core.debugger.Pdb method),

310
help_bt() (IPython.core.debugger.Pdb method), 310
help_c() (IPython.core.debugger.Pdb method), 310
help_cl() (IPython.core.debugger.Pdb method), 310
help_clear() (IPython.core.debugger.Pdb method),

310
help_commands() (IPython.core.debugger.Pdb

method), 310
help_condition() (IPython.core.debugger.Pdb

method), 310
help_cont() (IPython.core.debugger.Pdb method),

310
help_continue() (IPython.core.debugger.Pdb

method), 310
help_d() (IPython.core.debugger.Pdb method), 310
help_debug() (IPython.core.debugger.Pdb method),

310

help_disable() (IPython.core.debugger.Pdb method),
310

help_down() (IPython.core.debugger.Pdb method),
310

help_enable() (IPython.core.debugger.Pdb method),
310

help_EOF() (IPython.core.debugger.Pdb method),
310

help_exec() (IPython.core.debugger.Pdb method),
311

help_exit() (IPython.core.debugger.Pdb method),
311

help_h() (IPython.core.debugger.Pdb method), 311
help_help() (IPython.core.debugger.Pdb method),

311
help_ignore() (IPython.core.debugger.Pdb method),

311
help_j() (IPython.core.debugger.Pdb method), 311
help_jump() (IPython.core.debugger.Pdb method),

311
help_l() (IPython.core.debugger.Pdb method), 311
help_list() (IPython.core.debugger.Pdb method), 311
help_n() (IPython.core.debugger.Pdb method), 311
help_next() (IPython.core.debugger.Pdb method),

311
help_p() (IPython.core.debugger.Pdb method), 311
help_pdb() (IPython.core.debugger.Pdb method),

311
help_pp() (IPython.core.debugger.Pdb method), 311
help_q() (IPython.core.debugger.Pdb method), 311
help_quit() (IPython.core.debugger.Pdb method),

311
help_r() (IPython.core.debugger.Pdb method), 311
help_restart() (IPython.core.debugger.Pdb method),

311
help_return() (IPython.core.debugger.Pdb method),

311
help_run() (IPython.core.debugger.Pdb method),

311
help_s() (IPython.core.debugger.Pdb method), 311
help_step() (IPython.core.debugger.Pdb method),

311
help_tbreak() (IPython.core.debugger.Pdb method),

311
help_u() (IPython.core.debugger.Pdb method), 311
help_unalias() (IPython.core.debugger.Pdb method),

311
help_unt() (IPython.core.debugger.Pdb method),

1012 Index

IPython Documentation, Release 0.11

311
help_until() (IPython.core.debugger.Pdb method),

311
help_up() (IPython.core.debugger.Pdb method), 311
help_w() (IPython.core.debugger.Pdb method), 311
help_whatis() (IPython.core.debugger.Pdb method),

311
help_where() (IPython.core.debugger.Pdb method),

311
HelpHandler (class in IPython.core.prefilter), 482
hget() (IPython.utils.pickleshare.PickleShareDB

method), 881
hist_file (IPython.core.history.HistoryManager at-

tribute), 361
history (IPython.parallel.client.client.Client at-

tribute), 748
history (IPython.parallel.client.view.DirectView at-

tribute), 758
history (IPython.parallel.client.view.LoadBalancedView

attribute), 764
history (IPython.parallel.client.view.View attribute),

769
history_length (IPython.core.interactiveshell.InteractiveShell

attribute), 382
history_manager (IPython.core.interactiveshell.InteractiveShell

attribute), 382
HistoryManager (class in IPython.core.history), 359
HistorySavingThread (class in IPython.core.history),

363
HomeDirError (class in IPython.utils.path), 877
hook (IPython.core.display_trap.DisplayTrap

attribute), 317
hostname (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 698
hostname (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 701
hostname (IPython.parallel.apps.launcher.SSHLauncher

attribute), 706
hset() (IPython.utils.pickleshare.PickleShareDB

method), 881
HTMLFormatter (class in IPython.core.formatters),

337
Hub (class in IPython.parallel.controller.hub), 786
hub_history() (IPython.parallel.client.client.Client

method), 748
HubFactory (class in

IPython.parallel.controller.hub), 791
hwm (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 797

I
id (IPython.parallel.controller.heartmonitor.Heart at-

tribute), 781
id (IPython.parallel.controller.hub.EngineConnector

attribute), 785
id (IPython.parallel.engine.engine.EngineFactory at-

tribute), 804
ident (IPython.core.history.HistorySavingThread at-

tribute), 363
ident (IPython.lib.backgroundjobs.BackgroundJobBase

attribute), 548
ident (IPython.lib.backgroundjobs.BackgroundJobExpr

attribute), 549
ident (IPython.lib.backgroundjobs.BackgroundJobFunc

attribute), 550
ident (IPython.parallel.apps.win32support.ForwarderThread

attribute), 720
ident (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 797
ident (IPython.parallel.engine.engine.EngineFactory

attribute), 804
ident (IPython.parallel.engine.streamkernel.Kernel

attribute), 810
identchars (IPython.core.debugger.Pdb attribute),

311
idgrep() (in module IPython.utils.text), 897
IdInUse (class in IPython.parallel.error), 816
ids (IPython.parallel.client.client.Client attribute),

748
ids (IPython.parallel.controller.hub.Hub attribute),

788
igrep() (in module IPython.utils.text), 897
imap() (IPython.parallel.client.view.DirectView

method), 758
imap() (IPython.parallel.client.view.LoadBalancedView

method), 764
imap() (IPython.parallel.client.view.View method),

769
import_fail_info() (in module IPython.utils.attic),

850
import_item() (in module

IPython.utils.importstring), 864
import_module() (in module

IPython.lib.deepreload), 554
import_pylab() (in module IPython.lib.pylabtools),

585

Index 1013

IPython Documentation, Release 0.11

import_statements (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 617

importer (IPython.parallel.client.view.DirectView
attribute), 758

ImpossibleDependency (class in
IPython.parallel.error), 816

incoming_registrations
(IPython.parallel.controller.hub.Hub
attribute), 788

indent() (in module
IPython.parallel.apps.winhpcjob), 739

indent() (in module IPython.utils.text), 897
indent() (IPython.lib.pretty.PrettyPrinter method),

583
indent() (IPython.lib.pretty.RepresentationPrinter

method), 584
indent_spaces (IPython.core.inputsplitter.InputSplitter

attribute), 371
indent_spaces (IPython.core.inputsplitter.IPythonInputSplitter

attribute), 370
IndentOut (class in IPython.testing.mkdoctests), 839
index (IPython.utils.text.LSString attribute), 891
index (IPython.utils.text.SList attribute), 896
info() (in module IPython.utils.warn), 936
info() (IPython.core.interactiveshell.SeparateUnicode

method), 416
info() (IPython.core.oinspect.Inspector method), 449
info() (IPython.utils.traitlets.Any method), 901
info() (IPython.utils.traitlets.Bool method), 902
info() (IPython.utils.traitlets.Bytes method), 903
info() (IPython.utils.traitlets.CaselessStrEnum

method), 911
info() (IPython.utils.traitlets.CBool method), 904
info() (IPython.utils.traitlets.CBytes method), 905
info() (IPython.utils.traitlets.CComplex method),

906
info() (IPython.utils.traitlets.CFloat method), 907
info() (IPython.utils.traitlets.CInt method), 908
info() (IPython.utils.traitlets.ClassBasedTraitType

method), 912
info() (IPython.utils.traitlets.CLong method), 909
info() (IPython.utils.traitlets.Complex method), 913
info() (IPython.utils.traitlets.Container method), 914
info() (IPython.utils.traitlets.CUnicode method), 910
info() (IPython.utils.traitlets.Dict method), 915
info() (IPython.utils.traitlets.DottedObjectName

method), 916
info() (IPython.utils.traitlets.Enum method), 917

info() (IPython.utils.traitlets.Float method), 918
info() (IPython.utils.traitlets.Instance method), 921
info() (IPython.utils.traitlets.Int method), 921
info() (IPython.utils.traitlets.List method), 923
info() (IPython.utils.traitlets.Long method), 924
info() (IPython.utils.traitlets.ObjectName method),

925
info() (IPython.utils.traitlets.Set method), 927
info() (IPython.utils.traitlets.TCPAddress method),

928
info() (IPython.utils.traitlets.This method), 929
info() (IPython.utils.traitlets.TraitType method), 930
info() (IPython.utils.traitlets.Tuple method), 932
info() (IPython.utils.traitlets.Type method), 933
info() (IPython.utils.traitlets.Unicode method), 934
info_text (IPython.core.interactiveshell.SeparateUnicode

attribute), 416
info_text (IPython.utils.traitlets.Any attribute), 901
info_text (IPython.utils.traitlets.Bool attribute), 902
info_text (IPython.utils.traitlets.Bytes attribute), 903
info_text (IPython.utils.traitlets.CaselessStrEnum

attribute), 911
info_text (IPython.utils.traitlets.CBool attribute),

904
info_text (IPython.utils.traitlets.CBytes attribute),

905
info_text (IPython.utils.traitlets.CComplex at-

tribute), 906
info_text (IPython.utils.traitlets.CFloat attribute),

907
info_text (IPython.utils.traitlets.CInt attribute), 908
info_text (IPython.utils.traitlets.ClassBasedTraitType

attribute), 912
info_text (IPython.utils.traitlets.CLong attribute),

909
info_text (IPython.utils.traitlets.Complex attribute),

913
info_text (IPython.utils.traitlets.Container attribute),

914
info_text (IPython.utils.traitlets.CUnicode attribute),

910
info_text (IPython.utils.traitlets.Dict attribute), 916
info_text (IPython.utils.traitlets.DottedObjectName

attribute), 916
info_text (IPython.utils.traitlets.Enum attribute), 917
info_text (IPython.utils.traitlets.Float attribute), 918
info_text (IPython.utils.traitlets.Instance attribute),

921

1014 Index

IPython Documentation, Release 0.11

info_text (IPython.utils.traitlets.Int attribute), 921
info_text (IPython.utils.traitlets.List attribute), 923
info_text (IPython.utils.traitlets.Long attribute), 924
info_text (IPython.utils.traitlets.ObjectName at-

tribute), 925
info_text (IPython.utils.traitlets.Set attribute), 927
info_text (IPython.utils.traitlets.TCPAddress at-

tribute), 928
info_text (IPython.utils.traitlets.This attribute), 929
info_text (IPython.utils.traitlets.TraitType attribute),

930
info_text (IPython.utils.traitlets.Tuple attribute), 932
info_text (IPython.utils.traitlets.Type attribute), 933
info_text (IPython.utils.traitlets.Unicode attribute),

934
init() (IPython.core.interactiveshell.SeparateUnicode

method), 416
init() (IPython.utils.traitlets.Any method), 901
init() (IPython.utils.traitlets.Bool method), 902
init() (IPython.utils.traitlets.Bytes method), 903
init() (IPython.utils.traitlets.CaselessStrEnum

method), 911
init() (IPython.utils.traitlets.CBool method), 904
init() (IPython.utils.traitlets.CBytes method), 905
init() (IPython.utils.traitlets.CComplex method), 906
init() (IPython.utils.traitlets.CFloat method), 907
init() (IPython.utils.traitlets.CInt method), 908
init() (IPython.utils.traitlets.ClassBasedTraitType

method), 912
init() (IPython.utils.traitlets.CLong method), 909
init() (IPython.utils.traitlets.Complex method), 913
init() (IPython.utils.traitlets.Container method), 914
init() (IPython.utils.traitlets.CUnicode method), 910
init() (IPython.utils.traitlets.Dict method), 916
init() (IPython.utils.traitlets.DottedObjectName

method), 916
init() (IPython.utils.traitlets.Enum method), 917
init() (IPython.utils.traitlets.Float method), 918
init() (IPython.utils.traitlets.Instance method), 921
init() (IPython.utils.traitlets.Int method), 921
init() (IPython.utils.traitlets.List method), 923
init() (IPython.utils.traitlets.Long method), 924
init() (IPython.utils.traitlets.ObjectName method),

925
init() (IPython.utils.traitlets.Set method), 927
init() (IPython.utils.traitlets.TCPAddress method),

928
init() (IPython.utils.traitlets.This method), 929

init() (IPython.utils.traitlets.TraitType method), 930
init() (IPython.utils.traitlets.Tuple method), 932
init() (IPython.utils.traitlets.Type method), 933
init() (IPython.utils.traitlets.Unicode method), 934
init_alias() (IPython.core.interactiveshell.InteractiveShell

method), 382
init_aliases() (IPython.core.alias.AliasManager

method), 285
init_builtins() (IPython.core.interactiveshell.InteractiveShell

method), 382
init_checkers() (IPython.core.prefilter.PrefilterManager

method), 501
init_code() (IPython.core.shellapp.InteractiveShellApp

method), 534
init_completer() (IPython.core.interactiveshell.InteractiveShell

method), 382
init_config_files() (IPython.core.application.BaseIPythonApplication

method), 289
init_config_files() (IPython.core.profileapp.ProfileCreate

method), 518
init_config_files() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 589
init_config_files() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 599
init_config_files() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 605
init_config_files() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 611
init_config_files() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 617
init_config_files() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 623
init_config_files() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 632
init_crash_handler()

(IPython.core.application.BaseIPythonApplication
method), 289

init_crash_handler()
(IPython.core.profileapp.ProfileCreate
method), 518

init_crash_handler()
(IPython.parallel.apps.baseapp.BaseParallelApplication
method), 589

init_crash_handler()
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 599

init_crash_handler()
(IPython.parallel.apps.ipclusterapp.IPClusterStart

Index 1015

IPython Documentation, Release 0.11

method), 605
init_crash_handler()

(IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 611

init_crash_handler()
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 617

init_crash_handler()
(IPython.parallel.apps.ipengineapp.IPEngineApp
method), 623

init_crash_handler()
(IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 632

init_create_namespaces()
(IPython.core.interactiveshell.InteractiveShell
method), 382

init_db() (IPython.core.history.HistoryManager
method), 361

init_display_formatter()
(IPython.core.interactiveshell.InteractiveShell
method), 382

init_display_pub() (IPython.core.interactiveshell.InteractiveShell
method), 382

init_displayhook() (IPython.core.interactiveshell.InteractiveShell
method), 382

init_encoding() (IPython.core.interactiveshell.InteractiveShell
method), 382

init_engine() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 624

init_environment() (IPython.core.interactiveshell.InteractiveShell
method), 382

init_extension_manager()
(IPython.core.interactiveshell.InteractiveShell
method), 382

init_extensions() (IPython.core.shellapp.InteractiveShellApp
method), 534

init_handlers() (IPython.core.prefilter.PrefilterManager
method), 501

init_history() (IPython.core.interactiveshell.InteractiveShell
method), 382

init_hooks() (IPython.core.interactiveshell.InteractiveShell
method), 382

init_hub() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 617

init_hub() (IPython.parallel.controller.hub.HubFactory
method), 792

init_inspector() (IPython.core.interactiveshell.InteractiveShell
method), 383

init_instance_attrs() (IPython.core.interactiveshell.InteractiveShell
method), 383

init_io() (IPython.core.interactiveshell.InteractiveShell
method), 383

init_ipython() (in module IPython.core.history), 364
init_ipython_dir() (IPython.core.interactiveshell.InteractiveShell

method), 383
init_launchers() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 599
init_launchers() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 605
init_logger() (IPython.core.interactiveshell.InteractiveShell

method), 383
init_logging() (IPython.config.application.Application

method), 264
init_logging() (IPython.core.application.BaseIPythonApplication

method), 289
init_logging() (IPython.core.profileapp.ProfileApp

method), 514
init_logging() (IPython.core.profileapp.ProfileCreate

method), 518
init_logging() (IPython.core.profileapp.ProfileList

method), 522
init_logging() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 589
init_logging() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 595
init_logging() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 599
init_logging() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 605
init_logging() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 611
init_logging() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 617
init_logging() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 624
init_logging() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 632
init_logstart() (IPython.core.interactiveshell.InteractiveShell

method), 383
init_magics() (IPython.core.interactiveshell.InteractiveShell

method), 383
init_mpi() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 624
init_payload() (IPython.core.interactiveshell.InteractiveShell

method), 383
init_pdb() (IPython.core.interactiveshell.InteractiveShell

1016 Index

IPython Documentation, Release 0.11

method), 383
init_plugin_manager()

(IPython.core.interactiveshell.InteractiveShell
method), 383

init_prefilter() (IPython.core.interactiveshell.InteractiveShell
method), 383

init_profile_dir() (IPython.core.application.BaseIPythonApplication
method), 289

init_profile_dir() (IPython.core.interactiveshell.InteractiveShell
method), 383

init_profile_dir() (IPython.core.profileapp.ProfileCreate
method), 518

init_profile_dir() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 589

init_profile_dir() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 599

init_profile_dir() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 605

init_profile_dir() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 611

init_profile_dir() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 617

init_profile_dir() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 624

init_profile_dir() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 632

init_prompts() (IPython.core.interactiveshell.InteractiveShell
method), 383

init_pushd_popd_magic()
(IPython.core.interactiveshell.InteractiveShell
method), 383

init_readline() (IPython.core.interactiveshell.InteractiveShell
method), 383

init_record() (in module
IPython.parallel.controller.hub), 794

init_reload_doctest()
(IPython.core.interactiveshell.InteractiveShell
method), 383

init_schedulers() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 617

init_script (IPython.parallel.apps.ipengineapp.MPI
attribute), 628

init_shell() (IPython.core.shellapp.InteractiveShellApp
method), 534

init_signal() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 599

init_signal() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 605

init_syntax_highlighting()
(IPython.core.interactiveshell.InteractiveShell
method), 383

init_sys_modules() (IPython.core.interactiveshell.InteractiveShell
method), 383

init_traceback_handlers()
(IPython.core.interactiveshell.InteractiveShell
method), 383

init_transformers() (IPython.core.prefilter.PrefilterManager
method), 501

init_user_ns() (IPython.core.interactiveshell.InteractiveShell
method), 383

init_watcher() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 632

initialize() (IPython.config.application.Application
method), 265

initialize() (IPython.core.application.BaseIPythonApplication
method), 289

initialize() (IPython.core.profileapp.ProfileApp
method), 514

initialize() (IPython.core.profileapp.ProfileCreate
method), 518

initialize() (IPython.core.profileapp.ProfileList
method), 522

initialize() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 589

initialize() (IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 595

initialize() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 600

initialize() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 605

initialize() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 611

initialize() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 617

initialize() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 624

initialize() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 632

initialize_subcommand()
(IPython.config.application.Application
method), 265

initialize_subcommand()
(IPython.core.application.BaseIPythonApplication
method), 289

initialize_subcommand()
(IPython.core.profileapp.ProfileApp

Index 1017

IPython Documentation, Release 0.11

method), 514
initialize_subcommand()

(IPython.core.profileapp.ProfileCreate
method), 518

initialize_subcommand()
(IPython.core.profileapp.ProfileList
method), 522

initialize_subcommand()
(IPython.parallel.apps.baseapp.BaseParallelApplication
method), 589

initialize_subcommand()
(IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 595

initialize_subcommand()
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 600

initialize_subcommand()
(IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 605

initialize_subcommand()
(IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 611

initialize_subcommand()
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 617

initialize_subcommand()
(IPython.parallel.apps.ipengineapp.IPEngineApp
method), 624

initialize_subcommand()
(IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 632

initialized() (IPython.config.application.Application
class method), 265

initialized() (IPython.config.configurable.SingletonConfigurable
class method), 274

initialized() (IPython.core.application.BaseIPythonApplication
class method), 289

initialized() (IPython.core.interactiveshell.InteractiveShell
class method), 383

initialized() (IPython.core.profileapp.ProfileApp
class method), 514

initialized() (IPython.core.profileapp.ProfileCreate
class method), 518

initialized() (IPython.core.profileapp.ProfileList
class method), 522

initialized() (IPython.parallel.apps.baseapp.BaseParallelApplication
class method), 589

initialized() (IPython.parallel.apps.ipclusterapp.IPClusterApp

class method), 595
initialized() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

class method), 600
initialized() (IPython.parallel.apps.ipclusterapp.IPClusterStart

class method), 606
initialized() (IPython.parallel.apps.ipclusterapp.IPClusterStop

class method), 611
initialized() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

class method), 617
initialized() (IPython.parallel.apps.ipengineapp.IPEngineApp

class method), 624
initialized() (IPython.parallel.apps.iploggerapp.IPLoggerApp

class method), 632
input_hist_parsed (IPython.core.history.HistoryManager

attribute), 361
input_hist_raw (IPython.core.history.HistoryManager

attribute), 361
input_mode (IPython.core.inputsplitter.InputSplitter

attribute), 371
input_mode (IPython.core.inputsplitter.IPythonInputSplitter

attribute), 370
input_prefilter() (in module IPython.core.hooks),

367
input_splitter (IPython.core.interactiveshell.InteractiveShell

attribute), 383
InputHookManager (class in IPython.lib.inputhook),

570
InputSplitter (class in IPython.core.inputsplitter),

370
InputTermColors (class in IPython.utils.coloransi),

856
insert (IPython.utils.text.SList attribute), 896
inspect_error() (in module IPython.core.ultratb), 547
inspect_object() (in module IPython.utils.generics),

863
Inspector (class in IPython.core.oinspect), 449
install_payload_page() (in module

IPython.core.payloadpage), 456
Instance (class in IPython.utils.traitlets), 920
instance() (IPython.config.application.Application

class method), 265
instance() (IPython.config.configurable.SingletonConfigurable

class method), 274
instance() (IPython.core.application.BaseIPythonApplication

class method), 289
instance() (IPython.core.interactiveshell.InteractiveShell

class method), 383
instance() (IPython.core.profileapp.ProfileApp class

1018 Index

IPython Documentation, Release 0.11

method), 514
instance() (IPython.core.profileapp.ProfileCreate

class method), 518
instance() (IPython.core.profileapp.ProfileList class

method), 522
instance() (IPython.parallel.apps.baseapp.BaseParallelApplication

class method), 589
instance() (IPython.parallel.apps.ipclusterapp.IPClusterApp

class method), 595
instance() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

class method), 600
instance() (IPython.parallel.apps.ipclusterapp.IPClusterStart

class method), 606
instance() (IPython.parallel.apps.ipclusterapp.IPClusterStop

class method), 611
instance() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

class method), 617
instance() (IPython.parallel.apps.ipengineapp.IPEngineApp

class method), 624
instance() (IPython.parallel.apps.iploggerapp.IPLoggerApp

class method), 632
instance_init() (IPython.core.interactiveshell.SeparateUnicode

method), 416
instance_init() (IPython.utils.traitlets.Any method),

901
instance_init() (IPython.utils.traitlets.Bool method),

902
instance_init() (IPython.utils.traitlets.Bytes method),

903
instance_init() (IPython.utils.traitlets.CaselessStrEnum

method), 911
instance_init() (IPython.utils.traitlets.CBool

method), 904
instance_init() (IPython.utils.traitlets.CBytes

method), 905
instance_init() (IPython.utils.traitlets.CComplex

method), 906
instance_init() (IPython.utils.traitlets.CFloat

method), 907
instance_init() (IPython.utils.traitlets.CInt method),

908
instance_init() (IPython.utils.traitlets.ClassBasedTraitType

method), 912
instance_init() (IPython.utils.traitlets.CLong

method), 909
instance_init() (IPython.utils.traitlets.Complex

method), 913
instance_init() (IPython.utils.traitlets.Container

method), 914
instance_init() (IPython.utils.traitlets.CUnicode

method), 910
instance_init() (IPython.utils.traitlets.Dict method),

916
instance_init() (IPython.utils.traitlets.DottedObjectName

method), 916
instance_init() (IPython.utils.traitlets.Enum

method), 917
instance_init() (IPython.utils.traitlets.Float method),

918
instance_init() (IPython.utils.traitlets.Instance

method), 921
instance_init() (IPython.utils.traitlets.Int method),

921
instance_init() (IPython.utils.traitlets.List method),

923
instance_init() (IPython.utils.traitlets.Long method),

924
instance_init() (IPython.utils.traitlets.ObjectName

method), 925
instance_init() (IPython.utils.traitlets.Set method),

927
instance_init() (IPython.utils.traitlets.TCPAddress

method), 928
instance_init() (IPython.utils.traitlets.This method),

929
instance_init() (IPython.utils.traitlets.TraitType

method), 930
instance_init() (IPython.utils.traitlets.Tuple

method), 932
instance_init() (IPython.utils.traitlets.Type method),

933
instance_init() (IPython.utils.traitlets.Unicode

method), 934
Int (class in IPython.utils.traitlets), 921
int_id (IPython.parallel.engine.streamkernel.Kernel

attribute), 810
integer_loglevel() (in module IPython.parallel.util),

828
interaction() (IPython.core.debugger.Pdb method),

311
interactive() (in module IPython.parallel.util), 828
InteractiveRunner (class in IPython.lib.irunner), 575
InteractiveShell (class in

IPython.core.interactiveshell), 375
InteractiveShellABC (class in

IPython.core.interactiveshell), 415

Index 1019

IPython Documentation, Release 0.11

InteractiveShellApp (class in IPython.core.shellapp),
533

interrupt_kernel() (IPython.parallel.engine.kernelstarter.KernelStarter
method), 806

interrupt_then_kill()
(IPython.parallel.apps.launcher.IPClusterLauncher
method), 643

interrupt_then_kill()
(IPython.parallel.apps.launcher.LocalControllerLauncher
method), 657

interrupt_then_kill()
(IPython.parallel.apps.launcher.LocalEngineLauncher
method), 660

interrupt_then_kill()
(IPython.parallel.apps.launcher.LocalEngineSetLauncher
method), 662

interrupt_then_kill()
(IPython.parallel.apps.launcher.LocalProcessLauncher
method), 665

interrupt_then_kill()
(IPython.parallel.apps.launcher.MPIExecControllerLauncher
method), 668

interrupt_then_kill()
(IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
method), 671

interrupt_then_kill()
(IPython.parallel.apps.launcher.MPIExecLauncher
method), 674

interrupt_then_kill()
(IPython.parallel.apps.launcher.SSHControllerLauncher
method), 698

interrupt_then_kill()
(IPython.parallel.apps.launcher.SSHEngineLauncher
method), 701

interrupt_then_kill()
(IPython.parallel.apps.launcher.SSHEngineSetLauncher
method), 704

interrupt_then_kill()
(IPython.parallel.apps.launcher.SSHLauncher
method), 706

intersection (IPython.parallel.controller.dependency.Dependency
attribute), 773

intersection_update (IPython.parallel.controller.dependency.Dependency
attribute), 773

intro (IPython.core.debugger.Pdb attribute), 312
InvalidAliasError (class in IPython.core.alias), 286
InvalidClientID (class in IPython.parallel.error), 816
InvalidDeferredID (class in IPython.parallel.error),

816
InvalidDependency (class in IPython.parallel.error),

817
InvalidEngineID (class in IPython.parallel.error),

817
InvalidProperty (class in IPython.parallel.error), 817
iopub (IPython.parallel.controller.hub.HubFactory

attribute), 792
iopub_stream (IPython.parallel.engine.streamkernel.Kernel

attribute), 810
IOStream (class in IPython.utils.io), 865
IOTerm (class in IPython.utils.io), 865
ip (IPython.parallel.controller.hub.HubFactory at-

tribute), 792
ip (IPython.parallel.engine.engine.EngineFactory at-

tribute), 804
ip (IPython.parallel.factory.RegistrationFactory at-

tribute), 824
ipcluster_args (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 643
ipcluster_cmd (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 643
ipcluster_n (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 643
ipcluster_subcommand

(IPython.parallel.apps.launcher.IPClusterLauncher
attribute), 643

IPClusterApp (class in
IPython.parallel.apps.ipclusterapp), 594

IPClusterEngines (class in
IPython.parallel.apps.ipclusterapp), 597

IPClusterLauncher (class in
IPython.parallel.apps.launcher), 642

IPClusterStart (class in
IPython.parallel.apps.ipclusterapp), 603

IPClusterStop (class in
IPython.parallel.apps.ipclusterapp), 609

IPCompleter (class in IPython.core.completer), 300
IPControllerApp (class in

IPython.parallel.apps.ipcontrollerapp),
615

IPControllerJob (class in
IPython.parallel.apps.winhpcjob), 721

IPControllerTask (class in
IPython.parallel.apps.winhpcjob), 725

ipdocstring() (in module IPython.testing.ipunittest),
838

IPEngineApp (class in

1020 Index

IPython Documentation, Release 0.11

IPython.parallel.apps.ipengineapp), 622
IPEngineSetJob (class in

IPython.parallel.apps.winhpcjob), 727
IPEngineTask (class in

IPython.parallel.apps.winhpcjob), 730
ipexec() (in module IPython.testing.tools), 847
ipexec_validate() (in module IPython.testing.tools),

847
ipfunc() (in module

IPython.testing.plugin.dtexample), 840
IPLoggerApp (class in

IPython.parallel.apps.iploggerapp), 630
ipnsdict (class in IPython.testing.globalipapp), 833
iprand() (in module

IPython.testing.plugin.dtexample), 841
iprand_all() (in module

IPython.testing.plugin.dtexample), 841
IPTester (class in IPython.testing.iptest), 835
IPyAutocall (class in IPython.core.autocall), 293
IPyAutocallChecker (class in IPython.core.prefilter),

484
ipyfunc2() (in module

IPython.testing.plugin.simple), 843
IPyPromptTransformer (class in

IPython.core.prefilter), 485
IPython.config.application (module), 263
IPython.config.configurable (module), 268
IPython.config.loader (module), 276
IPython.core.alias (module), 283
IPython.core.application (module), 287
IPython.core.autocall (module), 292
IPython.core.builtin_trap (module), 294
IPython.core.compilerop (module), 296
IPython.core.completer (module), 297
IPython.core.completerlib (module), 303
IPython.core.crashhandler (module), 304
IPython.core.debugger (module), 306
IPython.core.display (module), 315
IPython.core.display_trap (module), 316
IPython.core.displayhook (module), 318
IPython.core.displaypub (module), 322
IPython.core.error (module), 326
IPython.core.excolors (module), 327
IPython.core.extensions (module), 328
IPython.core.formatters (module), 330
IPython.core.history (module), 358
IPython.core.hooks (module), 366
IPython.core.inputsplitter (module), 368

IPython.core.interactiveshell (module), 375
IPython.core.ipapi (module), 417
IPython.core.logger (module), 417
IPython.core.macro (module), 419
IPython.core.magic (module), 420
IPython.core.magic_arguments (module), 444
IPython.core.oinspect (module), 448
IPython.core.page (module), 452
IPython.core.payload (module), 453
IPython.core.payloadpage (module), 456
IPython.core.plugin (module), 457
IPython.core.prefilter (module), 461
IPython.core.profileapp (module), 512
IPython.core.profiledir (module), 525
IPython.core.prompts (module), 529
IPython.core.shellapp (module), 532
IPython.core.splitinput (module), 535
IPython.core.ultratb (module), 536
IPython.lib.backgroundjobs (module), 547
IPython.lib.clipboard (module), 553
IPython.lib.deepreload (module), 553
IPython.lib.demo (module), 554
IPython.lib.guisupport (module), 568
IPython.lib.inputhook (module), 570
IPython.lib.irunner (module), 573
IPython.lib.latextools (module), 579
IPython.lib.pretty (module), 580
IPython.lib.pylabtools (module), 585
IPython.parallel.apps.baseapp (module), 587
IPython.parallel.apps.ipclusterapp (module), 593
IPython.parallel.apps.ipcontrollerapp (module), 615
IPython.parallel.apps.ipengineapp (module), 621
IPython.parallel.apps.iploggerapp (module), 630
IPython.parallel.apps.launcher (module), 636
IPython.parallel.apps.logwatcher (module), 717
IPython.parallel.apps.win32support (module), 720
IPython.parallel.apps.winhpcjob (module), 721
IPython.parallel.client.asyncresult (module), 739
IPython.parallel.client.client (module), 743
IPython.parallel.client.map (module), 752
IPython.parallel.client.remotefunction (module),

754
IPython.parallel.client.view (module), 756
IPython.parallel.controller.dependency (module),

772
IPython.parallel.controller.dictdb (module), 775
IPython.parallel.controller.heartmonitor (module),

781

Index 1021

IPython Documentation, Release 0.11

IPython.parallel.controller.hub (module), 784
IPython.parallel.controller.scheduler (module), 794
IPython.parallel.controller.sqlitedb (module), 800
IPython.parallel.engine.engine (module), 803
IPython.parallel.engine.kernelstarter (module), 806
IPython.parallel.engine.streamkernel (module), 808
IPython.parallel.error (module), 812
IPython.parallel.factory (module), 823
IPython.parallel.util (module), 826
IPython.testing (module), 829
IPython.testing.decorators (module), 830
IPython.testing.globalipapp (module), 832
IPython.testing.iptest (module), 835
IPython.testing.ipunittest (module), 836
IPython.testing.mkdoctests (module), 838
IPython.testing.nosepatch (module), 840
IPython.testing.plugin.dtexample (module), 840
IPython.testing.plugin.show_refs (module), 842
IPython.testing.plugin.simple (module), 843
IPython.testing.plugin.test_ipdoctest (module), 843
IPython.testing.plugin.test_refs (module), 844
IPython.testing.skipdoctest (module), 845
IPython.testing.tools (module), 845
IPython.utils.attic (module), 850
IPython.utils.autoattr (module), 851
IPython.utils.codeutil (module), 854
IPython.utils.coloransi (module), 854
IPython.utils.daemonize (module), 859
IPython.utils.data (module), 859
IPython.utils.decorators (module), 860
IPython.utils.dir2 (module), 860
IPython.utils.doctestreload (module), 860
IPython.utils.frame (module), 861
IPython.utils.generics (module), 862
IPython.utils.growl (module), 863
IPython.utils.importstring (module), 864
IPython.utils.io (module), 864
IPython.utils.ipstruct (module), 867
IPython.utils.jsonutil (module), 871
IPython.utils.newserialized (module), 873
IPython.utils.notification (module), 875
IPython.utils.path (module), 877
IPython.utils.pickleshare (module), 880
IPython.utils.pickleutil (module), 882
IPython.utils.process (module), 884
IPython.utils.PyColorize (module), 848
IPython.utils.strdispatch (module), 885
IPython.utils.sysinfo (module), 886

IPython.utils.syspathcontext (module), 887
IPython.utils.terminal (module), 888
IPython.utils.text (module), 889
IPython.utils.timing (module), 899
IPython.utils.traitlets (module), 900
IPython.utils.upgradedir (module), 935
IPython.utils.warn (module), 935
IPython.utils.wildcard (module), 936
IPython2PythonConverter (class in

IPython.testing.ipunittest), 837
IPYTHON_DIR, 183
ipython_dir (IPython.core.application.BaseIPythonApplication

attribute), 290
ipython_dir (IPython.core.interactiveshell.InteractiveShell

attribute), 384
ipython_dir (IPython.core.profileapp.ProfileCreate

attribute), 519
ipython_dir (IPython.core.profileapp.ProfileList at-

tribute), 523
ipython_dir (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 590
ipython_dir (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 600
ipython_dir (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 606
ipython_dir (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 612
ipython_dir (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 618
ipython_dir (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 624
ipython_dir (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 633
ipython_extension_dir

(IPython.core.extensions.ExtensionManager
attribute), 329

IPythonCoreError (class in IPython.core.error), 326
IPythonDemo (class in IPython.lib.demo), 563
IPythonError (class in IPython.parallel.error), 815
IPythonGrowlError (class in IPython.utils.growl),

863
IPythonInputSplitter (class in

IPython.core.inputsplitter), 369
IPythonLineDemo (class in IPython.lib.demo), 564
IPythonRunner (class in IPython.lib.irunner), 574
is_alive (IPython.parallel.engine.kernelstarter.KernelStarter

attribute), 807
is_alive() (IPython.core.history.HistorySavingThread

1022 Index

IPython Documentation, Release 0.11

method), 363
is_alive() (IPython.lib.backgroundjobs.BackgroundJobBase

method), 548
is_alive() (IPython.lib.backgroundjobs.BackgroundJobExpr

method), 549
is_alive() (IPython.lib.backgroundjobs.BackgroundJobFunc

method), 550
is_alive() (IPython.parallel.apps.win32support.ForwarderThread

method), 720
is_event_loop_running_qt4() (in module

IPython.lib.guisupport), 569
is_event_loop_running_wx() (in module

IPython.lib.guisupport), 569
is_exclusive (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 723
is_exclusive (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 728
is_exclusive (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 734
is_importable() (in module

IPython.core.completerlib), 303
is_parametric (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 726
is_parametric (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 731
is_parametric (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 737
is_rerunnaable (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 726
is_rerunnaable (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 731
is_rerunnaable (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 737
is_shadowed() (in module IPython.core.prefilter),

512
is_type() (in module IPython.utils.wildcard), 936
isAlive() (IPython.core.history.HistorySavingThread

method), 363
isAlive() (IPython.lib.backgroundjobs.BackgroundJobBase

method), 548
isAlive() (IPython.lib.backgroundjobs.BackgroundJobExpr

method), 549
isAlive() (IPython.lib.backgroundjobs.BackgroundJobFunc

method), 550
isAlive() (IPython.parallel.apps.win32support.ForwarderThread

method), 720
isalnum (IPython.utils.text.LSString attribute), 892
isalpha (IPython.utils.text.LSString attribute), 892

isDaemon() (IPython.core.history.HistorySavingThread
method), 363

isDaemon() (IPython.lib.backgroundjobs.BackgroundJobBase
method), 548

isDaemon() (IPython.lib.backgroundjobs.BackgroundJobExpr
method), 549

isDaemon() (IPython.lib.backgroundjobs.BackgroundJobFunc
method), 550

isDaemon() (IPython.parallel.apps.win32support.ForwarderThread
method), 720

isdigit (IPython.utils.text.LSString attribute), 892
isdisjoint (IPython.parallel.controller.dependency.Dependency

attribute), 773
ISerialized (class in IPython.utils.newserialized),

873
isidentifier() (IPython.utils.traitlets.DottedObjectName

method), 917
isidentifier() (IPython.utils.traitlets.ObjectName

method), 926
islower (IPython.utils.text.LSString attribute), 892
isspace (IPython.utils.text.LSString attribute), 892
issubset (IPython.parallel.controller.dependency.Dependency

attribute), 773
issuperset (IPython.parallel.controller.dependency.Dependency

attribute), 774
istitle (IPython.utils.text.LSString attribute), 892
isupper (IPython.utils.text.LSString attribute), 892
items (IPython.config.loader.Config attribute), 279
items (IPython.parallel.client.client.Metadata at-

tribute), 751
items (IPython.parallel.util.Namespace attribute),

826
items (IPython.parallel.util.ReverseDict attribute),

827
items (IPython.testing.globalipapp.ipnsdict at-

tribute), 833
items (IPython.utils.coloransi.ColorSchemeTable at-

tribute), 855
items (IPython.utils.ipstruct.Struct attribute), 869
items() (IPython.utils.pickleshare.PickleShareDB

method), 881
iteritems (IPython.config.loader.Config attribute),

279
iteritems (IPython.parallel.client.client.Metadata at-

tribute), 751
iteritems (IPython.parallel.util.Namespace attribute),

826
iteritems (IPython.parallel.util.ReverseDict at-

Index 1023

IPython Documentation, Release 0.11

tribute), 827
iteritems (IPython.testing.globalipapp.ipnsdict at-

tribute), 834
iteritems (IPython.utils.coloransi.ColorSchemeTable

attribute), 855
iteritems (IPython.utils.ipstruct.Struct attribute), 869
iteritems() (IPython.utils.pickleshare.PickleShareDB

method), 881
iterkeys (IPython.config.loader.Config attribute),

279
iterkeys (IPython.parallel.client.client.Metadata at-

tribute), 751
iterkeys (IPython.parallel.util.Namespace attribute),

826
iterkeys (IPython.parallel.util.ReverseDict attribute),

827
iterkeys (IPython.testing.globalipapp.ipnsdict

attribute), 834
iterkeys (IPython.utils.coloransi.ColorSchemeTable

attribute), 855
iterkeys (IPython.utils.ipstruct.Struct attribute), 869
iterkeys() (IPython.utils.pickleshare.PickleShareDB

method), 881
itervalues (IPython.config.loader.Config attribute),

279
itervalues (IPython.parallel.client.client.Metadata at-

tribute), 752
itervalues (IPython.parallel.util.Namespace at-

tribute), 826
itervalues (IPython.parallel.util.ReverseDict at-

tribute), 828
itervalues (IPython.testing.globalipapp.ipnsdict at-

tribute), 834
itervalues (IPython.utils.coloransi.ColorSchemeTable

attribute), 856
itervalues (IPython.utils.ipstruct.Struct attribute),

869
itervalues() (IPython.utils.pickleshare.PickleShareDB

method), 881
IUnSerialized (class in IPython.utils.newserialized),

873

J
JavascriptFormatter (class in

IPython.core.formatters), 342
job_array_regexp (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 640

job_array_regexp (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 646

job_array_regexp (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 650

job_array_regexp (IPython.parallel.apps.launcher.LSFLauncher
attribute), 653

job_array_regexp (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 677

job_array_regexp (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 680

job_array_regexp (IPython.parallel.apps.launcher.PBSLauncher
attribute), 684

job_array_regexp (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 688

job_array_regexp (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 691

job_array_regexp (IPython.parallel.apps.launcher.SGELauncher
attribute), 695

job_array_template (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 640

job_array_template (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 646

job_array_template (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 650

job_array_template (IPython.parallel.apps.launcher.LSFLauncher
attribute), 653

job_array_template (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 677

job_array_template (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 680

job_array_template (IPython.parallel.apps.launcher.PBSLauncher
attribute), 684

job_array_template (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 688

job_array_template (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 691

job_array_template (IPython.parallel.apps.launcher.SGELauncher
attribute), 695

job_cmd (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
attribute), 710

job_cmd (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
attribute), 713

job_cmd (IPython.parallel.apps.launcher.WindowsHPCLauncher
attribute), 715

job_file (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
attribute), 710

job_file (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
attribute), 713

1024 Index

IPython Documentation, Release 0.11

job_file (IPython.parallel.apps.launcher.WindowsHPCLauncher
attribute), 715

job_file_name (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
attribute), 710

job_file_name (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
attribute), 713

job_file_name (IPython.parallel.apps.launcher.WindowsHPCLauncher
attribute), 715

job_id (IPython.parallel.apps.winhpcjob.IPControllerJob
attribute), 723

job_id (IPython.parallel.apps.winhpcjob.IPEngineSetJob
attribute), 729

job_id (IPython.parallel.apps.winhpcjob.WinHPCJob
attribute), 734

job_id_regexp (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 640

job_id_regexp (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 647

job_id_regexp (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 650

job_id_regexp (IPython.parallel.apps.launcher.LSFLauncher
attribute), 653

job_id_regexp (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 677

job_id_regexp (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 681

job_id_regexp (IPython.parallel.apps.launcher.PBSLauncher
attribute), 684

job_id_regexp (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 688

job_id_regexp (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 691

job_id_regexp (IPython.parallel.apps.launcher.SGELauncher
attribute), 695

job_id_regexp (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
attribute), 710

job_id_regexp (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
attribute), 713

job_id_regexp (IPython.parallel.apps.launcher.WindowsHPCLauncher
attribute), 715

job_name (IPython.parallel.apps.winhpcjob.IPControllerJob
attribute), 723

job_name (IPython.parallel.apps.winhpcjob.IPEngineSetJob
attribute), 729

job_name (IPython.parallel.apps.winhpcjob.WinHPCJob
attribute), 734

job_type (IPython.parallel.apps.winhpcjob.IPControllerJob
attribute), 723

job_type (IPython.parallel.apps.winhpcjob.IPEngineSetJob
attribute), 729

job_type (IPython.parallel.apps.winhpcjob.WinHPCJob
attribute), 734

join (IPython.utils.text.LSString attribute), 892
join() (IPython.core.history.HistorySavingThread

method), 363
join() (IPython.lib.backgroundjobs.BackgroundJobBase

method), 548
join() (IPython.lib.backgroundjobs.BackgroundJobExpr

method), 549
join() (IPython.lib.backgroundjobs.BackgroundJobFunc

method), 550
join() (IPython.parallel.apps.win32support.ForwarderThread

method), 720
joinPartitions() (IPython.parallel.client.map.Map

method), 753
joinPartitions() (IPython.parallel.client.map.RoundRobinMap

method), 753
json_clean() (in module IPython.utils.jsonutil), 871
JSONFormatter (class in IPython.core.formatters),

340
jump() (IPython.lib.demo.ClearDemo method), 558
jump() (IPython.lib.demo.ClearIPDemo method),

559
jump() (IPython.lib.demo.Demo method), 562
jump() (IPython.lib.demo.IPythonDemo method),

564
jump() (IPython.lib.demo.IPythonLineDemo

method), 565
jump() (IPython.lib.demo.LineDemo method), 567

K
Kernel (class in IPython.parallel.engine.streamkernel),

808
kernel (IPython.parallel.engine.engine.EngineFactory

attribute), 804
KernelError (class in IPython.parallel.error), 817
KernelStarter (class in

IPython.parallel.engine.kernelstarter),
806

keys (IPython.config.loader.Config attribute), 279
keys (IPython.parallel.client.client.Metadata at-

tribute), 752
keys (IPython.parallel.util.Namespace attribute), 827
keys (IPython.parallel.util.ReverseDict attribute),

828

Index 1025

IPython Documentation, Release 0.11

keys (IPython.testing.globalipapp.ipnsdict attribute),
834

keys (IPython.utils.coloransi.ColorSchemeTable at-
tribute), 856

keys (IPython.utils.ipstruct.Struct attribute), 869
keys() (IPython.utils.pickleshare.PickleShareDB

method), 881
keytable (IPython.parallel.controller.hub.Hub

attribute), 789
keyvalue_description

(IPython.config.application.Application
attribute), 265

keyvalue_description
(IPython.core.application.BaseIPythonApplication
attribute), 290

keyvalue_description
(IPython.core.profileapp.ProfileApp at-
tribute), 514

keyvalue_description
(IPython.core.profileapp.ProfileCreate
attribute), 519

keyvalue_description
(IPython.core.profileapp.ProfileList at-
tribute), 523

keyvalue_description
(IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 590

keyvalue_description
(IPython.parallel.apps.ipclusterapp.IPClusterApp
attribute), 595

keyvalue_description
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 600

keyvalue_description
(IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 606

keyvalue_description
(IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 612

keyvalue_description
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 618

keyvalue_description
(IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 624

keyvalue_description
(IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 633

KeyValueConfigLoader (class in
IPython.config.loader), 281

kill() (IPython.parallel.client.view.DirectView
method), 758

kill_kernel() (IPython.parallel.engine.kernelstarter.KernelStarter
method), 807

klass (IPython.utils.traitlets.Container attribute), 915
klass (IPython.utils.traitlets.List attribute), 923
klass (IPython.utils.traitlets.Set attribute), 927
klass (IPython.utils.traitlets.Tuple attribute), 932
kwds (class in IPython.core.magic_arguments), 447

L
l (IPython.utils.text.LSString attribute), 892
l (IPython.utils.text.SList attribute), 896
last_ping (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 782
lastcmd (IPython.core.debugger.Pdb attribute), 312
late_startup_hook() (in module IPython.core.hooks),

367
latex_to_html() (in module IPython.lib.latextools),

579
latex_to_png() (in module IPython.lib.latextools),

579
LatexFormatter (class in IPython.core.formatters),

345
launch_new_instance() (in module

IPython.parallel.apps.ipclusterapp), 614
launch_new_instance() (in module

IPython.parallel.apps.ipcontrollerapp),
621

launch_new_instance() (in module
IPython.parallel.apps.ipengineapp), 629

launch_new_instance() (in module
IPython.parallel.apps.iploggerapp), 635

launch_scheduler() (in module
IPython.parallel.controller.scheduler),
799

launcher_class (IPython.parallel.apps.launcher.LocalEngineSetLauncher
attribute), 662

launcher_class (IPython.parallel.apps.launcher.SSHEngineSetLauncher
attribute), 704

LauncherError (class in
IPython.parallel.apps.launcher), 656

launchers (IPython.parallel.apps.launcher.LocalEngineSetLauncher
attribute), 662

launchers (IPython.parallel.apps.launcher.SSHEngineSetLauncher
attribute), 704

1026 Index

IPython Documentation, Release 0.11

leastload() (in module
IPython.parallel.controller.scheduler),
799

length_error() (IPython.utils.traitlets.List method),
923

lifetime (IPython.parallel.controller.heartmonitor.HeartMonitor
attribute), 782

LightBlue (IPython.utils.coloransi.InputTermColors
attribute), 857

LightBlue (IPython.utils.coloransi.TermColors at-
tribute), 858

LightCyan (IPython.utils.coloransi.InputTermColors
attribute), 857

LightCyan (IPython.utils.coloransi.TermColors at-
tribute), 858

LightGray (IPython.utils.coloransi.InputTermColors
attribute), 857

LightGray (IPython.utils.coloransi.TermColors at-
tribute), 858

LightGreen (IPython.utils.coloransi.InputTermColors
attribute), 857

LightGreen (IPython.utils.coloransi.TermColors at-
tribute), 858

LightPurple (IPython.utils.coloransi.InputTermColors
attribute), 857

LightPurple (IPython.utils.coloransi.TermColors at-
tribute), 858

LightRed (IPython.utils.coloransi.InputTermColors
attribute), 857

LightRed (IPython.utils.coloransi.TermColors at-
tribute), 858

LineDemo (class in IPython.lib.demo), 566
LineInfo (class in IPython.core.inputsplitter), 372
LineInfo (class in IPython.core.prefilter), 487
lineinfo() (IPython.core.debugger.Pdb method), 312
List (class in IPython.utils.traitlets), 922
list (IPython.utils.text.LSString attribute), 892
list (IPython.utils.text.SList attribute), 896
list2dict() (in module IPython.utils.data), 859
list2dict2() (in module IPython.utils.data), 859
list_command_pydb() (IPython.core.debugger.Pdb

method), 312
list_namespace() (in module IPython.utils.wildcard),

936
list_profile_dirs() (IPython.core.profileapp.ProfileList

method), 523
list_strings() (in module IPython.utils.text), 898
ListTB (class in IPython.core.ultratb), 542

ljust (IPython.utils.text.LSString attribute), 892
load_balanced_view()

(IPython.parallel.client.client.Client
method), 748

load_config() (IPython.config.loader.ArgParseConfigLoader
method), 277

load_config() (IPython.config.loader.CommandLineConfigLoader
method), 278

load_config() (IPython.config.loader.ConfigLoader
method), 280

load_config() (IPython.config.loader.FileConfigLoader
method), 281

load_config() (IPython.config.loader.KeyValueConfigLoader
method), 282

load_config() (IPython.config.loader.PyFileConfigLoader
method), 283

load_config_file() (IPython.config.application.Application
method), 265

load_config_file() (IPython.core.application.BaseIPythonApplication
method), 290

load_config_file() (IPython.core.profileapp.ProfileApp
method), 515

load_config_file() (IPython.core.profileapp.ProfileCreate
method), 519

load_config_file() (IPython.core.profileapp.ProfileList
method), 523

load_config_file() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 590

load_config_file() (IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 596

load_config_file() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 600

load_config_file() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 606

load_config_file() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 612

load_config_file() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 618

load_config_file() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 625

load_config_file() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 633

load_config_from_json()
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 618

load_extension() (IPython.core.extensions.ExtensionManager
method), 329

load_tail() (in module IPython.lib.deepreload), 554

Index 1027

IPython Documentation, Release 0.11

LoadBalancedView (class in
IPython.parallel.client.view), 762

loads (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 797

local_logger() (in module IPython.parallel.util), 828
LocalControllerLauncher (class in

IPython.parallel.apps.launcher), 656
LocalEngineLauncher (class in

IPython.parallel.apps.launcher), 659
LocalEngineSetLauncher (class in

IPython.parallel.apps.launcher), 661
LocalProcessLauncher (class in

IPython.parallel.apps.launcher), 664
location (IPython.core.profiledir.ProfileDir at-

tribute), 528
location (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 618
location (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 698
location (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 701
location (IPython.parallel.apps.launcher.SSHLauncher

attribute), 706
location (IPython.parallel.controller.sqlitedb.SQLiteDB

attribute), 801
location (IPython.parallel.engine.engine.EngineFactory

attribute), 804
log (IPython.config.configurable.LoggingConfigurable

attribute), 272
log (IPython.parallel.apps.launcher.BaseLauncher

attribute), 637
log (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 640
log (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 643
log (IPython.parallel.apps.launcher.LocalControllerLauncher

attribute), 657
log (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 660
log (IPython.parallel.apps.launcher.LocalEngineSetLauncher

attribute), 662
log (IPython.parallel.apps.launcher.LocalProcessLauncher

attribute), 665
log (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 647
log (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 650
log (IPython.parallel.apps.launcher.LSFLauncher at-

tribute), 654
log (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 668
log (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 671
log (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 674
log (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 677
log (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 681
log (IPython.parallel.apps.launcher.PBSLauncher at-

tribute), 684
log (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 688
log (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 691
log (IPython.parallel.apps.launcher.SGELauncher

attribute), 695
log (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 698
log (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 701
log (IPython.parallel.apps.launcher.SSHEngineSetLauncher

attribute), 704
log (IPython.parallel.apps.launcher.SSHLauncher

attribute), 706
log (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

attribute), 710
log (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

attribute), 713
log (IPython.parallel.apps.launcher.WindowsHPCLauncher

attribute), 715
log (IPython.parallel.apps.logwatcher.LogWatcher

attribute), 719
log (IPython.parallel.controller.dictdb.BaseDB at-

tribute), 777
log (IPython.parallel.controller.dictdb.DictDB at-

tribute), 780
log (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 783
log (IPython.parallel.controller.hub.Hub attribute),

789
log (IPython.parallel.controller.hub.HubFactory at-

tribute), 792
log (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 797
log (IPython.parallel.controller.sqlitedb.SQLiteDB

1028 Index

IPython Documentation, Release 0.11

attribute), 802
log (IPython.parallel.engine.engine.EngineFactory

attribute), 804
log (IPython.parallel.engine.streamkernel.Kernel at-

tribute), 810
log (IPython.parallel.factory.RegistrationFactory at-

tribute), 824
log() (IPython.core.logger.Logger method), 418
log_dir (IPython.core.profiledir.ProfileDir attribute),

528
log_dir_name (IPython.core.profiledir.ProfileDir at-

tribute), 528
log_level (IPython.config.application.Application

attribute), 265
log_level (IPython.core.application.BaseIPythonApplication

attribute), 290
log_level (IPython.core.profileapp.ProfileApp

attribute), 515
log_level (IPython.core.profileapp.ProfileCreate at-

tribute), 519
log_level (IPython.core.profileapp.ProfileList

attribute), 523
log_level (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 590
log_level (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 596
log_level (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 600
log_level (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 606
log_level (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 612
log_level (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 618
log_level (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 625
log_level (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 633
log_message() (IPython.parallel.apps.logwatcher.LogWatcher

method), 719
log_output() (IPython.core.displayhook.DisplayHook

method), 320
log_to_file (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 590
log_to_file (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 600
log_to_file (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 606

log_to_file (IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 612

log_to_file (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 618

log_to_file (IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 625

log_to_file (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 633

log_url (IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 590

log_url (IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 600

log_url (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 606

log_url (IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 612

log_url (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 618

log_url (IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 625

log_url (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 633

log_write() (IPython.core.logger.Logger method),
418

logappend (IPython.core.interactiveshell.InteractiveShell
attribute), 384

logfile (IPython.core.interactiveshell.InteractiveShell
attribute), 384

logged() (in module
IPython.parallel.controller.scheduler),
799

Logger (class in IPython.core.logger), 418
LoggingConfigurable (class in

IPython.config.configurable), 270
logmode (IPython.core.logger.Logger attribute), 418
logname (IPython.parallel.controller.hub.Hub

attribute), 789
logname (IPython.parallel.controller.hub.HubFactory

attribute), 793
logname (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 797
logname (IPython.parallel.engine.engine.EngineFactory

attribute), 804
logname (IPython.parallel.engine.streamkernel.Kernel

attribute), 810
logname (IPython.parallel.factory.RegistrationFactory

attribute), 824
logstart (IPython.core.interactiveshell.InteractiveShell

Index 1029

IPython Documentation, Release 0.11

attribute), 384
logstart() (IPython.core.logger.Logger method), 418
logstate() (IPython.core.logger.Logger method), 418
logstop() (IPython.core.logger.Logger method), 418
LogWatcher (class in

IPython.parallel.apps.logwatcher), 718
Long (class in IPython.utils.traitlets), 924
lookupmodule() (IPython.core.debugger.Pdb

method), 312
loop (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 590
loop (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 601
loop (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 606
loop (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 612
loop (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 618
loop (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 625
loop (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 633
loop (IPython.parallel.apps.launcher.BaseLauncher

attribute), 637
loop (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 640
loop (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 644
loop (IPython.parallel.apps.launcher.LocalControllerLauncher

attribute), 657
loop (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 660
loop (IPython.parallel.apps.launcher.LocalEngineSetLauncher

attribute), 663
loop (IPython.parallel.apps.launcher.LocalProcessLauncher

attribute), 665
loop (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 647
loop (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 650
loop (IPython.parallel.apps.launcher.LSFLauncher

attribute), 654
loop (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 668
loop (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 671
loop (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 674
loop (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 677
loop (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 681
loop (IPython.parallel.apps.launcher.PBSLauncher

attribute), 684
loop (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 688
loop (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 691
loop (IPython.parallel.apps.launcher.SGELauncher

attribute), 695
loop (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 698
loop (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 701
loop (IPython.parallel.apps.launcher.SSHEngineSetLauncher

attribute), 704
loop (IPython.parallel.apps.launcher.SSHLauncher

attribute), 707
loop (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

attribute), 710
loop (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

attribute), 713
loop (IPython.parallel.apps.launcher.WindowsHPCLauncher

attribute), 716
loop (IPython.parallel.apps.logwatcher.LogWatcher

attribute), 719
loop (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 783
loop (IPython.parallel.controller.hub.Hub attribute),

789
loop (IPython.parallel.controller.hub.HubFactory at-

tribute), 793
loop (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 797
loop (IPython.parallel.engine.engine.EngineFactory

attribute), 804
loop (IPython.parallel.engine.streamkernel.Kernel

attribute), 810
loop (IPython.parallel.factory.RegistrationFactory

attribute), 824
lower (IPython.utils.text.LSString attribute), 893
lru() (in module IPython.parallel.controller.scheduler),

799
LSFControllerLauncher (class in

IPython.parallel.apps.launcher), 645

1030 Index

IPython Documentation, Release 0.11

LSFEngineSetLauncher (class in
IPython.parallel.apps.launcher), 649

LSFLauncher (class in
IPython.parallel.apps.launcher), 652

lsmagic() (IPython.core.interactiveshell.InteractiveShell
method), 384

lsmagic() (IPython.core.magic.Magic method), 421
LSString (class in IPython.utils.text), 890
lstrip (IPython.utils.text.LSString attribute), 893

M
Macro (class in IPython.core.macro), 419
MacroChecker (class in IPython.core.prefilter), 488
MacroHandler (class in IPython.core.prefilter), 490
MacroToEdit (class in IPython.core.magic), 420
Magic (class in IPython.core.magic), 420
magic() (IPython.core.interactiveshell.InteractiveShell

method), 384
magic_alias() (IPython.core.interactiveshell.InteractiveShell

method), 385
magic_alias() (IPython.core.magic.Magic method),

421
magic_arguments (class in

IPython.core.magic_arguments), 447
magic_autocall() (IPython.core.interactiveshell.InteractiveShell

method), 385
magic_autocall() (IPython.core.magic.Magic

method), 422
magic_automagic() (IPython.core.interactiveshell.InteractiveShell

method), 386
magic_automagic() (IPython.core.magic.Magic

method), 422
magic_bookmark() (IPython.core.interactiveshell.InteractiveShell

method), 386
magic_bookmark() (IPython.core.magic.Magic

method), 423
magic_cd() (IPython.core.interactiveshell.InteractiveShell

method), 386
magic_cd() (IPython.core.magic.Magic method),

423
magic_colors() (IPython.core.interactiveshell.InteractiveShell

method), 387
magic_colors() (IPython.core.magic.Magic method),

424
magic_debug() (IPython.core.interactiveshell.InteractiveShell

method), 387
magic_debug() (IPython.core.magic.Magic method),

424

magic_dhist() (IPython.core.interactiveshell.InteractiveShell
method), 387

magic_dhist() (IPython.core.magic.Magic method),
424

magic_dirs() (IPython.core.interactiveshell.InteractiveShell
method), 388

magic_dirs() (IPython.core.magic.Magic method),
424

magic_doctest_mode()
(IPython.core.interactiveshell.InteractiveShell
method), 388

magic_doctest_mode() (IPython.core.magic.Magic
method), 424

magic_ed() (IPython.core.interactiveshell.InteractiveShell
method), 388

magic_ed() (IPython.core.magic.Magic method),
425

magic_edit() (IPython.core.interactiveshell.InteractiveShell
method), 388

magic_edit() (IPython.core.magic.Magic method),
425

magic_env() (IPython.core.interactiveshell.InteractiveShell
method), 390

magic_env() (IPython.core.magic.Magic method),
427

magic_gui() (IPython.core.interactiveshell.InteractiveShell
method), 390

magic_gui() (IPython.core.magic.Magic method),
427

magic_history() (in module IPython.core.history),
364

magic_install_default_config()
(IPython.core.interactiveshell.InteractiveShell
method), 390

magic_install_default_config()
(IPython.core.magic.Magic method),
427

magic_install_profiles()
(IPython.core.interactiveshell.InteractiveShell
method), 391

magic_install_profiles() (IPython.core.magic.Magic
method), 427

magic_load_ext() (IPython.core.interactiveshell.InteractiveShell
method), 391

magic_load_ext() (IPython.core.magic.Magic
method), 427

magic_loadpy() (IPython.core.interactiveshell.InteractiveShell
method), 391

Index 1031

IPython Documentation, Release 0.11

magic_loadpy() (IPython.core.magic.Magic
method), 427

magic_logoff() (IPython.core.interactiveshell.InteractiveShell
method), 391

magic_logoff() (IPython.core.magic.Magic method),
428

magic_logon() (IPython.core.interactiveshell.InteractiveShell
method), 391

magic_logon() (IPython.core.magic.Magic method),
428

magic_logstart() (IPython.core.interactiveshell.InteractiveShell
method), 391

magic_logstart() (IPython.core.magic.Magic
method), 428

magic_logstate() (IPython.core.interactiveshell.InteractiveShell
method), 392

magic_logstate() (IPython.core.magic.Magic
method), 428

magic_logstop() (IPython.core.interactiveshell.InteractiveShell
method), 392

magic_logstop() (IPython.core.magic.Magic
method), 428

magic_lsmagic() (IPython.core.interactiveshell.InteractiveShell
method), 392

magic_lsmagic() (IPython.core.magic.Magic
method), 429

magic_macro() (IPython.core.interactiveshell.InteractiveShell
method), 392

magic_macro() (IPython.core.magic.Magic
method), 429

magic_magic() (IPython.core.interactiveshell.InteractiveShell
method), 393

magic_magic() (IPython.core.magic.Magic method),
429

magic_matches() (IPython.core.completer.IPCompleter
method), 302

magic_page() (IPython.core.interactiveshell.InteractiveShell
method), 393

magic_page() (IPython.core.magic.Magic method),
429

magic_pastebin() (IPython.core.interactiveshell.InteractiveShell
method), 393

magic_pastebin() (IPython.core.magic.Magic
method), 430

magic_pdb() (IPython.core.interactiveshell.InteractiveShell
method), 393

magic_pdb() (IPython.core.magic.Magic method),
430

magic_pdef() (IPython.core.interactiveshell.InteractiveShell
method), 393

magic_pdef() (IPython.core.magic.Magic method),
430

magic_pdoc() (IPython.core.interactiveshell.InteractiveShell
method), 393

magic_pdoc() (IPython.core.magic.Magic method),
430

magic_pfile() (IPython.core.interactiveshell.InteractiveShell
method), 394

magic_pfile() (IPython.core.magic.Magic method),
430

magic_pinfo() (IPython.core.interactiveshell.InteractiveShell
method), 394

magic_pinfo() (IPython.core.magic.Magic method),
430

magic_pinfo2() (IPython.core.interactiveshell.InteractiveShell
method), 394

magic_pinfo2() (IPython.core.magic.Magic
method), 430

magic_popd() (IPython.core.interactiveshell.InteractiveShell
method), 394

magic_popd() (IPython.core.magic.Magic method),
431

magic_pprint() (IPython.core.interactiveshell.InteractiveShell
method), 394

magic_pprint() (IPython.core.magic.Magic method),
431

magic_precision() (IPython.core.interactiveshell.InteractiveShell
method), 394

magic_precision() (IPython.core.magic.Magic
method), 431

magic_profile() (IPython.core.interactiveshell.InteractiveShell
method), 395

magic_profile() (IPython.core.magic.Magic
method), 431

magic_prun() (IPython.core.interactiveshell.InteractiveShell
method), 395

magic_prun() (IPython.core.magic.Magic method),
431

magic_psearch() (IPython.core.interactiveshell.InteractiveShell
method), 396

magic_psearch() (IPython.core.magic.Magic
method), 433

magic_psource() (IPython.core.interactiveshell.InteractiveShell
method), 397

magic_psource() (IPython.core.magic.Magic
method), 434

1032 Index

IPython Documentation, Release 0.11

magic_pushd() (IPython.core.interactiveshell.InteractiveShell
method), 397

magic_pushd() (IPython.core.magic.Magic method),
434

magic_pwd() (IPython.core.interactiveshell.InteractiveShell
method), 397

magic_pwd() (IPython.core.magic.Magic method),
434

magic_pycat() (IPython.core.interactiveshell.InteractiveShell
method), 398

magic_pycat() (IPython.core.magic.Magic method),
434

magic_pylab() (IPython.core.interactiveshell.InteractiveShell
method), 398

magic_pylab() (IPython.core.magic.Magic method),
434

magic_quickref() (IPython.core.interactiveshell.InteractiveShell
method), 398

magic_quickref() (IPython.core.magic.Magic
method), 435

magic_rehashx() (IPython.core.interactiveshell.InteractiveShell
method), 398

magic_rehashx() (IPython.core.magic.Magic
method), 435

magic_reload_ext() (IPython.core.interactiveshell.InteractiveShell
method), 398

magic_reload_ext() (IPython.core.magic.Magic
method), 435

magic_rep() (in module IPython.core.history), 365
magic_rerun() (in module IPython.core.history), 365
magic_reset() (IPython.core.interactiveshell.InteractiveShell

method), 399
magic_reset() (IPython.core.magic.Magic method),

435
magic_reset_selective()

(IPython.core.interactiveshell.InteractiveShell
method), 399

magic_reset_selective() (IPython.core.magic.Magic
method), 435

magic_run() (IPython.core.interactiveshell.InteractiveShell
method), 400

magic_run() (IPython.core.magic.Magic method),
436

magic_run_completer() (in module
IPython.core.completerlib), 303

magic_save() (IPython.core.interactiveshell.InteractiveShell
method), 401

magic_save() (IPython.core.magic.Magic method),

438
magic_sc() (IPython.core.interactiveshell.InteractiveShell

method), 402
magic_sc() (IPython.core.magic.Magic method),

438
magic_sx() (IPython.core.interactiveshell.InteractiveShell

method), 403
magic_sx() (IPython.core.magic.Magic method),

439
magic_tb() (IPython.core.interactiveshell.InteractiveShell

method), 403
magic_tb() (IPython.core.magic.Magic method),

440
magic_time() (IPython.core.interactiveshell.InteractiveShell

method), 403
magic_time() (IPython.core.magic.Magic method),

440
magic_timeit() (IPython.core.interactiveshell.InteractiveShell

method), 404
magic_timeit() (IPython.core.magic.Magic method),

441
magic_unalias() (IPython.core.interactiveshell.InteractiveShell

method), 405
magic_unalias() (IPython.core.magic.Magic

method), 441
magic_unload_ext()

(IPython.core.interactiveshell.InteractiveShell
method), 405

magic_unload_ext() (IPython.core.magic.Magic
method), 441

magic_who() (IPython.core.interactiveshell.InteractiveShell
method), 405

magic_who() (IPython.core.magic.Magic method),
441

magic_who_ls() (IPython.core.interactiveshell.InteractiveShell
method), 406

magic_who_ls() (IPython.core.magic.Magic
method), 442

magic_whos() (IPython.core.interactiveshell.InteractiveShell
method), 406

magic_whos() (IPython.core.magic.Magic method),
442

magic_xdel() (IPython.core.interactiveshell.InteractiveShell
method), 407

magic_xdel() (IPython.core.magic.Magic method),
443

magic_xmode() (IPython.core.interactiveshell.InteractiveShell
method), 407

Index 1033

IPython Documentation, Release 0.11

magic_xmode() (IPython.core.magic.Magic
method), 443

MagicArgumentParser (class in
IPython.core.magic_arguments), 446

MagicHandler (class in IPython.core.prefilter), 492
main() (in module IPython.lib.irunner), 578
main() (in module IPython.testing.iptest), 836
main() (in module IPython.testing.mkdoctests), 839
main() (in module IPython.utils.pickleshare), 882
main() (in module IPython.utils.PyColorize), 849
main() (IPython.lib.irunner.InteractiveRunner

method), 575
main() (IPython.lib.irunner.IPythonRunner method),

574
main() (IPython.lib.irunner.PythonRunner method),

576
main() (IPython.lib.irunner.SAGERunner method),

578
make_color_table() (in module

IPython.utils.coloransi), 858
make_exclude() (in module IPython.testing.iptest),

836
make_label_dec() (in module

IPython.testing.decorators), 830
make_quoted_expr() (in module IPython.utils.text),

898
make_report() (IPython.core.crashhandler.CrashHandler

method), 305
make_report() (IPython.parallel.apps.baseapp.ParallelCrashHandler

method), 593
make_runners() (in module IPython.testing.iptest),

836
make_starter() (in module

IPython.parallel.engine.kernelstarter),
807

make_user_namespaces()
(IPython.core.interactiveshell.InteractiveShell
method), 407

Map (class in IPython.parallel.client.map), 753
map() (IPython.parallel.client.remotefunction.ParallelFunction

method), 755
map() (IPython.parallel.client.view.DirectView

method), 758
map() (IPython.parallel.client.view.LoadBalancedView

method), 764
map() (IPython.parallel.client.view.View method),

769
map_async() (IPython.parallel.client.view.DirectView

method), 759
map_async() (IPython.parallel.client.view.LoadBalancedView

method), 764
map_async() (IPython.parallel.client.view.View

method), 769
map_method() (in module IPython.utils.attic), 850
map_sync() (IPython.parallel.client.view.DirectView

method), 759
map_sync() (IPython.parallel.client.view.LoadBalancedView

method), 764
map_sync() (IPython.parallel.client.view.View

method), 769
mapObject (IPython.parallel.client.remotefunction.ParallelFunction

attribute), 755
mappable() (in module IPython.parallel.client.map),

753
mark_dirs() (in module IPython.core.completer),

303
marquee() (in module IPython.utils.text), 898
marquee() (IPython.lib.demo.ClearDemo method),

558
marquee() (IPython.lib.demo.ClearIPDemo

method), 559
marquee() (IPython.lib.demo.ClearMixin method),

561
marquee() (IPython.lib.demo.Demo method), 562
marquee() (IPython.lib.demo.IPythonDemo

method), 564
marquee() (IPython.lib.demo.IPythonLineDemo

method), 565
marquee() (IPython.lib.demo.LineDemo method),

567
math_to_image() (in module IPython.lib.latextools),

579
max_cores (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 723
max_cores (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 726
max_cores (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 729
max_cores (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 731
max_cores (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 734
max_cores (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 737
max_nodes (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 723

1034 Index

IPython Documentation, Release 0.11

max_nodes (IPython.parallel.apps.winhpcjob.IPControllerTask
attribute), 726

max_nodes (IPython.parallel.apps.winhpcjob.IPEngineSetJob
attribute), 729

max_nodes (IPython.parallel.apps.winhpcjob.IPEngineTask
attribute), 732

max_nodes (IPython.parallel.apps.winhpcjob.WinHPCJob
attribute), 734

max_nodes (IPython.parallel.apps.winhpcjob.WinHPCTask
attribute), 737

max_sockets (IPython.parallel.apps.winhpcjob.IPControllerJob
attribute), 723

max_sockets (IPython.parallel.apps.winhpcjob.IPControllerTask
attribute), 726

max_sockets (IPython.parallel.apps.winhpcjob.IPEngineSetJob
attribute), 729

max_sockets (IPython.parallel.apps.winhpcjob.IPEngineTask
attribute), 732

max_sockets (IPython.parallel.apps.winhpcjob.WinHPCJob
attribute), 735

max_sockets (IPython.parallel.apps.winhpcjob.WinHPCTask
attribute), 738

max_width (IPython.core.formatters.PlainTextFormatter
attribute), 353

maybe_run() (IPython.parallel.controller.scheduler.TaskScheduler
method), 797

merge() (IPython.utils.ipstruct.Struct method), 869
message (IPython.config.application.ApplicationError

attribute), 267
message (IPython.config.configurable.ConfigurableError

attribute), 270
message (IPython.config.configurable.MultipleInstanceError

attribute), 273
message (IPython.config.loader.ArgumentError at-

tribute), 277
message (IPython.config.loader.ConfigError at-

tribute), 280
message (IPython.config.loader.ConfigLoaderError

attribute), 281
message (IPython.core.alias.AliasError attribute),

284
message (IPython.core.alias.InvalidAliasError at-

tribute), 286
message (IPython.core.error.IPythonCoreError at-

tribute), 326
message (IPython.core.error.TryNext attribute), 326
message (IPython.core.error.UsageError attribute),

327

message (IPython.core.interactiveshell.SpaceInInput
attribute), 417

message (IPython.core.magic.MacroToEdit at-
tribute), 420

message (IPython.core.prefilter.PrefilterError at-
tribute), 497

message (IPython.core.profiledir.ProfileDirError at-
tribute), 529

message (IPython.lib.demo.DemoError attribute),
563

message (IPython.parallel.apps.baseapp.PIDFileError
attribute), 593

message (IPython.parallel.apps.launcher.LauncherError
attribute), 656

message (IPython.parallel.apps.launcher.ProcessStateError
attribute), 686

message (IPython.parallel.apps.launcher.UnknownStatus
attribute), 708

message (IPython.parallel.error.AbortedPendingDeferredError
attribute), 813

message (IPython.parallel.error.ClientError at-
tribute), 813

message (IPython.parallel.error.CompositeError at-
tribute), 813

message (IPython.parallel.error.ConnectionError at-
tribute), 814

message (IPython.parallel.error.ControllerCreationError
attribute), 814

message (IPython.parallel.error.ControllerError at-
tribute), 814

message (IPython.parallel.error.DependencyTimeout
attribute), 814

message (IPython.parallel.error.EngineCreationError
attribute), 815

message (IPython.parallel.error.EngineError at-
tribute), 815

message (IPython.parallel.error.FileTimeoutError at-
tribute), 815

message (IPython.parallel.error.IdInUse attribute),
816

message (IPython.parallel.error.ImpossibleDependency
attribute), 816

message (IPython.parallel.error.InvalidClientID at-
tribute), 816

message (IPython.parallel.error.InvalidDeferredID
attribute), 816

message (IPython.parallel.error.InvalidDependency
attribute), 817

Index 1035

IPython Documentation, Release 0.11

message (IPython.parallel.error.InvalidEngineID at-
tribute), 817

message (IPython.parallel.error.InvalidProperty at-
tribute), 817

message (IPython.parallel.error.IPythonError at-
tribute), 815

message (IPython.parallel.error.KernelError at-
tribute), 817

message (IPython.parallel.error.MessageSizeError
attribute), 818

message (IPython.parallel.error.MissingBlockArgument
attribute), 818

message (IPython.parallel.error.NoEnginesRegistered
attribute), 818

message (IPython.parallel.error.NotAPendingResult
attribute), 818

message (IPython.parallel.error.NotDefined at-
tribute), 819

message (IPython.parallel.error.PBMessageSizeError
attribute), 819

message (IPython.parallel.error.ProtocolError
attribute), 819

message (IPython.parallel.error.QueueCleared at-
tribute), 819

message (IPython.parallel.error.RemoteError at-
tribute), 820

message (IPython.parallel.error.ResultAlreadyRetrieved
attribute), 820

message (IPython.parallel.error.ResultNotCompleted
attribute), 820

message (IPython.parallel.error.SecurityError
attribute), 821

message (IPython.parallel.error.SerializationError
attribute), 821

message (IPython.parallel.error.StopLocalExecution
attribute), 821

message (IPython.parallel.error.TaskAborted at-
tribute), 821

message (IPython.parallel.error.TaskRejectError at-
tribute), 822

message (IPython.parallel.error.TaskTimeout at-
tribute), 822

message (IPython.parallel.error.TimeoutError
attribute), 822

message (IPython.parallel.error.UnmetDependency
attribute), 822

message (IPython.parallel.error.UnpickleableException
attribute), 823

message (IPython.utils.growl.IPythonGrowlError at-
tribute), 863

message (IPython.utils.newserialized.SerializationError
attribute), 874

message (IPython.utils.notification.NotificationError
attribute), 877

message (IPython.utils.path.HomeDirError at-
tribute), 878

message (IPython.utils.process.FindCmdError at-
tribute), 884

message (IPython.utils.traitlets.TraitError attribute),
929

message_template (IPython.core.crashhandler.CrashHandler
attribute), 305

message_template (IPython.parallel.apps.baseapp.ParallelCrashHandler
attribute), 593

MessageSizeError (class in IPython.parallel.error),
818

Metadata (class in IPython.parallel.client.client), 751
metadata (IPython.core.interactiveshell.SeparateUnicode

attribute), 416
metadata (IPython.parallel.client.asyncresult.AsyncHubResult

attribute), 740
metadata (IPython.parallel.client.asyncresult.AsyncMapResult

attribute), 741
metadata (IPython.parallel.client.asyncresult.AsyncResult

attribute), 742
metadata (IPython.parallel.client.client.Client

attribute), 748
metadata (IPython.utils.traitlets.Any attribute), 901
metadata (IPython.utils.traitlets.Bool attribute), 902
metadata (IPython.utils.traitlets.Bytes attribute), 903
metadata (IPython.utils.traitlets.CaselessStrEnum

attribute), 911
metadata (IPython.utils.traitlets.CBool attribute),

904
metadata (IPython.utils.traitlets.CBytes attribute),

905
metadata (IPython.utils.traitlets.CComplex at-

tribute), 906
metadata (IPython.utils.traitlets.CFloat attribute),

907
metadata (IPython.utils.traitlets.CInt attribute), 908
metadata (IPython.utils.traitlets.ClassBasedTraitType

attribute), 912
metadata (IPython.utils.traitlets.CLong attribute),

909
metadata (IPython.utils.traitlets.Complex attribute),

1036 Index

IPython Documentation, Release 0.11

913
metadata (IPython.utils.traitlets.Container attribute),

915
metadata (IPython.utils.traitlets.CUnicode attribute),

910
metadata (IPython.utils.traitlets.Dict attribute), 916
metadata (IPython.utils.traitlets.DottedObjectName

attribute), 917
metadata (IPython.utils.traitlets.Enum attribute), 918
metadata (IPython.utils.traitlets.Float attribute), 918
metadata (IPython.utils.traitlets.Instance attribute),

921
metadata (IPython.utils.traitlets.Int attribute), 922
metadata (IPython.utils.traitlets.List attribute), 923
metadata (IPython.utils.traitlets.Long attribute), 924
metadata (IPython.utils.traitlets.ObjectName at-

tribute), 926
metadata (IPython.utils.traitlets.Set attribute), 927
metadata (IPython.utils.traitlets.TCPAddress at-

tribute), 928
metadata (IPython.utils.traitlets.This attribute), 929
metadata (IPython.utils.traitlets.TraitType attribute),

930
metadata (IPython.utils.traitlets.Tuple attribute), 932
metadata (IPython.utils.traitlets.Type attribute), 933
metadata (IPython.utils.traitlets.Unicode attribute),

934
MetaHasTraits (class in IPython.utils.traitlets), 925
mia_task_request() (IPython.parallel.controller.hub.Hub

method), 789
min_cores (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 723
min_cores (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 726
min_cores (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 729
min_cores (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 732
min_cores (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 735
min_cores (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 738
min_nodes (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 723
min_nodes (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 726
min_nodes (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 729

min_nodes (IPython.parallel.apps.winhpcjob.IPEngineTask
attribute), 732

min_nodes (IPython.parallel.apps.winhpcjob.WinHPCJob
attribute), 735

min_nodes (IPython.parallel.apps.winhpcjob.WinHPCTask
attribute), 738

min_sockets (IPython.parallel.apps.winhpcjob.IPControllerJob
attribute), 723

min_sockets (IPython.parallel.apps.winhpcjob.IPControllerTask
attribute), 726

min_sockets (IPython.parallel.apps.winhpcjob.IPEngineSetJob
attribute), 729

min_sockets (IPython.parallel.apps.winhpcjob.IPEngineTask
attribute), 732

min_sockets (IPython.parallel.apps.winhpcjob.WinHPCJob
attribute), 735

min_sockets (IPython.parallel.apps.winhpcjob.WinHPCTask
attribute), 738

misc_header (IPython.core.debugger.Pdb attribute),
312

MissingBlockArgument (class in
IPython.parallel.error), 818

mktempfile() (IPython.core.interactiveshell.InteractiveShell
method), 407

mktmp() (IPython.testing.tools.TempFileMixin
method), 846

module_completer() (in module
IPython.core.completerlib), 303

module_completion() (in module
IPython.core.completerlib), 303

module_list() (in module
IPython.core.completerlib), 303

module_not_available() (in module
IPython.testing.decorators), 831

mon_port (IPython.parallel.controller.hub.HubFactory
attribute), 793

mon_stream (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 797

monitor (IPython.parallel.controller.hub.Hub at-
tribute), 789

monitor_ip (IPython.parallel.controller.hub.HubFactory
attribute), 793

monitor_transport (IPython.parallel.controller.hub.HubFactory
attribute), 793

monitor_url (IPython.parallel.controller.hub.HubFactory
attribute), 793

MPI (class in IPython.parallel.apps.ipengineapp),
627

Index 1037

IPython Documentation, Release 0.11

mpi_args (IPython.parallel.apps.launcher.MPIExecControllerLauncher
attribute), 668

mpi_args (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
attribute), 671

mpi_args (IPython.parallel.apps.launcher.MPIExecLauncher
attribute), 674

mpi_cmd (IPython.parallel.apps.launcher.MPIExecControllerLauncher
attribute), 668

mpi_cmd (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
attribute), 671

mpi_cmd (IPython.parallel.apps.launcher.MPIExecLauncher
attribute), 674

MPIExecControllerLauncher (class in
IPython.parallel.apps.launcher), 667

MPIExecEngineSetLauncher (class in
IPython.parallel.apps.launcher), 670

MPIExecLauncher (class in
IPython.parallel.apps.launcher), 673

mpl_runner() (in module IPython.lib.pylabtools),
586

mq_class (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 618

mro (IPython.utils.traitlets.MetaHasTraits attribute),
925

msg_ids (IPython.parallel.client.asyncresult.AsyncHubResult
attribute), 740

msg_ids (IPython.parallel.client.asyncresult.AsyncMapResult
attribute), 741

msg_ids (IPython.parallel.client.asyncresult.AsyncResult
attribute), 742

multi_line_specials (IPython.core.prefilter.PrefilterManager
attribute), 501

MultiLineMagicChecker (class in
IPython.core.prefilter), 493

multiple_replace() (in module
IPython.core.prompts), 532

MultipleInstanceError (class in
IPython.config.configurable), 272

mute_warn() (in module IPython.testing.tools), 848
mutex_opts() (in module IPython.utils.attic), 851
mux (IPython.parallel.controller.hub.HubFactory at-

tribute), 793

N
n (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 601
n (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 607

n (IPython.parallel.apps.launcher.MPIExecControllerLauncher
attribute), 668

n (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
attribute), 671

n (IPython.parallel.apps.launcher.MPIExecLauncher
attribute), 674

n (IPython.utils.text.LSString attribute), 893
n (IPython.utils.text.SList attribute), 896
name (IPython.config.application.Application

attribute), 265
name (IPython.core.application.BaseIPythonApplication

attribute), 290
name (IPython.core.history.HistorySavingThread at-

tribute), 363
name (IPython.core.profileapp.ProfileApp attribute),

515
name (IPython.core.profileapp.ProfileCreate at-

tribute), 519
name (IPython.core.profileapp.ProfileList attribute),

523
name (IPython.lib.backgroundjobs.BackgroundJobBase

attribute), 548
name (IPython.lib.backgroundjobs.BackgroundJobExpr

attribute), 549
name (IPython.lib.backgroundjobs.BackgroundJobFunc

attribute), 550
name (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 590
name (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 596
name (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 601
name (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 607
name (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 612
name (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 618
name (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 625
name (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 633
name (IPython.parallel.apps.win32support.ForwarderThread

attribute), 721
name_session() (IPython.core.history.HistoryManager

method), 361
Namespace (class in IPython.parallel.util), 826
native_line_ends() (in module IPython.utils.text),

1038 Index

IPython Documentation, Release 0.11

898
needs_local_scope() (in module

IPython.core.magic), 444
new() (IPython.lib.backgroundjobs.BackgroundJobManager

method), 551
new_do_down() (IPython.core.debugger.Pdb

method), 312
new_do_frame() (IPython.core.debugger.Pdb

method), 312
new_do_quit() (IPython.core.debugger.Pdb

method), 312
new_do_restart() (IPython.core.debugger.Pdb

method), 312
new_do_up() (IPython.core.debugger.Pdb method),

312
new_main_mod() (IPython.core.interactiveshell.InteractiveShell

method), 407
new_session() (IPython.core.history.HistoryManager

method), 361
newline (IPython.core.formatters.PlainTextFormatter

attribute), 353
NLprinter (class in IPython.utils.io), 865
nlstr (IPython.utils.text.LSString attribute), 893
nlstr (IPython.utils.text.SList attribute), 896
no_op() (in module IPython.core.interactiveshell),

417
NoColor (IPython.utils.coloransi.InputTermColors

attribute), 857
NoColor (IPython.utils.coloransi.TermColors

attribute), 858
NoDefaultSpecified (in module

IPython.utils.traitlets), 925
NoEnginesRegistered (class in

IPython.parallel.error), 818
nohelp (IPython.core.debugger.Pdb attribute), 312
noinfo() (IPython.core.oinspect.Inspector method),

449
Normal (IPython.utils.coloransi.InputTermColors

attribute), 857
Normal (IPython.utils.coloransi.TermColors at-

tribute), 858
NotAPendingResult (class in IPython.parallel.error),

818
NotDefined (class in IPython.parallel.error), 819
NotGiven (class in IPython.utils.attic), 850
NotificationCenter (class in

IPython.utils.notification), 875
NotificationError (class in

IPython.utils.notification), 877
Notifier (class in IPython.utils.growl), 863
notifier (IPython.parallel.controller.hub.Hub at-

tribute), 789
notifier_port (IPython.parallel.controller.hub.HubFactory

attribute), 793
notifier_stream (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 798
notify() (in module IPython.utils.growl), 864
notify() (IPython.utils.growl.Notifier method), 863
notify_deferred() (in module IPython.utils.growl),

864
notify_deferred() (IPython.utils.growl.Notifier

method), 863
notify_start() (IPython.parallel.apps.launcher.BaseLauncher

method), 637
notify_start() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 640
notify_start() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 644
notify_start() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 657
notify_start() (IPython.parallel.apps.launcher.LocalEngineLauncher

method), 660
notify_start() (IPython.parallel.apps.launcher.LocalEngineSetLauncher

method), 663
notify_start() (IPython.parallel.apps.launcher.LocalProcessLauncher

method), 665
notify_start() (IPython.parallel.apps.launcher.LSFControllerLauncher

method), 647
notify_start() (IPython.parallel.apps.launcher.LSFEngineSetLauncher

method), 650
notify_start() (IPython.parallel.apps.launcher.LSFLauncher

method), 654
notify_start() (IPython.parallel.apps.launcher.MPIExecControllerLauncher

method), 668
notify_start() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

method), 671
notify_start() (IPython.parallel.apps.launcher.MPIExecLauncher

method), 674
notify_start() (IPython.parallel.apps.launcher.PBSControllerLauncher

method), 677
notify_start() (IPython.parallel.apps.launcher.PBSEngineSetLauncher

method), 681
notify_start() (IPython.parallel.apps.launcher.PBSLauncher

method), 684
notify_start() (IPython.parallel.apps.launcher.SGEControllerLauncher

method), 688

Index 1039

IPython Documentation, Release 0.11

notify_start() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
method), 691

notify_start() (IPython.parallel.apps.launcher.SGELauncher
method), 695

notify_start() (IPython.parallel.apps.launcher.SSHControllerLauncher
method), 698

notify_start() (IPython.parallel.apps.launcher.SSHEngineLauncher
method), 701

notify_start() (IPython.parallel.apps.launcher.SSHEngineSetLauncher
method), 704

notify_start() (IPython.parallel.apps.launcher.SSHLauncher
method), 707

notify_start() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
method), 710

notify_start() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
method), 713

notify_start() (IPython.parallel.apps.launcher.WindowsHPCLauncher
method), 716

notify_stop() (IPython.parallel.apps.launcher.BaseLauncher
method), 637

notify_stop() (IPython.parallel.apps.launcher.BatchSystemLauncher
method), 641

notify_stop() (IPython.parallel.apps.launcher.IPClusterLauncher
method), 644

notify_stop() (IPython.parallel.apps.launcher.LocalControllerLauncher
method), 657

notify_stop() (IPython.parallel.apps.launcher.LocalEngineLauncher
method), 660

notify_stop() (IPython.parallel.apps.launcher.LocalEngineSetLauncher
method), 663

notify_stop() (IPython.parallel.apps.launcher.LocalProcessLauncher
method), 665

notify_stop() (IPython.parallel.apps.launcher.LSFControllerLauncher
method), 647

notify_stop() (IPython.parallel.apps.launcher.LSFEngineSetLauncher
method), 650

notify_stop() (IPython.parallel.apps.launcher.LSFLauncher
method), 654

notify_stop() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
method), 668

notify_stop() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
method), 671

notify_stop() (IPython.parallel.apps.launcher.MPIExecLauncher
method), 674

notify_stop() (IPython.parallel.apps.launcher.PBSControllerLauncher
method), 677

notify_stop() (IPython.parallel.apps.launcher.PBSEngineSetLauncher
method), 681

notify_stop() (IPython.parallel.apps.launcher.PBSLauncher
method), 684

notify_stop() (IPython.parallel.apps.launcher.SGEControllerLauncher
method), 688

notify_stop() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
method), 692

notify_stop() (IPython.parallel.apps.launcher.SGELauncher
method), 695

notify_stop() (IPython.parallel.apps.launcher.SSHControllerLauncher
method), 698

notify_stop() (IPython.parallel.apps.launcher.SSHEngineLauncher
method), 701

notify_stop() (IPython.parallel.apps.launcher.SSHEngineSetLauncher
method), 704

notify_stop() (IPython.parallel.apps.launcher.SSHLauncher
method), 707

notify_stop() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
method), 710

notify_stop() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
method), 713

notify_stop() (IPython.parallel.apps.launcher.WindowsHPCLauncher
method), 716

num_cpus() (in module IPython.utils.sysinfo), 886
num_ini_spaces() (in module

IPython.core.inputsplitter), 373
num_ini_spaces() (in module IPython.utils.text), 898

O
object_info() (in module IPython.core.oinspect), 452
object_info_string_level

(IPython.core.interactiveshell.InteractiveShell
attribute), 408

object_inspect() (IPython.core.interactiveshell.InteractiveShell
method), 408

ObjectName (class in IPython.utils.traitlets), 925
ofind() (IPython.core.prefilter.LineInfo method), 488
on_off() (in module IPython.core.magic), 444
on_probation (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 783
on_stop() (IPython.parallel.apps.launcher.BaseLauncher

method), 637
on_stop() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 641
on_stop() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 644
on_stop() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 657

1040 Index

IPython Documentation, Release 0.11

on_stop() (IPython.parallel.apps.launcher.LocalEngineLauncher
method), 660

on_stop() (IPython.parallel.apps.launcher.LocalEngineSetLauncher
method), 663

on_stop() (IPython.parallel.apps.launcher.LocalProcessLauncher
method), 665

on_stop() (IPython.parallel.apps.launcher.LSFControllerLauncher
method), 647

on_stop() (IPython.parallel.apps.launcher.LSFEngineSetLauncher
method), 650

on_stop() (IPython.parallel.apps.launcher.LSFLauncher
method), 654

on_stop() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
method), 668

on_stop() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
method), 671

on_stop() (IPython.parallel.apps.launcher.MPIExecLauncher
method), 674

on_stop() (IPython.parallel.apps.launcher.PBSControllerLauncher
method), 678

on_stop() (IPython.parallel.apps.launcher.PBSEngineSetLauncher
method), 681

on_stop() (IPython.parallel.apps.launcher.PBSLauncher
method), 684

on_stop() (IPython.parallel.apps.launcher.SGEControllerLauncher
method), 688

on_stop() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
method), 692

on_stop() (IPython.parallel.apps.launcher.SGELauncher
method), 695

on_stop() (IPython.parallel.apps.launcher.SSHControllerLauncher
method), 698

on_stop() (IPython.parallel.apps.launcher.SSHEngineLauncher
method), 701

on_stop() (IPython.parallel.apps.launcher.SSHEngineSetLauncher
method), 704

on_stop() (IPython.parallel.apps.launcher.SSHLauncher
method), 707

on_stop() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
method), 710

on_stop() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
method), 713

on_stop() (IPython.parallel.apps.launcher.WindowsHPCLauncher
method), 716

on_trait_change() (IPython.config.application.Application
method), 265

on_trait_change() (IPython.config.configurable.Configurable
method), 269

on_trait_change() (IPython.config.configurable.LoggingConfigurable
method), 272

on_trait_change() (IPython.config.configurable.SingletonConfigurable
method), 274

on_trait_change() (IPython.core.alias.AliasManager
method), 285

on_trait_change() (IPython.core.application.BaseIPythonApplication
method), 290

on_trait_change() (IPython.core.builtin_trap.BuiltinTrap
method), 295

on_trait_change() (IPython.core.display_trap.DisplayTrap
method), 317

on_trait_change() (IPython.core.displayhook.DisplayHook
method), 320

on_trait_change() (IPython.core.displaypub.DisplayPublisher
method), 323

on_trait_change() (IPython.core.extensions.ExtensionManager
method), 329

on_trait_change() (IPython.core.formatters.BaseFormatter
method), 333

on_trait_change() (IPython.core.formatters.DisplayFormatter
method), 336

on_trait_change() (IPython.core.formatters.HTMLFormatter
method), 339

on_trait_change() (IPython.core.formatters.JavascriptFormatter
method), 344

on_trait_change() (IPython.core.formatters.JSONFormatter
method), 341

on_trait_change() (IPython.core.formatters.LatexFormatter
method), 347

on_trait_change() (IPython.core.formatters.PlainTextFormatter
method), 353

on_trait_change() (IPython.core.formatters.PNGFormatter
method), 350

on_trait_change() (IPython.core.formatters.SVGFormatter
method), 356

on_trait_change() (IPython.core.history.HistoryManager
method), 361

on_trait_change() (IPython.core.interactiveshell.InteractiveShell
method), 408

on_trait_change() (IPython.core.payload.PayloadManager
method), 455

on_trait_change() (IPython.core.plugin.Plugin
method), 458

on_trait_change() (IPython.core.plugin.PluginManager
method), 459

on_trait_change() (IPython.core.prefilter.AliasChecker
method), 462

Index 1041

IPython Documentation, Release 0.11

on_trait_change() (IPython.core.prefilter.AliasHandler
method), 464

on_trait_change() (IPython.core.prefilter.AssignMagicTransformer
method), 466

on_trait_change() (IPython.core.prefilter.AssignmentChecker
method), 470

on_trait_change() (IPython.core.prefilter.AssignSystemTransformer
method), 468

on_trait_change() (IPython.core.prefilter.AutocallChecker
method), 475

on_trait_change() (IPython.core.prefilter.AutoHandler
method), 472

on_trait_change() (IPython.core.prefilter.AutoMagicChecker
method), 473

on_trait_change() (IPython.core.prefilter.EmacsChecker
method), 477

on_trait_change() (IPython.core.prefilter.EmacsHandler
method), 479

on_trait_change() (IPython.core.prefilter.EscCharsChecker
method), 481

on_trait_change() (IPython.core.prefilter.HelpHandler
method), 483

on_trait_change() (IPython.core.prefilter.IPyAutocallChecker
method), 484

on_trait_change() (IPython.core.prefilter.IPyPromptTransformer
method), 486

on_trait_change() (IPython.core.prefilter.MacroChecker
method), 489

on_trait_change() (IPython.core.prefilter.MacroHandler
method), 491

on_trait_change() (IPython.core.prefilter.MagicHandler
method), 492

on_trait_change() (IPython.core.prefilter.MultiLineMagicChecker
method), 494

on_trait_change() (IPython.core.prefilter.PrefilterChecker
method), 496

on_trait_change() (IPython.core.prefilter.PrefilterHandler
method), 498

on_trait_change() (IPython.core.prefilter.PrefilterManager
method), 501

on_trait_change() (IPython.core.prefilter.PrefilterTransformer
method), 503

on_trait_change() (IPython.core.prefilter.PyPromptTransformer
method), 505

on_trait_change() (IPython.core.prefilter.PythonOpsChecker
method), 507

on_trait_change() (IPython.core.prefilter.ShellEscapeChecker
method), 509

on_trait_change() (IPython.core.prefilter.ShellEscapeHandler
method), 511

on_trait_change() (IPython.core.profileapp.ProfileApp
method), 515

on_trait_change() (IPython.core.profileapp.ProfileCreate
method), 519

on_trait_change() (IPython.core.profileapp.ProfileList
method), 523

on_trait_change() (IPython.core.profiledir.ProfileDir
method), 528

on_trait_change() (IPython.core.shellapp.InteractiveShellApp
method), 534

on_trait_change() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 590

on_trait_change() (IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 596

on_trait_change() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 601

on_trait_change() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 607

on_trait_change() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 612

on_trait_change() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 618

on_trait_change() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 625

on_trait_change() (IPython.parallel.apps.ipengineapp.MPI
method), 629

on_trait_change() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 633

on_trait_change() (IPython.parallel.apps.launcher.BaseLauncher
method), 637

on_trait_change() (IPython.parallel.apps.launcher.BatchSystemLauncher
method), 641

on_trait_change() (IPython.parallel.apps.launcher.IPClusterLauncher
method), 644

on_trait_change() (IPython.parallel.apps.launcher.LocalControllerLauncher
method), 657

on_trait_change() (IPython.parallel.apps.launcher.LocalEngineLauncher
method), 660

on_trait_change() (IPython.parallel.apps.launcher.LocalEngineSetLauncher
method), 663

on_trait_change() (IPython.parallel.apps.launcher.LocalProcessLauncher
method), 666

on_trait_change() (IPython.parallel.apps.launcher.LSFControllerLauncher
method), 647

on_trait_change() (IPython.parallel.apps.launcher.LSFEngineSetLauncher
method), 651

1042 Index

IPython Documentation, Release 0.11

on_trait_change() (IPython.parallel.apps.launcher.LSFLauncher
method), 654

on_trait_change() (IPython.parallel.apps.launcher.MPIExecControllerLauncher
method), 669

on_trait_change() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
method), 671

on_trait_change() (IPython.parallel.apps.launcher.MPIExecLauncher
method), 674

on_trait_change() (IPython.parallel.apps.launcher.PBSControllerLauncher
method), 678

on_trait_change() (IPython.parallel.apps.launcher.PBSEngineSetLauncher
method), 681

on_trait_change() (IPython.parallel.apps.launcher.PBSLauncher
method), 685

on_trait_change() (IPython.parallel.apps.launcher.SGEControllerLauncher
method), 688

on_trait_change() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
method), 692

on_trait_change() (IPython.parallel.apps.launcher.SGELauncher
method), 695

on_trait_change() (IPython.parallel.apps.launcher.SSHControllerLauncher
method), 698

on_trait_change() (IPython.parallel.apps.launcher.SSHEngineLauncher
method), 701

on_trait_change() (IPython.parallel.apps.launcher.SSHEngineSetLauncher
method), 704

on_trait_change() (IPython.parallel.apps.launcher.SSHLauncher
method), 707

on_trait_change() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
method), 710

on_trait_change() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
method), 713

on_trait_change() (IPython.parallel.apps.launcher.WindowsHPCLauncher
method), 716

on_trait_change() (IPython.parallel.apps.logwatcher.LogWatcher
method), 719

on_trait_change() (IPython.parallel.apps.winhpcjob.IPControllerJob
method), 723

on_trait_change() (IPython.parallel.apps.winhpcjob.IPControllerTask
method), 726

on_trait_change() (IPython.parallel.apps.winhpcjob.IPEngineSetJob
method), 729

on_trait_change() (IPython.parallel.apps.winhpcjob.IPEngineTask
method), 732

on_trait_change() (IPython.parallel.apps.winhpcjob.WinHPCJob
method), 735

on_trait_change() (IPython.parallel.apps.winhpcjob.WinHPCTask
method), 738

on_trait_change() (IPython.parallel.client.client.Client
method), 748

on_trait_change() (IPython.parallel.client.view.DirectView
method), 759

on_trait_change() (IPython.parallel.client.view.LoadBalancedView
method), 765

on_trait_change() (IPython.parallel.client.view.View
method), 769

on_trait_change() (IPython.parallel.controller.dictdb.BaseDB
method), 777

on_trait_change() (IPython.parallel.controller.dictdb.DictDB
method), 780

on_trait_change() (IPython.parallel.controller.heartmonitor.HeartMonitor
method), 783

on_trait_change() (IPython.parallel.controller.hub.EngineConnector
method), 785

on_trait_change() (IPython.parallel.controller.hub.Hub
method), 789

on_trait_change() (IPython.parallel.controller.hub.HubFactory
method), 793

on_trait_change() (IPython.parallel.controller.scheduler.TaskScheduler
method), 798

on_trait_change() (IPython.parallel.controller.sqlitedb.SQLiteDB
method), 802

on_trait_change() (IPython.parallel.engine.engine.EngineFactory
method), 804

on_trait_change() (IPython.parallel.engine.streamkernel.Kernel
method), 810

on_trait_change() (IPython.parallel.factory.RegistrationFactory
method), 824

on_trait_change() (IPython.utils.traitlets.HasTraits
method), 919

onecmd() (IPython.core.debugger.Pdb method), 312
OneTimeProperty (class in IPython.utils.autoattr),

852
onlyif() (in module IPython.testing.decorators), 831
option_description (IPython.config.application.Application

attribute), 266
option_description (IPython.core.application.BaseIPythonApplication

attribute), 290
option_description (IPython.core.profileapp.ProfileApp

attribute), 515
option_description (IPython.core.profileapp.ProfileCreate

attribute), 520
option_description (IPython.core.profileapp.ProfileList

attribute), 524
option_description (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 591

Index 1043

IPython Documentation, Release 0.11

option_description (IPython.parallel.apps.ipclusterapp.IPClusterApp
attribute), 596

option_description (IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 601

option_description (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 607

option_description (IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 613

option_description (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 619

option_description (IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 625

option_description (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 633

ostream (IPython.core.ultratb.AutoFormattedTB at-
tribute), 538

ostream (IPython.core.ultratb.ColorTB attribute),
539

ostream (IPython.core.ultratb.FormattedTB at-
tribute), 541

ostream (IPython.core.ultratb.ListTB attribute), 542
ostream (IPython.core.ultratb.SyntaxTB attribute),

544
ostream (IPython.core.ultratb.TBTools attribute),

545
ostream (IPython.core.ultratb.VerboseTB attribute),

546
osx_clipboard_get() (in module

IPython.lib.clipboard), 553
out_stream_factory (IPython.parallel.engine.engine.EngineFactory

attribute), 805
output() (IPython.lib.pretty.Breakable method), 582
output() (IPython.lib.pretty.Group method), 582
output() (IPython.lib.pretty.Printable method), 583
output() (IPython.lib.pretty.Text method), 584
output_hist (IPython.core.history.HistoryManager

attribute), 362
output_hist_reprs (IPython.core.history.HistoryManager

attribute), 362
outstanding (IPython.parallel.client.client.Client at-

tribute), 749
outstanding (IPython.parallel.client.view.DirectView

attribute), 760
outstanding (IPython.parallel.client.view.LoadBalancedView

attribute), 765
outstanding (IPython.parallel.client.view.View at-

tribute), 769
overwrite (IPython.core.application.BaseIPythonApplication

attribute), 291
overwrite (IPython.core.profileapp.ProfileCreate at-

tribute), 520
overwrite (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 591
overwrite (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 601
overwrite (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 607
overwrite (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 613
overwrite (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 619
overwrite (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 625
overwrite (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 634
owner (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 724
owner (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 729
owner (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 735

P
p (IPython.utils.text.LSString attribute), 893
p (IPython.utils.text.SList attribute), 896
p_template (IPython.core.prompts.BasePrompt at-

tribute), 530
p_template (IPython.core.prompts.Prompt1 at-

tribute), 531
p_template (IPython.core.prompts.Prompt2 at-

tribute), 531
p_template (IPython.core.prompts.PromptOut at-

tribute), 532
pack_apply_message() (in module

IPython.parallel.util), 829
page() (in module IPython.core.page), 452
page() (in module IPython.core.payloadpage), 456
page_dumb() (in module IPython.core.page), 453
page_file() (in module IPython.core.page), 453
parallel (IPython.core.profileapp.ProfileCreate at-

tribute), 520
parallel() (in module

IPython.parallel.client.remotefunction),
756

parallel() (IPython.parallel.client.view.DirectView
method), 760

1044 Index

IPython Documentation, Release 0.11

parallel() (IPython.parallel.client.view.LoadBalancedView
method), 765

parallel() (IPython.parallel.client.view.View
method), 770

ParallelCrashHandler (class in
IPython.parallel.apps.baseapp), 593

ParallelFunction (class in
IPython.parallel.client.remotefunction),
754

params (IPython.testing.iptest.IPTester attribute),
835

parse() (IPython.utils.text.EvalFormatter method),
890

parse_args() (IPython.config.loader.ArgumentParser
method), 278

parse_args() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

parse_argstring() (in module
IPython.core.magic_arguments), 448

parse_argstring() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

parse_command_line()
(IPython.config.application.Application
method), 266

parse_command_line()
(IPython.core.application.BaseIPythonApplication
method), 291

parse_command_line()
(IPython.core.profileapp.ProfileApp
method), 515

parse_command_line()
(IPython.core.profileapp.ProfileCreate
method), 520

parse_command_line()
(IPython.core.profileapp.ProfileList
method), 524

parse_command_line()
(IPython.parallel.apps.baseapp.BaseParallelApplication
method), 591

parse_command_line()
(IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 596

parse_command_line()
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 601

parse_command_line()
(IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 607

parse_command_line()
(IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 613

parse_command_line()
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 619

parse_command_line()
(IPython.parallel.apps.ipengineapp.IPEngineApp
method), 625

parse_command_line()
(IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 634

parse_job_id() (IPython.parallel.apps.launcher.BatchSystemLauncher
method), 641

parse_job_id() (IPython.parallel.apps.launcher.LSFControllerLauncher
method), 647

parse_job_id() (IPython.parallel.apps.launcher.LSFEngineSetLauncher
method), 651

parse_job_id() (IPython.parallel.apps.launcher.LSFLauncher
method), 654

parse_job_id() (IPython.parallel.apps.launcher.PBSControllerLauncher
method), 678

parse_job_id() (IPython.parallel.apps.launcher.PBSEngineSetLauncher
method), 681

parse_job_id() (IPython.parallel.apps.launcher.PBSLauncher
method), 685

parse_job_id() (IPython.parallel.apps.launcher.SGEControllerLauncher
method), 689

parse_job_id() (IPython.parallel.apps.launcher.SGEEngineSetLauncher
method), 692

parse_job_id() (IPython.parallel.apps.launcher.SGELauncher
method), 696

parse_job_id() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
method), 711

parse_job_id() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
method), 714

parse_job_id() (IPython.parallel.apps.launcher.WindowsHPCLauncher
method), 716

parse_known_args()
(IPython.config.loader.ArgumentParser
method), 278

parse_known_args()
(IPython.core.magic_arguments.MagicArgumentParser
method), 446

parse_notifier_name() (in module
IPython.utils.traitlets), 934

parse_options() (IPython.core.interactiveshell.InteractiveShell
method), 408

Index 1045

IPython Documentation, Release 0.11

parse_options() (IPython.core.magic.Magic
method), 443

parse_test_output() (in module
IPython.testing.tools), 848

parseline() (IPython.core.debugger.Pdb method),
312

Parser (class in IPython.utils.PyColorize), 849
partition (IPython.utils.text.LSString attribute), 893
PATH, 2
paths (IPython.utils.text.LSString attribute), 893
paths (IPython.utils.text.SList attribute), 896
payload_manager (IPython.core.interactiveshell.InteractiveShell

attribute), 408
PayloadManager (class in IPython.core.payload),

454
PBMessageSizeError (class in

IPython.parallel.error), 819
PBSControllerLauncher (class in

IPython.parallel.apps.launcher), 676
PBSEngineSetLauncher (class in

IPython.parallel.apps.launcher), 679
PBSLauncher (class in

IPython.parallel.apps.launcher), 683
Pdb (class in IPython.core.debugger), 306
pdb (IPython.core.interactiveshell.InteractiveShell

attribute), 408
pdef() (IPython.core.oinspect.Inspector method),

449
pdoc() (IPython.core.oinspect.Inspector method),

450
pending (IPython.parallel.controller.hub.EngineConnector

attribute), 785
pending (IPython.parallel.controller.hub.Hub at-

tribute), 789
pending (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 798
period (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 783
pexpect_monkeypatch() (in module

IPython.lib.irunner), 578
pfile() (IPython.core.oinspect.Inspector method),

450
PickleShareDB (class in IPython.utils.pickleshare),

880
PickleShareLink (class in IPython.utils.pickleshare),

882
pid_dir (IPython.core.profiledir.ProfileDir attribute),

528

pid_dir_name (IPython.core.profiledir.ProfileDir at-
tribute), 528

PIDFileError (class in
IPython.parallel.apps.baseapp), 593

pids (IPython.testing.iptest.IPTester attribute), 835
pinfo() (IPython.core.oinspect.Inspector method),

450
pinfo_fields1 (IPython.core.oinspect.Inspector at-

tribute), 450
pinfo_fields_obj (IPython.core.oinspect.Inspector

attribute), 450
pingstream (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 783
pkg_commit_hash() (in module

IPython.utils.sysinfo), 886
pkg_info() (in module IPython.utils.sysinfo), 887
plain() (IPython.core.ultratb.AutoFormattedTB

method), 538
plain() (IPython.core.ultratb.ColorTB method), 540
plain() (IPython.core.ultratb.FormattedTB method),

541
plain_text_only (IPython.core.formatters.DisplayFormatter

attribute), 336
plainrandom() (in module

IPython.parallel.controller.scheduler),
799

PlainTextFormatter (class in
IPython.core.formatters), 351

Plugin (class in IPython.core.plugin), 457
plugin_manager (IPython.core.interactiveshell.InteractiveShell

attribute), 408
PluginManager (class in IPython.core.plugin), 459
plugins (IPython.core.plugin.PluginManager at-

tribute), 460
PNGFormatter (class in IPython.core.formatters),

348
poll() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 644
poll() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 658
poll() (IPython.parallel.apps.launcher.LocalEngineLauncher

method), 661
poll() (IPython.parallel.apps.launcher.LocalProcessLauncher

method), 666
poll() (IPython.parallel.apps.launcher.MPIExecControllerLauncher

method), 669
poll() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

method), 672

1046 Index

IPython Documentation, Release 0.11

poll() (IPython.parallel.apps.launcher.MPIExecLauncher
method), 675

poll() (IPython.parallel.apps.launcher.SSHControllerLauncher
method), 699

poll() (IPython.parallel.apps.launcher.SSHEngineLauncher
method), 702

poll() (IPython.parallel.apps.launcher.SSHLauncher
method), 707

poll_frequency (IPython.parallel.apps.launcher.IPClusterLauncher
attribute), 644

poll_frequency (IPython.parallel.apps.launcher.LocalControllerLauncher
attribute), 658

poll_frequency (IPython.parallel.apps.launcher.LocalEngineLauncher
attribute), 661

poll_frequency (IPython.parallel.apps.launcher.LocalProcessLauncher
attribute), 666

poll_frequency (IPython.parallel.apps.launcher.MPIExecControllerLauncher
attribute), 669

poll_frequency (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
attribute), 672

poll_frequency (IPython.parallel.apps.launcher.MPIExecLauncher
attribute), 675

poll_frequency (IPython.parallel.apps.launcher.SSHControllerLauncher
attribute), 699

poll_frequency (IPython.parallel.apps.launcher.SSHEngineLauncher
attribute), 702

poll_frequency (IPython.parallel.apps.launcher.SSHLauncher
attribute), 707

pongstream (IPython.parallel.controller.heartmonitor.HeartMonitor
attribute), 783

pop (IPython.config.loader.Config attribute), 279
pop (IPython.parallel.client.client.Metadata at-

tribute), 752
pop (IPython.parallel.controller.dependency.Dependency

attribute), 774
pop (IPython.parallel.util.Namespace attribute), 827
pop (IPython.testing.globalipapp.ipnsdict attribute),

834
pop (IPython.utils.coloransi.ColorSchemeTable at-

tribute), 856
pop (IPython.utils.ipstruct.Struct attribute), 871
pop (IPython.utils.text.SList attribute), 896
pop() (IPython.parallel.util.ReverseDict method),

828
pop() (IPython.utils.pickleshare.PickleShareDB

method), 881
popitem (IPython.config.loader.Config attribute),

279

popitem (IPython.parallel.client.client.Metadata at-
tribute), 752

popitem (IPython.parallel.util.Namespace attribute),
827

popitem (IPython.parallel.util.ReverseDict at-
tribute), 828

popitem (IPython.testing.globalipapp.ipnsdict
attribute), 834

popitem (IPython.utils.coloransi.ColorSchemeTable
attribute), 856

popitem (IPython.utils.ipstruct.Struct attribute), 871
popitem() (IPython.utils.pickleshare.PickleShareDB

method), 881
popkey() (in module IPython.utils.attic), 851
post_cmd() (IPython.lib.demo.ClearDemo method),

558
post_cmd() (IPython.lib.demo.ClearIPDemo

method), 560
post_cmd() (IPython.lib.demo.Demo method), 562
post_cmd() (IPython.lib.demo.IPythonDemo

method), 564
post_cmd() (IPython.lib.demo.IPythonLineDemo

method), 565
post_cmd() (IPython.lib.demo.LineDemo method),

567
post_notification() (IPython.utils.notification.NotificationCenter

method), 876
postcmd() (IPython.core.debugger.Pdb method), 312
postloop() (IPython.core.debugger.Pdb method), 312
pprint (IPython.core.formatters.PlainTextFormatter

attribute), 354
pprint() (in module IPython.lib.pretty), 584
pre_cmd() (IPython.lib.demo.ClearDemo method),

558
pre_cmd() (IPython.lib.demo.ClearIPDemo

method), 560
pre_cmd() (IPython.lib.demo.ClearMixin method),

561
pre_cmd() (IPython.lib.demo.Demo method), 562
pre_cmd() (IPython.lib.demo.IPythonDemo

method), 564
pre_cmd() (IPython.lib.demo.IPythonLineDemo

method), 565
pre_cmd() (IPython.lib.demo.LineDemo method),

567
pre_prompt_hook() (in module IPython.core.hooks),

367
pre_readline() (IPython.core.interactiveshell.InteractiveShell

Index 1047

IPython Documentation, Release 0.11

method), 409
pre_run_code_hook() (in module

IPython.core.hooks), 368
precmd() (IPython.core.debugger.Pdb method), 312
prefilter_line() (IPython.core.prefilter.PrefilterManager

method), 501
prefilter_line_info() (IPython.core.prefilter.PrefilterManager

method), 501
prefilter_lines() (IPython.core.prefilter.PrefilterManager

method), 501
prefilter_manager (IPython.core.interactiveshell.InteractiveShell

attribute), 409
prefilter_manager (IPython.core.prefilter.AliasChecker

attribute), 463
prefilter_manager (IPython.core.prefilter.AliasHandler

attribute), 465
prefilter_manager (IPython.core.prefilter.AssignMagicTransformer

attribute), 466
prefilter_manager (IPython.core.prefilter.AssignmentChecker

attribute), 470
prefilter_manager (IPython.core.prefilter.AssignSystemTransformer

attribute), 468
prefilter_manager (IPython.core.prefilter.AutocallChecker

attribute), 476
prefilter_manager (IPython.core.prefilter.AutoHandler

attribute), 472
prefilter_manager (IPython.core.prefilter.AutoMagicChecker

attribute), 474
prefilter_manager (IPython.core.prefilter.EmacsChecker

attribute), 477
prefilter_manager (IPython.core.prefilter.EmacsHandler

attribute), 479
prefilter_manager (IPython.core.prefilter.EscCharsChecker

attribute), 481
prefilter_manager (IPython.core.prefilter.HelpHandler

attribute), 483
prefilter_manager (IPython.core.prefilter.IPyAutocallChecker

attribute), 485
prefilter_manager (IPython.core.prefilter.IPyPromptTransformer

attribute), 487
prefilter_manager (IPython.core.prefilter.MacroChecker

attribute), 489
prefilter_manager (IPython.core.prefilter.MacroHandler

attribute), 491
prefilter_manager (IPython.core.prefilter.MagicHandler

attribute), 493
prefilter_manager (IPython.core.prefilter.MultiLineMagicChecker

attribute), 495

prefilter_manager (IPython.core.prefilter.PrefilterChecker
attribute), 496

prefilter_manager (IPython.core.prefilter.PrefilterHandler
attribute), 498

prefilter_manager (IPython.core.prefilter.PrefilterTransformer
attribute), 504

prefilter_manager (IPython.core.prefilter.PyPromptTransformer
attribute), 506

prefilter_manager (IPython.core.prefilter.PythonOpsChecker
attribute), 508

prefilter_manager (IPython.core.prefilter.ShellEscapeChecker
attribute), 509

prefilter_manager (IPython.core.prefilter.ShellEscapeHandler
attribute), 511

PrefilterChecker (class in IPython.core.prefilter),
495

PrefilterError (class in IPython.core.prefilter), 497
PrefilterHandler (class in IPython.core.prefilter), 497
PrefilterManager (class in IPython.core.prefilter),

499
PrefilterTransformer (class in IPython.core.prefilter),

503
preloop() (IPython.core.debugger.Pdb method), 312
prepended_to_syspath (class in

IPython.utils.syspathcontext), 888
pretty() (in module IPython.lib.pretty), 585
pretty() (IPython.lib.pretty.RepresentationPrinter

method), 584
PrettyPrinter (class in IPython.lib.pretty), 582
print_alias_help() (IPython.config.application.Application

method), 266
print_alias_help() (IPython.core.application.BaseIPythonApplication

method), 291
print_alias_help() (IPython.core.profileapp.ProfileApp

method), 515
print_alias_help() (IPython.core.profileapp.ProfileCreate

method), 520
print_alias_help() (IPython.core.profileapp.ProfileList

method), 524
print_alias_help() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 591
print_alias_help() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 596
print_alias_help() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 601
print_alias_help() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 607
print_alias_help() (IPython.parallel.apps.ipclusterapp.IPClusterStop

1048 Index

IPython Documentation, Release 0.11

method), 613
print_alias_help() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 619
print_alias_help() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 625
print_alias_help() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 634
print_description() (IPython.config.application.Application

method), 266
print_description() (IPython.core.application.BaseIPythonApplication

method), 291
print_description() (IPython.core.profileapp.ProfileApp

method), 515
print_description() (IPython.core.profileapp.ProfileCreate

method), 520
print_description() (IPython.core.profileapp.ProfileList

method), 524
print_description() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 591
print_description() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 596
print_description() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 601
print_description() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 607
print_description() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 613
print_description() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 619
print_description() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 626
print_description() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 634
print_examples() (IPython.config.application.Application

method), 266
print_examples() (IPython.core.application.BaseIPythonApplication

method), 291
print_examples() (IPython.core.profileapp.ProfileApp

method), 515
print_examples() (IPython.core.profileapp.ProfileCreate

method), 520
print_examples() (IPython.core.profileapp.ProfileList

method), 524
print_examples() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 591
print_examples() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 596
print_examples() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 601
print_examples() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 607
print_examples() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 613
print_examples() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 619
print_examples() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 626
print_examples() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 634
print_figure() (in module IPython.lib.pylabtools),

586
print_flag_help() (IPython.config.application.Application

method), 266
print_flag_help() (IPython.core.application.BaseIPythonApplication

method), 291
print_flag_help() (IPython.core.profileapp.ProfileApp

method), 515
print_flag_help() (IPython.core.profileapp.ProfileCreate

method), 520
print_flag_help() (IPython.core.profileapp.ProfileList

method), 524
print_flag_help() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 591
print_flag_help() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 596
print_flag_help() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 601
print_flag_help() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 607
print_flag_help() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 613
print_flag_help() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 619
print_flag_help() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 626
print_flag_help() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 634
print_help() (IPython.config.application.Application

method), 266
print_help() (IPython.config.loader.ArgumentParser

method), 278
print_help() (IPython.core.application.BaseIPythonApplication

method), 291
print_help() (IPython.core.magic_arguments.MagicArgumentParser

method), 446
print_help() (IPython.core.profileapp.ProfileApp

Index 1049

IPython Documentation, Release 0.11

method), 515
print_help() (IPython.core.profileapp.ProfileCreate

method), 520
print_help() (IPython.core.profileapp.ProfileList

method), 524
print_help() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 591
print_help() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 596
print_help() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602
print_help() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 607
print_help() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 613
print_help() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 619
print_help() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 626
print_help() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 634
print_list_lines() (IPython.core.debugger.Pdb

method), 312
print_method (IPython.core.formatters.BaseFormatter

attribute), 333
print_method (IPython.core.formatters.HTMLFormatter

attribute), 339
print_method (IPython.core.formatters.JavascriptFormatter

attribute), 345
print_method (IPython.core.formatters.JSONFormatter

attribute), 342
print_method (IPython.core.formatters.LatexFormatter

attribute), 348
print_method (IPython.core.formatters.PlainTextFormatter

attribute), 354
print_method (IPython.core.formatters.PNGFormatter

attribute), 350
print_method (IPython.core.formatters.SVGFormatter

attribute), 357
print_options() (IPython.config.application.Application

method), 266
print_options() (IPython.core.application.BaseIPythonApplication

method), 291
print_options() (IPython.core.profileapp.ProfileApp

method), 516
print_options() (IPython.core.profileapp.ProfileCreate

method), 520
print_options() (IPython.core.profileapp.ProfileList

method), 524
print_options() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 591
print_options() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 597
print_options() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602
print_options() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 607
print_options() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 613
print_options() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 619
print_options() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 626
print_options() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 634
print_stack_entry() (IPython.core.debugger.Pdb

method), 312
print_stack_trace() (IPython.core.debugger.Pdb

method), 312
print_subcommands()

(IPython.config.application.Application
method), 266

print_subcommands()
(IPython.core.application.BaseIPythonApplication
method), 291

print_subcommands()
(IPython.core.profileapp.ProfileApp
method), 516

print_subcommands()
(IPython.core.profileapp.ProfileCreate
method), 520

print_subcommands()
(IPython.core.profileapp.ProfileList
method), 524

print_subcommands()
(IPython.parallel.apps.baseapp.BaseParallelApplication
method), 591

print_subcommands()
(IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 597

print_subcommands()
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 602

print_subcommands()
(IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 607

1050 Index

IPython Documentation, Release 0.11

print_subcommands()
(IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 613

print_subcommands()
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 619

print_subcommands()
(IPython.parallel.apps.ipengineapp.IPEngineApp
method), 626

print_subcommands()
(IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 634

print_topics() (IPython.core.debugger.Pdb method),
312

print_tracebacks() (IPython.parallel.error.CompositeError
method), 813

print_usage() (IPython.config.loader.ArgumentParser
method), 278

print_usage() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

print_version() (IPython.config.application.Application
method), 266

print_version() (IPython.config.loader.ArgumentParser
method), 278

print_version() (IPython.core.application.BaseIPythonApplication
method), 291

print_version() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

print_version() (IPython.core.profileapp.ProfileApp
method), 516

print_version() (IPython.core.profileapp.ProfileCreate
method), 520

print_version() (IPython.core.profileapp.ProfileList
method), 524

print_version() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 591

print_version() (IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 597

print_version() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 602

print_version() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 608

print_version() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 613

print_version() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 619

print_version() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 626

print_version() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 634

Printable (class in IPython.lib.pretty), 583
printer() (in module

IPython.parallel.engine.streamkernel),
811

priority (IPython.core.prefilter.AliasChecker at-
tribute), 463

priority (IPython.core.prefilter.AssignMagicTransformer
attribute), 466

priority (IPython.core.prefilter.AssignmentChecker
attribute), 470

priority (IPython.core.prefilter.AssignSystemTransformer
attribute), 468

priority (IPython.core.prefilter.AutocallChecker at-
tribute), 476

priority (IPython.core.prefilter.AutoMagicChecker
attribute), 474

priority (IPython.core.prefilter.EmacsChecker
attribute), 478

priority (IPython.core.prefilter.EscCharsChecker at-
tribute), 481

priority (IPython.core.prefilter.IPyAutocallChecker
attribute), 485

priority (IPython.core.prefilter.IPyPromptTransformer
attribute), 487

priority (IPython.core.prefilter.MacroChecker
attribute), 489

priority (IPython.core.prefilter.MultiLineMagicChecker
attribute), 495

priority (IPython.core.prefilter.PrefilterChecker at-
tribute), 496

priority (IPython.core.prefilter.PrefilterTransformer
attribute), 504

priority (IPython.core.prefilter.PyPromptTransformer
attribute), 506

priority (IPython.core.prefilter.PythonOpsChecker
attribute), 508

priority (IPython.core.prefilter.ShellEscapeChecker
attribute), 510

priority (IPython.parallel.apps.winhpcjob.IPControllerJob
attribute), 724

priority (IPython.parallel.apps.winhpcjob.IPEngineSetJob
attribute), 729

priority (IPython.parallel.apps.winhpcjob.WinHPCJob
attribute), 735

ProcessStateError (class in
IPython.parallel.apps.launcher), 686

Index 1051

IPython Documentation, Release 0.11

profile (IPython.core.application.BaseIPythonApplication
attribute), 291

profile (IPython.core.interactiveshell.InteractiveShell
attribute), 409

profile (IPython.core.profileapp.ProfileCreate
attribute), 520

profile (IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 591

profile (IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 602

profile (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 608

profile (IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 613

profile (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 620

profile (IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 626

profile (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 634

profile (IPython.parallel.client.client.Client at-
tribute), 749

profile_dir (IPython.core.interactiveshell.InteractiveShell
attribute), 409

profile_missing_notice()
(IPython.core.interactiveshell.InteractiveShell
method), 409

profile_missing_notice() (IPython.core.magic.Magic
method), 444

ProfileApp (class in IPython.core.profileapp), 513
ProfileCreate (class in IPython.core.profileapp), 516
ProfileDir (class in IPython.core.profiledir), 525
ProfileDirError (class in IPython.core.profiledir),

529
ProfileList (class in IPython.core.profileapp), 521
program (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 669
program (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 672
program (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 675
program (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 699
program (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 702
program (IPython.parallel.apps.launcher.SSHLauncher

attribute), 707
program_args (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 669
program_args (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 672
program_args (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 675
program_args (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 699
program_args (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 702
program_args (IPython.parallel.apps.launcher.SSHLauncher

attribute), 707
project (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 724
project (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 729
project (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 735
prompt (IPython.core.debugger.Pdb attribute), 313
Prompt1 (class in IPython.core.prompts), 530
Prompt2 (class in IPython.core.prompts), 531
prompt_count (IPython.core.displayhook.DisplayHook

attribute), 320
prompt_in1 (IPython.core.interactiveshell.InteractiveShell

attribute), 409
prompt_in2 (IPython.core.interactiveshell.InteractiveShell

attribute), 409
prompt_out (IPython.core.interactiveshell.InteractiveShell

attribute), 409
PromptOut (class in IPython.core.prompts), 531
prompts_pad_left (IPython.core.interactiveshell.InteractiveShell

attribute), 409
protect_filename() (in module

IPython.core.completer), 303
ProtocolError (class in IPython.parallel.error), 819
psearch() (IPython.core.oinspect.Inspector method),

450
psource() (IPython.core.oinspect.Inspector method),

451
publish() (IPython.core.displaypub.DisplayPublisher

method), 323
publish_display_data() (in module

IPython.core.displaypub), 324
pull() (IPython.parallel.client.view.DirectView

method), 760
purge_results() (IPython.parallel.client.client.Client

method), 749
purge_results() (IPython.parallel.client.view.DirectView

method), 760

1052 Index

IPython Documentation, Release 0.11

purge_results() (IPython.parallel.client.view.LoadBalancedView
method), 765

purge_results() (IPython.parallel.client.view.View
method), 770

purge_results() (IPython.parallel.controller.hub.Hub
method), 789

Purple (IPython.utils.coloransi.InputTermColors at-
tribute), 857

Purple (IPython.utils.coloransi.TermColors at-
tribute), 858

push() (IPython.core.inputsplitter.InputSplitter
method), 371

push() (IPython.core.inputsplitter.IPythonInputSplitter
method), 370

push() (IPython.core.interactiveshell.InteractiveShell
method), 409

push() (IPython.parallel.client.view.DirectView
method), 760

push_accepts_more()
(IPython.core.inputsplitter.InputSplitter
method), 372

push_accepts_more()
(IPython.core.inputsplitter.IPythonInputSplitter
method), 370

py_file_finder (class in IPython.testing.globalipapp),
834

pycmd2argv() (in module IPython.utils.process), 885
PyFileConfigLoader (class in

IPython.config.loader), 283
pyfunc() (in module

IPython.testing.plugin.dtexample), 841
pyfunc() (in module IPython.testing.plugin.simple),

843
pylab_activate() (in module IPython.lib.pylabtools),

586
PyPromptTransformer (class in

IPython.core.prefilter), 505
python_func_kw_matches()

(IPython.core.completer.IPCompleter
method), 302

python_matches() (IPython.core.completer.IPCompleter
method), 302

PythonOpsChecker (class in IPython.core.prefilter),
506

PythonRunner (class in IPython.lib.irunner), 576
PYTHONSTARTUP, 943

Q
query (IPython.parallel.controller.hub.Hub at-

tribute), 790
queue (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 641
queue (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 647
queue (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 651
queue (IPython.parallel.apps.launcher.LSFLauncher

attribute), 654
queue (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 678
queue (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 681
queue (IPython.parallel.apps.launcher.PBSLauncher

attribute), 685
queue (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 689
queue (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 692
queue (IPython.parallel.apps.launcher.SGELauncher

attribute), 696
queue (IPython.parallel.controller.hub.EngineConnector

attribute), 785
queue_regexp (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 641
queue_regexp (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 648
queue_regexp (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 651
queue_regexp (IPython.parallel.apps.launcher.LSFLauncher

attribute), 654
queue_regexp (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 678
queue_regexp (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 682
queue_regexp (IPython.parallel.apps.launcher.PBSLauncher

attribute), 685
queue_regexp (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 689
queue_regexp (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 692
queue_regexp (IPython.parallel.apps.launcher.SGELauncher

attribute), 696
queue_status() (IPython.parallel.client.client.Client

method), 749

Index 1053

IPython Documentation, Release 0.11

queue_status() (IPython.parallel.client.view.DirectView
method), 760

queue_status() (IPython.parallel.client.view.LoadBalancedView
method), 765

queue_status() (IPython.parallel.client.view.View
method), 770

queue_status() (IPython.parallel.controller.hub.Hub
method), 790

queue_template (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 641

queue_template (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 648

queue_template (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 651

queue_template (IPython.parallel.apps.launcher.LSFLauncher
attribute), 655

queue_template (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 678

queue_template (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 682

queue_template (IPython.parallel.apps.launcher.PBSLauncher
attribute), 685

queue_template (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 689

queue_template (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 692

queue_template (IPython.parallel.apps.launcher.SGELauncher
attribute), 696

QueueCleared (class in IPython.parallel.error), 819
queues (IPython.parallel.controller.hub.Hub at-

tribute), 790
quick_completer() (in module

IPython.core.completerlib), 303
quiet (IPython.core.interactiveshell.InteractiveShell

attribute), 409
quiet() (IPython.core.displayhook.DisplayHook

method), 320
qw() (in module IPython.utils.text), 898
qw_lol() (in module IPython.utils.text), 899
qwflat() (in module IPython.utils.text), 899

R
r (IPython.parallel.client.asyncresult.AsyncHubResult

attribute), 740
r (IPython.parallel.client.asyncresult.AsyncMapResult

attribute), 741
r (IPython.parallel.client.asyncresult.AsyncResult

attribute), 742

raise_exception() (IPython.parallel.error.CompositeError
method), 813

random_all() (in module
IPython.testing.plugin.dtexample), 841

ranfunc() (in module
IPython.testing.plugin.dtexample), 842

raw_input_ext() (in module IPython.utils.io), 866
raw_input_multi() (in module IPython.utils.io), 866
raw_print() (in module IPython.utils.io), 866
raw_print_err() (in module IPython.utils.io), 866
re_auto (IPython.lib.demo.ClearDemo attribute),

558
re_auto (IPython.lib.demo.ClearIPDemo attribute),

560
re_auto (IPython.lib.demo.Demo attribute), 562
re_auto (IPython.lib.demo.IPythonDemo attribute),

564
re_auto (IPython.lib.demo.IPythonLineDemo

attribute), 566
re_auto (IPython.lib.demo.LineDemo attribute), 567
re_auto_all (IPython.lib.demo.ClearDemo attribute),

558
re_auto_all (IPython.lib.demo.ClearIPDemo at-

tribute), 560
re_auto_all (IPython.lib.demo.Demo attribute), 562
re_auto_all (IPython.lib.demo.IPythonDemo at-

tribute), 564
re_auto_all (IPython.lib.demo.IPythonLineDemo at-

tribute), 566
re_auto_all (IPython.lib.demo.LineDemo attribute),

567
re_mark() (in module IPython.lib.demo), 568
re_silent (IPython.lib.demo.ClearDemo attribute),

558
re_silent (IPython.lib.demo.ClearIPDemo attribute),

560
re_silent (IPython.lib.demo.Demo attribute), 562
re_silent (IPython.lib.demo.IPythonDemo attribute),

564
re_silent (IPython.lib.demo.IPythonLineDemo at-

tribute), 566
re_silent (IPython.lib.demo.LineDemo attribute),

567
re_stop (IPython.lib.demo.ClearDemo attribute),

558
re_stop (IPython.lib.demo.ClearIPDemo attribute),

560
re_stop (IPython.lib.demo.Demo attribute), 562

1054 Index

IPython Documentation, Release 0.11

re_stop (IPython.lib.demo.IPythonDemo attribute),
564

re_stop (IPython.lib.demo.IPythonLineDemo
attribute), 566

re_stop (IPython.lib.demo.LineDemo attribute), 567
read_payload() (IPython.core.payload.PayloadManager

method), 455
readline_merge_completions

(IPython.core.interactiveshell.InteractiveShell
attribute), 409

readline_omit__names
(IPython.core.interactiveshell.InteractiveShell
attribute), 409

readline_parse_and_bind
(IPython.core.interactiveshell.InteractiveShell
attribute), 410

readline_remove_delims
(IPython.core.interactiveshell.InteractiveShell
attribute), 410

readline_use (IPython.core.interactiveshell.InteractiveShell
attribute), 410

ReadlineNoRecord (class in
IPython.core.interactiveshell), 415

ready() (AsyncResult method), 169
ready() (IPython.parallel.client.asyncresult.AsyncHubResult

method), 740
ready() (IPython.parallel.client.asyncresult.AsyncMapResult

method), 741
ready() (IPython.parallel.client.asyncresult.AsyncResult

method), 742
real_name() (in module

IPython.core.magic_arguments), 448
rebindFunctionGlobals() (in module

IPython.utils.pickleutil), 883
Red (IPython.utils.coloransi.InputTermColors

attribute), 857
Red (IPython.utils.coloransi.TermColors attribute),

858
reduce_code() (in module IPython.utils.codeutil),

854
Reference (class in IPython.utils.pickleutil), 883
refill_readline_hist()

(IPython.core.interactiveshell.InteractiveShell
method), 410

register() (IPython.config.loader.ArgumentParser
method), 278

register() (IPython.core.magic_arguments.MagicArgumentParser
method), 446

register() (IPython.parallel.engine.engine.EngineFactory
method), 805

register_checker() (IPython.core.prefilter.PrefilterManager
method), 502

register_engine() (IPython.parallel.controller.hub.Hub
method), 790

register_handler() (IPython.core.prefilter.PrefilterManager
method), 502

register_plugin() (IPython.core.plugin.PluginManager
method), 460

register_post_execute()
(IPython.core.interactiveshell.InteractiveShell
method), 410

register_transformer()
(IPython.core.prefilter.PrefilterManager
method), 502

registrar (IPython.parallel.engine.engine.EngineFactory
attribute), 805

registration (IPython.parallel.controller.hub.EngineConnector
attribute), 785

registration_timeout
(IPython.parallel.controller.hub.Hub
attribute), 790

RegistrationFactory (class in
IPython.parallel.factory), 823

regport (IPython.parallel.controller.hub.HubFactory
attribute), 793

regport (IPython.parallel.engine.engine.EngineFactory
attribute), 805

regport (IPython.parallel.factory.RegistrationFactory
attribute), 825

reinit_logging() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 591

reinit_logging() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 602

reinit_logging() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 608

reinit_logging() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 613

reinit_logging() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 620

reinit_logging() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 626

reinit_logging() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 634

rekey() (in module IPython.utils.jsonutil), 872
reload() (in module IPython.lib.deepreload), 554
reload() (IPython.lib.demo.ClearDemo method), 558

Index 1055

IPython Documentation, Release 0.11

reload() (IPython.lib.demo.ClearIPDemo method),
560

reload() (IPython.lib.demo.Demo method), 562
reload() (IPython.lib.demo.IPythonDemo method),

564
reload() (IPython.lib.demo.IPythonLineDemo

method), 566
reload() (IPython.lib.demo.LineDemo method), 568
reload_extension() (IPython.core.extensions.ExtensionManager

method), 329
remote() (in module

IPython.parallel.client.remotefunction),
756

remote() (IPython.parallel.client.view.DirectView
method), 760

remote() (IPython.parallel.client.view.LoadBalancedView
method), 765

remote() (IPython.parallel.client.view.View
method), 770

RemoteError (class in IPython.parallel.error), 820
RemoteFunction (class in

IPython.parallel.client.remotefunction),
755

remove (IPython.parallel.controller.dependency.Dependency
attribute), 774

remove (IPython.utils.text.SList attribute), 896
remove() (IPython.lib.backgroundjobs.BackgroundJobManager

method), 552
remove() (IPython.lib.pretty.GroupQueue method),

582
remove_all_observers()

(IPython.utils.notification.NotificationCenter
method), 877

remove_builtin() (IPython.core.builtin_trap.BuiltinTrap
method), 295

remove_comments() (in module
IPython.core.inputsplitter), 373

remove_pid_file() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 591

remove_pid_file() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 602

remove_pid_file() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 608

remove_pid_file() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 613

remove_pid_file() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 620

remove_pid_file() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 626
remove_pid_file() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 634
replace (IPython.utils.text.LSString attribute), 893
report() (in module IPython.testing.iptest), 836
repr_type() (in module IPython.utils.traitlets), 935
RepresentationPrinter (class in IPython.lib.pretty),

583
requested_nodes (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 724
requested_nodes (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 730
requested_nodes (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 735
require() (in module

IPython.parallel.controller.dependency),
775

reset (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 608

reset() (IPython.core.debugger.Pdb method), 313
reset() (IPython.core.history.HistoryManager

method), 362
reset() (IPython.core.inputsplitter.InputSplitter

method), 372
reset() (IPython.core.inputsplitter.IPythonInputSplitter

method), 370
reset() (IPython.core.interactiveshell.InteractiveShell

method), 410
reset() (IPython.lib.demo.ClearDemo method), 558
reset() (IPython.lib.demo.ClearIPDemo method),

560
reset() (IPython.lib.demo.Demo method), 562
reset() (IPython.lib.demo.IPythonDemo method),

564
reset() (IPython.lib.demo.IPythonLineDemo

method), 566
reset() (IPython.lib.demo.LineDemo method), 568
reset() (IPython.utils.autoattr.ResetMixin method),

853
reset_selective() (IPython.core.interactiveshell.InteractiveShell

method), 410
ResetMixin (class in IPython.utils.autoattr), 853
responses (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 783
restart_kernel() (IPython.parallel.engine.kernelstarter.KernelStarter

method), 807
restore_sys_module_state()

(IPython.core.interactiveshell.InteractiveShell

1056 Index

IPython Documentation, Release 0.11

method), 410
resubmit (IPython.parallel.controller.hub.Hub

attribute), 790
resubmit() (IPython.parallel.client.client.Client

method), 749
resubmit_task() (IPython.parallel.controller.hub.Hub

method), 790
result (IPython.parallel.client.asyncresult.AsyncHubResult

attribute), 740
result (IPython.parallel.client.asyncresult.AsyncMapResult

attribute), 741
result (IPython.parallel.client.asyncresult.AsyncResult

attribute), 742
result() (IPython.lib.backgroundjobs.BackgroundJobManager

method), 552
result_dict (IPython.parallel.client.asyncresult.AsyncHubResult

attribute), 740
result_dict (IPython.parallel.client.asyncresult.AsyncMapResult

attribute), 741
result_dict (IPython.parallel.client.asyncresult.AsyncResult

attribute), 743
result_status() (IPython.parallel.client.client.Client

method), 750
ResultAlreadyRetrieved (class in

IPython.parallel.error), 820
ResultNotCompleted (class in

IPython.parallel.error), 820
results (IPython.parallel.client.client.Client at-

tribute), 750
results (IPython.parallel.client.view.DirectView at-

tribute), 760
results (IPython.parallel.client.view.LoadBalancedView

attribute), 765
results (IPython.parallel.client.view.View attribute),

770
resume_receiving() (IPython.parallel.controller.scheduler.TaskScheduler

method), 798
retries (IPython.parallel.client.view.LoadBalancedView

attribute), 765
retries (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 798
reuse_files (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 620
reverse (IPython.utils.text.SList attribute), 896
ReverseDict (class in IPython.parallel.util), 827
rewrite (IPython.core.autocall.ExitAutocall at-

tribute), 293
rewrite (IPython.core.autocall.IPyAutocall at-

tribute), 293
rewrite (IPython.core.autocall.ZMQExitAutocall at-

tribute), 293
rfind (IPython.utils.text.LSString attribute), 893
rindex (IPython.utils.text.LSString attribute), 893
rjust (IPython.utils.text.LSString attribute), 893
rlcomplete() (IPython.core.completer.IPCompleter

method), 302
RoundRobinMap (class in

IPython.parallel.client.map), 753
rpartition (IPython.utils.text.LSString attribute), 893
rsplit (IPython.utils.text.LSString attribute), 894
rstrip (IPython.utils.text.LSString attribute), 894
ruler (IPython.core.debugger.Pdb attribute), 313
run() (IPython.core.debugger.Pdb method), 313
run() (IPython.core.history.HistorySavingThread

method), 363
run() (IPython.lib.backgroundjobs.BackgroundJobBase

method), 548
run() (IPython.lib.backgroundjobs.BackgroundJobExpr

method), 549
run() (IPython.lib.backgroundjobs.BackgroundJobFunc

method), 550
run() (IPython.parallel.apps.win32support.ForwarderThread

method), 721
run() (IPython.parallel.client.view.DirectView

method), 760
run() (IPython.testing.iptest.IPTester method), 835
run_ast_nodes() (IPython.core.interactiveshell.InteractiveShell

method), 410
run_cell() (IPython.core.interactiveshell.InteractiveShell

method), 410
run_cell() (IPython.lib.demo.ClearDemo method),

558
run_cell() (IPython.lib.demo.ClearIPDemo method),

560
run_cell() (IPython.lib.demo.Demo method), 562
run_cell() (IPython.lib.demo.IPythonDemo

method), 564
run_cell() (IPython.lib.demo.IPythonLineDemo

method), 566
run_cell() (IPython.lib.demo.LineDemo method),

568
run_code() (IPython.core.interactiveshell.InteractiveShell

method), 411
run_file() (IPython.lib.irunner.InteractiveRunner

method), 576
run_file() (IPython.lib.irunner.IPythonRunner

Index 1057

IPython Documentation, Release 0.11

method), 574
run_file() (IPython.lib.irunner.PythonRunner

method), 576
run_file() (IPython.lib.irunner.SAGERunner

method), 578
run_iptest() (in module IPython.testing.iptest), 836
run_iptestall() (in module IPython.testing.iptest),

836
run_source() (IPython.lib.irunner.InteractiveRunner

method), 576
run_source() (IPython.lib.irunner.IPythonRunner

method), 574
run_source() (IPython.lib.irunner.PythonRunner

method), 577
run_source() (IPython.lib.irunner.SAGERunner

method), 578
run_until_canceled (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 724
run_until_canceled (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 730
run_until_canceled (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 735
runcall() (IPython.core.debugger.Pdb method), 313
runcode() (IPython.core.interactiveshell.InteractiveShell

method), 411
runctx() (IPython.core.debugger.Pdb method), 313
runeval() (IPython.core.debugger.Pdb method), 313
runner (IPython.testing.iptest.IPTester attribute), 835
RunnerFactory (class in IPython.lib.irunner), 577
RunnerFactory (class in

IPython.testing.mkdoctests), 839
running (IPython.parallel.apps.launcher.BaseLauncher

attribute), 638
running (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 641
running (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 644
running (IPython.parallel.apps.launcher.LocalControllerLauncher

attribute), 658
running (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 661
running (IPython.parallel.apps.launcher.LocalEngineSetLauncher

attribute), 663
running (IPython.parallel.apps.launcher.LocalProcessLauncher

attribute), 666
running (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 648
running (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 651
running (IPython.parallel.apps.launcher.LSFLauncher

attribute), 655
running (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 669
running (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 672
running (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 675
running (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 678
running (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 682
running (IPython.parallel.apps.launcher.PBSLauncher

attribute), 685
running (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 689
running (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 692
running (IPython.parallel.apps.launcher.SGELauncher

attribute), 696
running (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 699
running (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 702
running (IPython.parallel.apps.launcher.SSHEngineSetLauncher

attribute), 705
running (IPython.parallel.apps.launcher.SSHLauncher

attribute), 708
running (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

attribute), 711
running (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

attribute), 714
running (IPython.parallel.apps.launcher.WindowsHPCLauncher

attribute), 716

S
s (IPython.utils.text.LSString attribute), 894
s (IPython.utils.text.SList attribute), 896
s_matches() (IPython.utils.strdispatch.StrDispatch

method), 886
safe_execfile() (IPython.core.interactiveshell.InteractiveShell

method), 411
safe_execfile_ipy() (IPython.core.interactiveshell.InteractiveShell

method), 411
SAGERunner (class in IPython.lib.irunner), 577
save_connection_dict()

(IPython.parallel.apps.ipcontrollerapp.IPControllerApp

1058 Index

IPython Documentation, Release 0.11

method), 620
save_flag (IPython.core.history.HistoryManager at-

tribute), 362
save_ids() (in module IPython.parallel.client.view),

771
save_iopub_message()

(IPython.parallel.controller.hub.Hub
method), 790

save_queue_request()
(IPython.parallel.controller.hub.Hub
method), 790

save_queue_result() (IPython.parallel.controller.hub.Hub
method), 790

save_sys_module_state()
(IPython.core.interactiveshell.InteractiveShell
method), 412

save_task_destination()
(IPython.parallel.controller.hub.Hub
method), 790

save_task_request() (IPython.parallel.controller.hub.Hub
method), 790

save_task_result() (IPython.parallel.controller.hub.Hub
method), 790

save_thread (IPython.core.history.HistoryManager
attribute), 362

save_unmet() (IPython.parallel.controller.scheduler.TaskScheduler
method), 798

save_urls() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 620

scatter() (IPython.parallel.client.view.DirectView
method), 760

scheduler (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
attribute), 711

scheduler (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
attribute), 714

scheduler (IPython.parallel.apps.launcher.WindowsHPCLauncher
attribute), 716

scheme (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 798

scheme_name (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 798

search() (IPython.core.history.HistoryManager
method), 362

section_sep (IPython.core.crashhandler.CrashHandler
attribute), 305

section_sep (IPython.parallel.apps.baseapp.ParallelCrashHandler
attribute), 593

secure (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 620
security_dir (IPython.core.profiledir.ProfileDir at-

tribute), 528
security_dir_name (IPython.core.profiledir.ProfileDir

attribute), 528
SecurityError (class in IPython.parallel.error), 820
seek() (IPython.lib.demo.ClearDemo method), 558
seek() (IPython.lib.demo.ClearIPDemo method),

560
seek() (IPython.lib.demo.Demo method), 562
seek() (IPython.lib.demo.IPythonDemo method),

564
seek() (IPython.lib.demo.IPythonLineDemo

method), 566
seek() (IPython.lib.demo.LineDemo method), 568
select_figure_format() (in module

IPython.lib.pylabtools), 586
select_random_ports() (in module

IPython.parallel.util), 829
send_apply_message()

(IPython.parallel.client.client.Client
method), 750

sent (IPython.parallel.client.asyncresult.AsyncHubResult
attribute), 740

sent (IPython.parallel.client.asyncresult.AsyncMapResult
attribute), 741

sent (IPython.parallel.client.asyncresult.AsyncResult
attribute), 743

separate_in (IPython.core.interactiveshell.InteractiveShell
attribute), 412

separate_out (IPython.core.interactiveshell.InteractiveShell
attribute), 412

separate_out2 (IPython.core.interactiveshell.InteractiveShell
attribute), 412

SeparateUnicode (class in
IPython.core.interactiveshell), 416

SerializationError (class in IPython.parallel.error),
821

SerializationError (class in
IPython.utils.newserialized), 874

serialize() (in module IPython.utils.newserialized),
875

serialize_object() (in module IPython.parallel.util),
829

Serialized (class in IPython.utils.newserialized), 874
SerializeIt (class in IPython.utils.newserialized), 874
session (IPython.parallel.controller.dictdb.BaseDB

attribute), 777

Index 1059

IPython Documentation, Release 0.11

session (IPython.parallel.controller.dictdb.DictDB
attribute), 780

session (IPython.parallel.controller.hub.Hub at-
tribute), 790

session (IPython.parallel.controller.hub.HubFactory
attribute), 793

session (IPython.parallel.controller.scheduler.TaskScheduler
attribute), 798

session (IPython.parallel.controller.sqlitedb.SQLiteDB
attribute), 802

session (IPython.parallel.engine.engine.EngineFactory
attribute), 805

session (IPython.parallel.engine.streamkernel.Kernel
attribute), 810

session (IPython.parallel.factory.RegistrationFactory
attribute), 825

session_number (IPython.core.history.HistoryManager
attribute), 362

Set (class in IPython.utils.traitlets), 926
set() (IPython.core.display_trap.DisplayTrap

method), 318
set_active_scheme()

(IPython.core.oinspect.Inspector method),
451

set_active_scheme()
(IPython.utils.coloransi.ColorSchemeTable
method), 856

set_autoindent() (IPython.core.interactiveshell.InteractiveShell
method), 412

set_break() (IPython.core.debugger.Pdb method),
313

set_colors() (IPython.core.debugger.Pdb method),
313

set_colors() (IPython.core.displayhook.DisplayHook
method), 321

set_colors() (IPython.core.prompts.Prompt1
method), 531

set_colors() (IPython.core.prompts.Prompt2
method), 531

set_colors() (IPython.core.prompts.PromptOut
method), 532

set_colors() (IPython.core.ultratb.AutoFormattedTB
method), 538

set_colors() (IPython.core.ultratb.ColorTB method),
540

set_colors() (IPython.core.ultratb.FormattedTB
method), 541

set_colors() (IPython.core.ultratb.ListTB method),

542
set_colors() (IPython.core.ultratb.SyntaxTB

method), 544
set_colors() (IPython.core.ultratb.TBTools method),

545
set_colors() (IPython.core.ultratb.VerboseTB

method), 546
set_completer_frame()

(IPython.core.interactiveshell.InteractiveShell
method), 412

set_continue() (IPython.core.debugger.Pdb method),
313

set_custom_completer()
(IPython.core.interactiveshell.InteractiveShell
method), 412

set_custom_exc() (IPython.core.interactiveshell.InteractiveShell
method), 412

set_default_value() (IPython.core.interactiveshell.SeparateUnicode
method), 416

set_default_value() (IPython.utils.traitlets.Any
method), 902

set_default_value() (IPython.utils.traitlets.Bool
method), 902

set_default_value() (IPython.utils.traitlets.Bytes
method), 903

set_default_value() (IPython.utils.traitlets.CaselessStrEnum
method), 911

set_default_value() (IPython.utils.traitlets.CBool
method), 904

set_default_value() (IPython.utils.traitlets.CBytes
method), 905

set_default_value() (IPython.utils.traitlets.CComplex
method), 906

set_default_value() (IPython.utils.traitlets.CFloat
method), 907

set_default_value() (IPython.utils.traitlets.CInt
method), 908

set_default_value() (IPython.utils.traitlets.ClassBasedTraitType
method), 912

set_default_value() (IPython.utils.traitlets.CLong
method), 909

set_default_value() (IPython.utils.traitlets.Complex
method), 913

set_default_value() (IPython.utils.traitlets.Container
method), 915

set_default_value() (IPython.utils.traitlets.CUnicode
method), 910

set_default_value() (IPython.utils.traitlets.Dict

1060 Index

IPython Documentation, Release 0.11

method), 916
set_default_value() (IPython.utils.traitlets.DottedObjectName

method), 917
set_default_value() (IPython.utils.traitlets.Enum

method), 918
set_default_value() (IPython.utils.traitlets.Float

method), 919
set_default_value() (IPython.utils.traitlets.Instance

method), 921
set_default_value() (IPython.utils.traitlets.Int

method), 922
set_default_value() (IPython.utils.traitlets.List

method), 923
set_default_value() (IPython.utils.traitlets.Long

method), 924
set_default_value() (IPython.utils.traitlets.ObjectName

method), 926
set_default_value() (IPython.utils.traitlets.Set

method), 927
set_default_value() (IPython.utils.traitlets.TCPAddress

method), 928
set_default_value() (IPython.utils.traitlets.This

method), 929
set_default_value() (IPython.utils.traitlets.TraitType

method), 930
set_default_value() (IPython.utils.traitlets.Tuple

method), 932
set_default_value() (IPython.utils.traitlets.Type

method), 933
set_default_value() (IPython.utils.traitlets.Unicode

method), 934
set_defaults() (IPython.config.loader.ArgumentParser

method), 278
set_defaults() (IPython.core.magic_arguments.MagicArgumentParser

method), 447
set_delims() (IPython.core.completer.CompletionSplitter

method), 300
set_flags() (IPython.parallel.client.view.DirectView

method), 761
set_flags() (IPython.parallel.client.view.LoadBalancedView

method), 765
set_flags() (IPython.parallel.client.view.View

method), 770
set_hook() (IPython.core.interactiveshell.InteractiveShell

method), 413
set_inputhook() (IPython.lib.inputhook.InputHookManager

method), 572
set_ip() (IPython.core.autocall.ExitAutocall

method), 293
set_ip() (IPython.core.autocall.IPyAutocall method),

293
set_ip() (IPython.core.autocall.ZMQExitAutocall

method), 293
set_metadata() (IPython.core.interactiveshell.SeparateUnicode

method), 416
set_metadata() (IPython.utils.traitlets.Any method),

902
set_metadata() (IPython.utils.traitlets.Bool method),

903
set_metadata() (IPython.utils.traitlets.Bytes

method), 903
set_metadata() (IPython.utils.traitlets.CaselessStrEnum

method), 911
set_metadata() (IPython.utils.traitlets.CBool

method), 904
set_metadata() (IPython.utils.traitlets.CBytes

method), 905
set_metadata() (IPython.utils.traitlets.CComplex

method), 906
set_metadata() (IPython.utils.traitlets.CFloat

method), 907
set_metadata() (IPython.utils.traitlets.CInt method),

908
set_metadata() (IPython.utils.traitlets.ClassBasedTraitType

method), 912
set_metadata() (IPython.utils.traitlets.CLong

method), 909
set_metadata() (IPython.utils.traitlets.Complex

method), 913
set_metadata() (IPython.utils.traitlets.Container

method), 915
set_metadata() (IPython.utils.traitlets.CUnicode

method), 910
set_metadata() (IPython.utils.traitlets.Dict method),

916
set_metadata() (IPython.utils.traitlets.DottedObjectName

method), 917
set_metadata() (IPython.utils.traitlets.Enum

method), 918
set_metadata() (IPython.utils.traitlets.Float method),

919
set_metadata() (IPython.utils.traitlets.Instance

method), 921
set_metadata() (IPython.utils.traitlets.Int method),

922
set_metadata() (IPython.utils.traitlets.List method),

Index 1061

IPython Documentation, Release 0.11

923
set_metadata() (IPython.utils.traitlets.Long method),

924
set_metadata() (IPython.utils.traitlets.ObjectName

method), 926
set_metadata() (IPython.utils.traitlets.Set method),

927
set_metadata() (IPython.utils.traitlets.TCPAddress

method), 928
set_metadata() (IPython.utils.traitlets.This method),

929
set_metadata() (IPython.utils.traitlets.TraitType

method), 931
set_metadata() (IPython.utils.traitlets.Tuple

method), 932
set_metadata() (IPython.utils.traitlets.Type method),

933
set_metadata() (IPython.utils.traitlets.Unicode

method), 934
set_mode() (IPython.core.ultratb.AutoFormattedTB

method), 538
set_mode() (IPython.core.ultratb.ColorTB method),

540
set_mode() (IPython.core.ultratb.FormattedTB

method), 541
set_next() (IPython.core.debugger.Pdb method), 313
set_next_input() (IPython.core.interactiveshell.InteractiveShell

method), 413
set_p_str() (IPython.core.prompts.BasePrompt

method), 530
set_p_str() (IPython.core.prompts.Prompt1 method),

531
set_p_str() (IPython.core.prompts.Prompt2 method),

531
set_p_str() (IPython.core.prompts.PromptOut

method), 532
set_quit() (IPython.core.debugger.Pdb method), 313
set_readline_completer()

(IPython.core.interactiveshell.InteractiveShell
method), 413

set_return() (IPython.core.debugger.Pdb method),
313

set_step() (IPython.core.debugger.Pdb method), 313
set_term_title() (in module IPython.utils.terminal),

888
set_trace() (IPython.core.debugger.Pdb method),

313
set_until() (IPython.core.debugger.Pdb method), 313

setDaemon() (IPython.core.history.HistorySavingThread
method), 364

setDaemon() (IPython.lib.backgroundjobs.BackgroundJobBase
method), 548

setDaemon() (IPython.lib.backgroundjobs.BackgroundJobExpr
method), 549

setDaemon() (IPython.lib.backgroundjobs.BackgroundJobFunc
method), 550

setDaemon() (IPython.parallel.apps.win32support.ForwarderThread
method), 721

setdefault (IPython.config.loader.Config attribute),
279

setdefault (IPython.parallel.client.client.Metadata at-
tribute), 752

setdefault (IPython.parallel.util.Namespace at-
tribute), 827

setdefault (IPython.parallel.util.ReverseDict at-
tribute), 828

setdefault (IPython.testing.globalipapp.ipnsdict at-
tribute), 834

setdefault (IPython.utils.coloransi.ColorSchemeTable
attribute), 856

setdefault (IPython.utils.ipstruct.Struct attribute),
871

setdefault() (IPython.utils.pickleshare.PickleShareDB
method), 881

setName() (IPython.core.history.HistorySavingThread
method), 364

setName() (IPython.lib.backgroundjobs.BackgroundJobBase
method), 548

setName() (IPython.lib.backgroundjobs.BackgroundJobExpr
method), 549

setName() (IPython.lib.backgroundjobs.BackgroundJobFunc
method), 550

setName() (IPython.parallel.apps.win32support.ForwarderThread
method), 721

setup() (IPython.core.debugger.Pdb method), 313
SGEControllerLauncher (class in

IPython.parallel.apps.launcher), 686
SGEEngineSetLauncher (class in

IPython.parallel.apps.launcher), 690
SGELauncher (class in

IPython.parallel.apps.launcher), 693
shell (IPython.core.alias.AliasManager attribute),

286
shell (IPython.core.builtin_trap.BuiltinTrap at-

tribute), 295
shell (IPython.core.displayhook.DisplayHook

1062 Index

IPython Documentation, Release 0.11

attribute), 321
shell (IPython.core.extensions.ExtensionManager

attribute), 329
shell (IPython.core.history.HistoryManager at-

tribute), 362
shell (IPython.core.prefilter.AliasChecker attribute),

463
shell (IPython.core.prefilter.AliasHandler attribute),

465
shell (IPython.core.prefilter.AssignMagicTransformer

attribute), 467
shell (IPython.core.prefilter.AssignmentChecker at-

tribute), 470
shell (IPython.core.prefilter.AssignSystemTransformer

attribute), 468
shell (IPython.core.prefilter.AutocallChecker at-

tribute), 476
shell (IPython.core.prefilter.AutoHandler attribute),

472
shell (IPython.core.prefilter.AutoMagicChecker at-

tribute), 474
shell (IPython.core.prefilter.EmacsChecker at-

tribute), 478
shell (IPython.core.prefilter.EmacsHandler at-

tribute), 479
shell (IPython.core.prefilter.EscCharsChecker

attribute), 481
shell (IPython.core.prefilter.HelpHandler attribute),

483
shell (IPython.core.prefilter.IPyAutocallChecker at-

tribute), 485
shell (IPython.core.prefilter.IPyPromptTransformer

attribute), 487
shell (IPython.core.prefilter.MacroChecker at-

tribute), 489
shell (IPython.core.prefilter.MacroHandler at-

tribute), 491
shell (IPython.core.prefilter.MagicHandler at-

tribute), 493
shell (IPython.core.prefilter.MultiLineMagicChecker

attribute), 495
shell (IPython.core.prefilter.PrefilterChecker at-

tribute), 497
shell (IPython.core.prefilter.PrefilterHandler at-

tribute), 499
shell (IPython.core.prefilter.PrefilterManager at-

tribute), 502
shell (IPython.core.prefilter.PrefilterTransformer at-

tribute), 504
shell (IPython.core.prefilter.PyPromptTransformer

attribute), 506
shell (IPython.core.prefilter.PythonOpsChecker at-

tribute), 508
shell (IPython.core.prefilter.ShellEscapeChecker at-

tribute), 510
shell (IPython.core.prefilter.ShellEscapeHandler at-

tribute), 511
shell (IPython.core.shellapp.InteractiveShellApp at-

tribute), 535
shell_handlers (IPython.parallel.engine.streamkernel.Kernel

attribute), 811
shell_streams (IPython.parallel.engine.streamkernel.Kernel

attribute), 811
ShellEscapeChecker (class in IPython.core.prefilter),

508
ShellEscapeHandler (class in IPython.core.prefilter),

510
shlex_split() (in module IPython.core.completerlib),

304
show() (IPython.lib.demo.ClearDemo method), 558
show() (IPython.lib.demo.ClearIPDemo method),

560
show() (IPython.lib.demo.Demo method), 562
show() (IPython.lib.demo.IPythonDemo method),

564
show() (IPython.lib.demo.IPythonLineDemo

method), 566
show() (IPython.lib.demo.LineDemo method), 568
show_all() (IPython.lib.demo.ClearDemo method),

558
show_all() (IPython.lib.demo.ClearIPDemo

method), 560
show_all() (IPython.lib.demo.Demo method), 562
show_all() (IPython.lib.demo.IPythonDemo

method), 564
show_all() (IPython.lib.demo.IPythonLineDemo

method), 566
show_all() (IPython.lib.demo.LineDemo method),

568
show_exception_only()

(IPython.core.ultratb.AutoFormattedTB
method), 538

show_exception_only()
(IPython.core.ultratb.ColorTB method),
540

show_exception_only()

Index 1063

IPython Documentation, Release 0.11

(IPython.core.ultratb.FormattedTB
method), 541

show_exception_only() (IPython.core.ultratb.ListTB
method), 543

show_exception_only()
(IPython.core.ultratb.SyntaxTB method),
544

show_hidden() (in module IPython.utils.wildcard),
937

show_in_pager() (in module IPython.core.hooks),
368

show_usage() (IPython.core.interactiveshell.InteractiveShell
method), 413

showdiff() (in module IPython.utils.upgradedir), 935
showindentationerror()

(IPython.core.interactiveshell.InteractiveShell
method), 413

showsyntaxerror() (IPython.core.interactiveshell.InteractiveShell
method), 413

showtraceback() (IPython.core.interactiveshell.InteractiveShell
method), 413

shutdown() (IPython.parallel.client.client.Client
method), 750

shutdown() (IPython.parallel.client.view.DirectView
method), 761

shutdown() (IPython.parallel.client.view.LoadBalancedView
method), 766

shutdown() (IPython.parallel.client.view.View
method), 770

shutdown_hook() (in module IPython.core.hooks),
368

shutdown_kernel() (IPython.parallel.engine.kernelstarter.KernelStarter
method), 807

shutdown_request() (IPython.parallel.controller.hub.Hub
method), 790

shutdown_request() (IPython.parallel.engine.kernelstarter.KernelStarter
method), 807

shutdown_request() (IPython.parallel.engine.streamkernel.Kernel
method), 811

sigint_handler() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 602

sigint_handler() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 608

signal (IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 613

signal() (IPython.parallel.apps.launcher.BaseLauncher
method), 638

signal() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 641
signal() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 644
signal() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 658
signal() (IPython.parallel.apps.launcher.LocalEngineLauncher

method), 661
signal() (IPython.parallel.apps.launcher.LocalEngineSetLauncher

method), 663
signal() (IPython.parallel.apps.launcher.LocalProcessLauncher

method), 666
signal() (IPython.parallel.apps.launcher.LSFControllerLauncher

method), 648
signal() (IPython.parallel.apps.launcher.LSFEngineSetLauncher

method), 651
signal() (IPython.parallel.apps.launcher.LSFLauncher

method), 655
signal() (IPython.parallel.apps.launcher.MPIExecControllerLauncher

method), 669
signal() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

method), 672
signal() (IPython.parallel.apps.launcher.MPIExecLauncher

method), 675
signal() (IPython.parallel.apps.launcher.PBSControllerLauncher

method), 678
signal() (IPython.parallel.apps.launcher.PBSEngineSetLauncher

method), 682
signal() (IPython.parallel.apps.launcher.PBSLauncher

method), 685
signal() (IPython.parallel.apps.launcher.SGEControllerLauncher

method), 689
signal() (IPython.parallel.apps.launcher.SGEEngineSetLauncher

method), 692
signal() (IPython.parallel.apps.launcher.SGELauncher

method), 696
signal() (IPython.parallel.apps.launcher.SSHControllerLauncher

method), 699
signal() (IPython.parallel.apps.launcher.SSHEngineLauncher

method), 702
signal() (IPython.parallel.apps.launcher.SSHEngineSetLauncher

method), 705
signal() (IPython.parallel.apps.launcher.SSHLauncher

method), 708
signal() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

method), 711
signal() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

method), 714
signal() (IPython.parallel.apps.launcher.WindowsHPCLauncher

1064 Index

IPython Documentation, Release 0.11

method), 716
signal_children() (in module IPython.parallel.util),

829
signal_kernel() (IPython.parallel.engine.kernelstarter.KernelStarter

method), 807
single_dir_expand() (in module

IPython.core.completer), 303
singleton_printers (IPython.core.formatters.BaseFormatter

attribute), 333
singleton_printers (IPython.core.formatters.HTMLFormatter

attribute), 339
singleton_printers (IPython.core.formatters.JavascriptFormatter

attribute), 345
singleton_printers (IPython.core.formatters.JSONFormatter

attribute), 342
singleton_printers (IPython.core.formatters.LatexFormatter

attribute), 348
singleton_printers (IPython.core.formatters.PlainTextFormatter

attribute), 354
singleton_printers (IPython.core.formatters.PNGFormatter

attribute), 351
singleton_printers (IPython.core.formatters.SVGFormatter

attribute), 357
SingletonConfigurable (class in

IPython.config.configurable), 273
skip() (in module IPython.testing.decorators), 831
skip_doctest (IPython.parallel.client.view.DirectView

attribute), 761
skip_doctest (IPython.parallel.client.view.LoadBalancedView

attribute), 766
skip_doctest (IPython.parallel.client.view.View at-

tribute), 770
skip_doctest() (in module

IPython.testing.skipdoctest), 845
skipif() (in module IPython.testing.decorators), 831
SList (class in IPython.utils.text), 895
snip_print() (in module IPython.core.page), 453
soft_define_alias() (IPython.core.alias.AliasManager

method), 286
softspace() (in module

IPython.core.interactiveshell), 417
sort() (IPython.utils.text.SList method), 897
sort_checkers() (IPython.core.prefilter.PrefilterManager

method), 502
sort_compare() (in module IPython.utils.data), 859
sort_transformers() (IPython.core.prefilter.PrefilterManager

method), 502
source (IPython.core.inputsplitter.InputSplitter at-

tribute), 372
source (IPython.core.inputsplitter.IPythonInputSplitter

attribute), 370
source_raw (IPython.core.inputsplitter.IPythonInputSplitter

attribute), 370
source_raw_reset() (IPython.core.inputsplitter.IPythonInputSplitter

method), 370
source_reset() (IPython.core.inputsplitter.InputSplitter

method), 372
source_reset() (IPython.core.inputsplitter.IPythonInputSplitter

method), 370
SpaceInInput (class in

IPython.core.interactiveshell), 417
spin() (IPython.parallel.client.client.Client method),

750
spin() (IPython.parallel.client.view.DirectView

method), 761
spin() (IPython.parallel.client.view.LoadBalancedView

method), 766
spin() (IPython.parallel.client.view.View method),

770
spin_after() (in module IPython.parallel.client.view),

771
spin_first() (in module

IPython.parallel.client.client), 752
split (IPython.utils.text.LSString attribute), 894
split_line() (IPython.core.completer.CompletionSplitter

method), 300
split_url() (in module IPython.parallel.util), 829
split_user_input() (in module

IPython.core.inputsplitter), 373
split_user_input() (in module

IPython.core.splitinput), 535
splitlines (IPython.utils.text.LSString attribute), 894
spstr (IPython.utils.text.LSString attribute), 894
spstr (IPython.utils.text.SList attribute), 897
SQLiteDB (class in

IPython.parallel.controller.sqlitedb),
800

squash_dates() (in module IPython.utils.jsonutil),
872

ssh_args (IPython.parallel.apps.launcher.SSHControllerLauncher
attribute), 699

ssh_args (IPython.parallel.apps.launcher.SSHEngineLauncher
attribute), 702

ssh_args (IPython.parallel.apps.launcher.SSHLauncher
attribute), 708

ssh_cmd (IPython.parallel.apps.launcher.SSHControllerLauncher

Index 1065

IPython Documentation, Release 0.11

attribute), 699
ssh_cmd (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 702
ssh_cmd (IPython.parallel.apps.launcher.SSHLauncher

attribute), 708
ssh_server (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 620
SSHControllerLauncher (class in

IPython.parallel.apps.launcher), 697
SSHEngineLauncher (class in

IPython.parallel.apps.launcher), 700
SSHEngineSetLauncher (class in

IPython.parallel.apps.launcher), 703
SSHLauncher (class in

IPython.parallel.apps.launcher), 705
stage_default_config_file()

(IPython.core.application.BaseIPythonApplication
method), 291

stage_default_config_file()
(IPython.core.profileapp.ProfileCreate
method), 520

stage_default_config_file()
(IPython.parallel.apps.baseapp.BaseParallelApplication
method), 591

stage_default_config_file()
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 602

stage_default_config_file()
(IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 608

stage_default_config_file()
(IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 613

stage_default_config_file()
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 620

stage_default_config_file()
(IPython.parallel.apps.ipengineapp.IPEngineApp
method), 626

stage_default_config_file()
(IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 634

start() (in module IPython.utils.growl), 864
start() (IPython.config.application.Application

method), 266
start() (IPython.core.application.BaseIPythonApplication

method), 291
start() (IPython.core.history.HistorySavingThread

method), 364
start() (IPython.core.profileapp.ProfileApp method),

516
start() (IPython.core.profileapp.ProfileCreate

method), 520
start() (IPython.core.profileapp.ProfileList method),

524
start() (IPython.lib.backgroundjobs.BackgroundJobBase

method), 548
start() (IPython.lib.backgroundjobs.BackgroundJobExpr

method), 549
start() (IPython.lib.backgroundjobs.BackgroundJobFunc

method), 550
start() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 592
start() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 597
start() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602
start() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
start() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 614
start() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 620
start() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 626
start() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 634
start() (IPython.parallel.apps.launcher.BaseLauncher

method), 638
start() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 642
start() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 644
start() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 658
start() (IPython.parallel.apps.launcher.LocalEngineLauncher

method), 661
start() (IPython.parallel.apps.launcher.LocalEngineSetLauncher

method), 663
start() (IPython.parallel.apps.launcher.LocalProcessLauncher

method), 666
start() (IPython.parallel.apps.launcher.LSFControllerLauncher

method), 648
start() (IPython.parallel.apps.launcher.LSFEngineSetLauncher

method), 651
start() (IPython.parallel.apps.launcher.LSFLauncher

1066 Index

IPython Documentation, Release 0.11

method), 655
start() (IPython.parallel.apps.launcher.MPIExecControllerLauncher

method), 669
start() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

method), 672
start() (IPython.parallel.apps.launcher.MPIExecLauncher

method), 675
start() (IPython.parallel.apps.launcher.PBSControllerLauncher

method), 678
start() (IPython.parallel.apps.launcher.PBSEngineSetLauncher

method), 682
start() (IPython.parallel.apps.launcher.PBSLauncher

method), 685
start() (IPython.parallel.apps.launcher.SGEControllerLauncher

method), 689
start() (IPython.parallel.apps.launcher.SGEEngineSetLauncher

method), 692
start() (IPython.parallel.apps.launcher.SGELauncher

method), 696
start() (IPython.parallel.apps.launcher.SSHControllerLauncher

method), 699
start() (IPython.parallel.apps.launcher.SSHEngineLauncher

method), 702
start() (IPython.parallel.apps.launcher.SSHEngineSetLauncher

method), 705
start() (IPython.parallel.apps.launcher.SSHLauncher

method), 708
start() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

method), 711
start() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

method), 714
start() (IPython.parallel.apps.launcher.WindowsHPCLauncher

method), 717
start() (IPython.parallel.apps.logwatcher.LogWatcher

method), 719
start() (IPython.parallel.apps.win32support.ForwarderThread

method), 721
start() (IPython.parallel.controller.heartmonitor.Heart

method), 781
start() (IPython.parallel.controller.heartmonitor.HeartMonitor

method), 783
start() (IPython.parallel.controller.hub.HubFactory

method), 794
start() (IPython.parallel.controller.scheduler.TaskScheduler

method), 798
start() (IPython.parallel.engine.engine.EngineFactory

method), 805
start() (IPython.parallel.engine.kernelstarter.KernelStarter

method), 807
start() (IPython.parallel.engine.streamkernel.Kernel

method), 811
start_controller() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
start_data (IPython.parallel.apps.launcher.BaseLauncher

attribute), 638
start_data (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 642
start_data (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 645
start_data (IPython.parallel.apps.launcher.LocalControllerLauncher

attribute), 658
start_data (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 661
start_data (IPython.parallel.apps.launcher.LocalEngineSetLauncher

attribute), 663
start_data (IPython.parallel.apps.launcher.LocalProcessLauncher

attribute), 666
start_data (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 648
start_data (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 651
start_data (IPython.parallel.apps.launcher.LSFLauncher

attribute), 655
start_data (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 669
start_data (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 672
start_data (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 675
start_data (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 678
start_data (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 682
start_data (IPython.parallel.apps.launcher.PBSLauncher

attribute), 685
start_data (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 689
start_data (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 693
start_data (IPython.parallel.apps.launcher.SGELauncher

attribute), 696
start_data (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 699
start_data (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 702
start_data (IPython.parallel.apps.launcher.SSHEngineSetLauncher

Index 1067

IPython Documentation, Release 0.11

attribute), 705
start_data (IPython.parallel.apps.launcher.SSHLauncher

attribute), 708
start_data (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

attribute), 711
start_data (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

attribute), 714
start_data (IPython.parallel.apps.launcher.WindowsHPCLauncher

attribute), 717
start_displayhook() (IPython.core.displayhook.DisplayHook

method), 321
start_engines() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602
start_engines() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
start_event_loop_qt4() (in module

IPython.lib.guisupport), 569
start_event_loop_wx() (in module

IPython.lib.guisupport), 569
start_ipython() (in module

IPython.testing.globalipapp), 834
start_kernel() (IPython.parallel.engine.kernelstarter.KernelStarter

method), 807
start_logging() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602
start_logging() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
startswith (IPython.utils.text.LSString attribute), 894
startup_command (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 626
startup_script (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 626
stat_completed (IPython.lib.backgroundjobs.BackgroundJobBase

attribute), 548
stat_completed (IPython.lib.backgroundjobs.BackgroundJobExpr

attribute), 549
stat_completed (IPython.lib.backgroundjobs.BackgroundJobFunc

attribute), 550
stat_completed_c (IPython.lib.backgroundjobs.BackgroundJobBase

attribute), 549
stat_completed_c (IPython.lib.backgroundjobs.BackgroundJobExpr

attribute), 549
stat_completed_c (IPython.lib.backgroundjobs.BackgroundJobFunc

attribute), 550
stat_created (IPython.lib.backgroundjobs.BackgroundJobBase

attribute), 549
stat_created (IPython.lib.backgroundjobs.BackgroundJobExpr

attribute), 549

stat_created (IPython.lib.backgroundjobs.BackgroundJobFunc
attribute), 550

stat_created_c (IPython.lib.backgroundjobs.BackgroundJobBase
attribute), 549

stat_created_c (IPython.lib.backgroundjobs.BackgroundJobExpr
attribute), 550

stat_created_c (IPython.lib.backgroundjobs.BackgroundJobFunc
attribute), 550

stat_dead (IPython.lib.backgroundjobs.BackgroundJobBase
attribute), 549

stat_dead (IPython.lib.backgroundjobs.BackgroundJobExpr
attribute), 550

stat_dead (IPython.lib.backgroundjobs.BackgroundJobFunc
attribute), 550

stat_dead_c (IPython.lib.backgroundjobs.BackgroundJobBase
attribute), 549

stat_dead_c (IPython.lib.backgroundjobs.BackgroundJobExpr
attribute), 550

stat_dead_c (IPython.lib.backgroundjobs.BackgroundJobFunc
attribute), 551

stat_running (IPython.lib.backgroundjobs.BackgroundJobBase
attribute), 549

stat_running (IPython.lib.backgroundjobs.BackgroundJobExpr
attribute), 550

stat_running (IPython.lib.backgroundjobs.BackgroundJobFunc
attribute), 551

stat_running_c (IPython.lib.backgroundjobs.BackgroundJobBase
attribute), 549

stat_running_c (IPython.lib.backgroundjobs.BackgroundJobExpr
attribute), 550

stat_running_c (IPython.lib.backgroundjobs.BackgroundJobFunc
attribute), 551

status() (IPython.lib.backgroundjobs.BackgroundJobManager
method), 552

stb2text() (IPython.core.ultratb.AutoFormattedTB
method), 538

stb2text() (IPython.core.ultratb.ColorTB method),
540

stb2text() (IPython.core.ultratb.FormattedTB
method), 541

stb2text() (IPython.core.ultratb.ListTB method), 543
stb2text() (IPython.core.ultratb.SyntaxTB method),

544
stb2text() (IPython.core.ultratb.TBTools method),

545
stb2text() (IPython.core.ultratb.VerboseTB method),

546
std_err_file_path (IPython.parallel.apps.winhpcjob.IPControllerTask

1068 Index

IPython Documentation, Release 0.11

attribute), 726
std_err_file_path (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 732
std_err_file_path (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 738
std_out_file_path (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 726
std_out_file_path (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 732
std_out_file_path (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 738
stop() (IPython.core.history.HistorySavingThread

method), 364
stop() (IPython.parallel.apps.launcher.BaseLauncher

method), 638
stop() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 642
stop() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 645
stop() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 658
stop() (IPython.parallel.apps.launcher.LocalEngineLauncher

method), 661
stop() (IPython.parallel.apps.launcher.LocalEngineSetLauncher

method), 663
stop() (IPython.parallel.apps.launcher.LocalProcessLauncher

method), 666
stop() (IPython.parallel.apps.launcher.LSFControllerLauncher

method), 648
stop() (IPython.parallel.apps.launcher.LSFEngineSetLauncher

method), 651
stop() (IPython.parallel.apps.launcher.LSFLauncher

method), 655
stop() (IPython.parallel.apps.launcher.MPIExecControllerLauncher

method), 669
stop() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

method), 672
stop() (IPython.parallel.apps.launcher.MPIExecLauncher

method), 675
stop() (IPython.parallel.apps.launcher.PBSControllerLauncher

method), 678
stop() (IPython.parallel.apps.launcher.PBSEngineSetLauncher

method), 682
stop() (IPython.parallel.apps.launcher.PBSLauncher

method), 685
stop() (IPython.parallel.apps.launcher.SGEControllerLauncher

method), 689
stop() (IPython.parallel.apps.launcher.SGEEngineSetLauncher

method), 693
stop() (IPython.parallel.apps.launcher.SGELauncher

method), 696
stop() (IPython.parallel.apps.launcher.SSHControllerLauncher

method), 699
stop() (IPython.parallel.apps.launcher.SSHEngineLauncher

method), 702
stop() (IPython.parallel.apps.launcher.SSHEngineSetLauncher

method), 705
stop() (IPython.parallel.apps.launcher.SSHLauncher

method), 708
stop() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

method), 711
stop() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

method), 714
stop() (IPython.parallel.apps.launcher.WindowsHPCLauncher

method), 717
stop() (IPython.parallel.apps.logwatcher.LogWatcher

method), 719
stop_controller() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
stop_data (IPython.parallel.apps.launcher.BaseLauncher

attribute), 638
stop_data (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 642
stop_data (IPython.parallel.apps.launcher.IPClusterLauncher

attribute), 645
stop_data (IPython.parallel.apps.launcher.LocalControllerLauncher

attribute), 658
stop_data (IPython.parallel.apps.launcher.LocalEngineLauncher

attribute), 661
stop_data (IPython.parallel.apps.launcher.LocalEngineSetLauncher

attribute), 664
stop_data (IPython.parallel.apps.launcher.LocalProcessLauncher

attribute), 666
stop_data (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 648
stop_data (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 651
stop_data (IPython.parallel.apps.launcher.LSFLauncher

attribute), 655
stop_data (IPython.parallel.apps.launcher.MPIExecControllerLauncher

attribute), 669
stop_data (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

attribute), 672
stop_data (IPython.parallel.apps.launcher.MPIExecLauncher

attribute), 675
stop_data (IPython.parallel.apps.launcher.PBSControllerLauncher

Index 1069

IPython Documentation, Release 0.11

attribute), 678
stop_data (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 682
stop_data (IPython.parallel.apps.launcher.PBSLauncher

attribute), 685
stop_data (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 689
stop_data (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 693
stop_data (IPython.parallel.apps.launcher.SGELauncher

attribute), 696
stop_data (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 699
stop_data (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 702
stop_data (IPython.parallel.apps.launcher.SSHEngineSetLauncher

attribute), 705
stop_data (IPython.parallel.apps.launcher.SSHLauncher

attribute), 708
stop_data (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

attribute), 711
stop_data (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

attribute), 714
stop_data (IPython.parallel.apps.launcher.WindowsHPCLauncher

attribute), 717
stop_engines() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602
stop_engines() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
stop_here() (IPython.core.debugger.Pdb method),

313
stop_launchers() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602
stop_launchers() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
stop_now (IPython.core.history.HistorySavingThread

attribute), 364
stop_receiving() (IPython.parallel.controller.scheduler.TaskScheduler

method), 798
StopLocalExecution (class in IPython.parallel.error),

821
store_inputs() (IPython.core.history.HistoryManager

method), 362
store_output() (IPython.core.history.HistoryManager

method), 363
str_safe() (in module IPython.core.prompts), 532
StrDispatch (class in IPython.utils.strdispatch), 885
stream (IPython.parallel.apps.logwatcher.LogWatcher

attribute), 719
stream (IPython.testing.globalipapp.StreamProxy at-

tribute), 833
StreamProxy (class in IPython.testing.globalipapp),

833
stress() (in module IPython.utils.pickleshare), 882
strip (IPython.utils.text.LSString attribute), 894
Struct (class in IPython.utils.ipstruct), 867
structured_traceback()

(IPython.core.ultratb.AutoFormattedTB
method), 538

structured_traceback()
(IPython.core.ultratb.ColorTB method),
540

structured_traceback()
(IPython.core.ultratb.FormattedTB
method), 541

structured_traceback() (IPython.core.ultratb.ListTB
method), 543

structured_traceback()
(IPython.core.ultratb.SyntaxTB method),
544

structured_traceback()
(IPython.core.ultratb.TBTools method),
545

structured_traceback()
(IPython.core.ultratb.VerboseTB method),
547

subapp (IPython.config.application.Application at-
tribute), 266

subapp (IPython.core.application.BaseIPythonApplication
attribute), 291

subapp (IPython.core.profileapp.ProfileApp at-
tribute), 516

subapp (IPython.core.profileapp.ProfileCreate at-
tribute), 520

subapp (IPython.core.profileapp.ProfileList at-
tribute), 524

subapp (IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 592

subapp (IPython.parallel.apps.ipclusterapp.IPClusterApp
attribute), 597

subapp (IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 602

subapp (IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 608

subapp (IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 614

1070 Index

IPython Documentation, Release 0.11

subapp (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 620

subapp (IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 626

subapp (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 634

subcommand_description
(IPython.config.application.Application
attribute), 267

subcommand_description
(IPython.core.application.BaseIPythonApplication
attribute), 291

subcommand_description
(IPython.core.profileapp.ProfileApp at-
tribute), 516

subcommand_description
(IPython.core.profileapp.ProfileCreate
attribute), 520

subcommand_description
(IPython.core.profileapp.ProfileList at-
tribute), 524

subcommand_description
(IPython.parallel.apps.baseapp.BaseParallelApplication
attribute), 592

subcommand_description
(IPython.parallel.apps.ipclusterapp.IPClusterApp
attribute), 597

subcommand_description
(IPython.parallel.apps.ipclusterapp.IPClusterEngines
attribute), 602

subcommand_description
(IPython.parallel.apps.ipclusterapp.IPClusterStart
attribute), 608

subcommand_description
(IPython.parallel.apps.ipclusterapp.IPClusterStop
attribute), 614

subcommand_description
(IPython.parallel.apps.ipcontrollerapp.IPControllerApp
attribute), 620

subcommand_description
(IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 626

subcommand_description
(IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 634

subcommands (IPython.config.application.Application
attribute), 267

subcommands (IPython.core.application.BaseIPythonApplication

attribute), 291
subcommands (IPython.core.profileapp.ProfileApp

attribute), 516
subcommands (IPython.core.profileapp.ProfileCreate

attribute), 520
subcommands (IPython.core.profileapp.ProfileList

attribute), 524
subcommands (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 592
subcommands (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 597
subcommands (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 602
subcommands (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 608
subcommands (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 614
subcommands (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 620
subcommands (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 626
subcommands (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 635
submit_command (IPython.parallel.apps.launcher.BatchSystemLauncher

attribute), 642
submit_command (IPython.parallel.apps.launcher.LSFControllerLauncher

attribute), 648
submit_command (IPython.parallel.apps.launcher.LSFEngineSetLauncher

attribute), 651
submit_command (IPython.parallel.apps.launcher.LSFLauncher

attribute), 655
submit_command (IPython.parallel.apps.launcher.PBSControllerLauncher

attribute), 679
submit_command (IPython.parallel.apps.launcher.PBSEngineSetLauncher

attribute), 682
submit_command (IPython.parallel.apps.launcher.PBSLauncher

attribute), 685
submit_command (IPython.parallel.apps.launcher.SGEControllerLauncher

attribute), 689
submit_command (IPython.parallel.apps.launcher.SGEEngineSetLauncher

attribute), 693
submit_command (IPython.parallel.apps.launcher.SGELauncher

attribute), 696
submit_task() (IPython.parallel.controller.scheduler.TaskScheduler

method), 798
subscribe() (IPython.parallel.apps.logwatcher.LogWatcher

method), 719
success (IPython.parallel.controller.dependency.Dependency

Index 1071

IPython Documentation, Release 0.11

attribute), 774
successful() (AsyncResult method), 169
successful() (IPython.parallel.client.asyncresult.AsyncHubResult

method), 740
successful() (IPython.parallel.client.asyncresult.AsyncMapResult

method), 742
successful() (IPython.parallel.client.asyncresult.AsyncResult

method), 743
SVGFormatter (class in IPython.core.formatters),

354
swapcase (IPython.utils.text.LSString attribute), 894
switch_log() (IPython.core.logger.Logger method),

418
symmetric_difference

(IPython.parallel.controller.dependency.Dependency
attribute), 774

symmetric_difference_update
(IPython.parallel.controller.dependency.Dependency
attribute), 774

sync_imports() (IPython.parallel.client.view.DirectView
method), 761

sync_results() (in module
IPython.parallel.client.view), 771

synchronize_with_editor() (in module
IPython.core.hooks), 368

SyntaxTB (class in IPython.core.ultratb), 543
sys_info() (in module IPython.utils.sysinfo), 887
system() (IPython.core.interactiveshell.InteractiveShell

method), 414
system_piped() (IPython.core.interactiveshell.InteractiveShell

method), 414
system_raw() (IPython.core.interactiveshell.InteractiveShell

method), 414

T
table (IPython.parallel.controller.sqlitedb.SQLiteDB

attribute), 802
target_outdated() (in module IPython.utils.path), 879
target_update() (in module IPython.utils.path), 879
targets (IPython.parallel.client.view.DirectView at-

tribute), 761
targets (IPython.parallel.client.view.LoadBalancedView

attribute), 766
targets (IPython.parallel.client.view.View attribute),

770
targets (IPython.parallel.controller.scheduler.TaskScheduler

attribute), 799

task (IPython.parallel.controller.hub.HubFactory at-
tribute), 794

task_id (IPython.parallel.apps.winhpcjob.IPControllerTask
attribute), 727

task_id (IPython.parallel.apps.winhpcjob.IPEngineTask
attribute), 732

task_id (IPython.parallel.apps.winhpcjob.WinHPCTask
attribute), 738

task_name (IPython.parallel.apps.winhpcjob.IPControllerTask
attribute), 727

task_name (IPython.parallel.apps.winhpcjob.IPEngineTask
attribute), 732

task_name (IPython.parallel.apps.winhpcjob.WinHPCTask
attribute), 738

task_stream (IPython.parallel.engine.streamkernel.Kernel
attribute), 811

TaskAborted (class in IPython.parallel.error), 821
TaskRejectError (class in IPython.parallel.error),

821
tasks (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 724
tasks (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 730
tasks (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 735
tasks (IPython.parallel.controller.hub.Hub attribute),

790
TaskScheduler (class in

IPython.parallel.controller.scheduler),
795

TaskTimeout (class in IPython.parallel.error), 822
tb_offset (IPython.core.ultratb.AutoFormattedTB at-

tribute), 538
tb_offset (IPython.core.ultratb.ColorTB attribute),

540
tb_offset (IPython.core.ultratb.FormattedTB at-

tribute), 542
tb_offset (IPython.core.ultratb.ListTB attribute), 543
tb_offset (IPython.core.ultratb.SyntaxTB attribute),

544
tb_offset (IPython.core.ultratb.TBTools attribute),

545
tb_offset (IPython.core.ultratb.VerboseTB attribute),

547
TBTools (class in IPython.core.ultratb), 545
TCPAddress (class in IPython.utils.traitlets), 927
tearDown() (IPython.testing.tools.TempFileMixin

method), 846

1072 Index

IPython Documentation, Release 0.11

Tee (class in IPython.utils.io), 865
temp_flags() (IPython.parallel.client.view.DirectView

method), 761
temp_flags() (IPython.parallel.client.view.LoadBalancedView

method), 766
temp_flags() (IPython.parallel.client.view.View

method), 770
temp_pyfile() (in module IPython.utils.io), 867
TempFileMixin (class in IPython.testing.tools), 846
term_clear() (in module IPython.utils.terminal), 888
TermColors (class in IPython.utils.coloransi), 857
test() (in module IPython.testing), 829
test() (in module IPython.utils.pickleshare), 882
test_for() (in module IPython.testing.iptest), 836
test_trivial() (in module

IPython.testing.plugin.test_refs), 845
Text (class in IPython.lib.pretty), 584
text() (IPython.core.ultratb.AutoFormattedTB

method), 538
text() (IPython.core.ultratb.ColorTB method), 540
text() (IPython.core.ultratb.FormattedTB method),

542
text() (IPython.core.ultratb.ListTB method), 543
text() (IPython.core.ultratb.SyntaxTB method), 545
text() (IPython.core.ultratb.TBTools method), 545
text() (IPython.core.ultratb.VerboseTB method), 547
text() (IPython.lib.pretty.PrettyPrinter method), 583
text() (IPython.lib.pretty.RepresentationPrinter

method), 584
This (class in IPython.utils.traitlets), 928
tic (IPython.parallel.controller.heartmonitor.HeartMonitor

attribute), 783
timeout (IPython.parallel.client.view.LoadBalancedView

attribute), 766
timeout (IPython.parallel.engine.engine.EngineFactory

attribute), 805
TimeoutError (class in IPython.parallel.error), 822
timing() (in module IPython.utils.timing), 899
timings() (in module IPython.utils.timing), 899
timings_out() (in module IPython.utils.timing), 899
title (IPython.utils.text.LSString attribute), 894
tkinter_clipboard_get() (in module

IPython.lib.clipboard), 553
to_work_dir() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 592
to_work_dir() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602

to_work_dir() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 608

to_work_dir() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 614

to_work_dir() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 620

to_work_dir() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 627

to_work_dir() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 635

toggle_set_term_title() (in module
IPython.utils.terminal), 888

topics (IPython.parallel.apps.logwatcher.LogWatcher
attribute), 719

tostring() (IPython.parallel.apps.winhpcjob.IPControllerJob
method), 724

tostring() (IPython.parallel.apps.winhpcjob.IPEngineSetJob
method), 730

tostring() (IPython.parallel.apps.winhpcjob.WinHPCJob
method), 735

trace_dispatch() (IPython.core.debugger.Pdb
method), 313

traceback (IPython.parallel.error.CompositeError at-
tribute), 813

traceback (IPython.parallel.error.RemoteError at-
tribute), 820

traceback() (IPython.lib.backgroundjobs.BackgroundJobBase
method), 549

traceback() (IPython.lib.backgroundjobs.BackgroundJobExpr
method), 550

traceback() (IPython.lib.backgroundjobs.BackgroundJobFunc
method), 551

traceback() (IPython.lib.backgroundjobs.BackgroundJobManager
method), 552

Tracer (class in IPython.core.debugger), 314
track (IPython.parallel.client.view.DirectView at-

tribute), 761
track (IPython.parallel.client.view.LoadBalancedView

attribute), 766
track (IPython.parallel.client.view.View attribute),

771
trait_metadata() (IPython.config.application.Application

method), 267
trait_metadata() (IPython.config.configurable.Configurable

method), 270
trait_metadata() (IPython.config.configurable.LoggingConfigurable

method), 272
trait_metadata() (IPython.config.configurable.SingletonConfigurable

Index 1073

IPython Documentation, Release 0.11

method), 275
trait_metadata() (IPython.core.alias.AliasManager

method), 286
trait_metadata() (IPython.core.application.BaseIPythonApplication

method), 291
trait_metadata() (IPython.core.builtin_trap.BuiltinTrap

method), 295
trait_metadata() (IPython.core.display_trap.DisplayTrap

method), 318
trait_metadata() (IPython.core.displayhook.DisplayHook

method), 321
trait_metadata() (IPython.core.displaypub.DisplayPublisher

method), 324
trait_metadata() (IPython.core.extensions.ExtensionManager

method), 330
trait_metadata() (IPython.core.formatters.BaseFormatter

method), 333
trait_metadata() (IPython.core.formatters.DisplayFormatter

method), 336
trait_metadata() (IPython.core.formatters.HTMLFormatter

method), 339
trait_metadata() (IPython.core.formatters.JavascriptFormatter

method), 345
trait_metadata() (IPython.core.formatters.JSONFormatter

method), 342
trait_metadata() (IPython.core.formatters.LatexFormatter

method), 348
trait_metadata() (IPython.core.formatters.PlainTextFormatter

method), 354
trait_metadata() (IPython.core.formatters.PNGFormatter

method), 351
trait_metadata() (IPython.core.formatters.SVGFormatter

method), 357
trait_metadata() (IPython.core.history.HistoryManager

method), 363
trait_metadata() (IPython.core.interactiveshell.InteractiveShell

method), 414
trait_metadata() (IPython.core.payload.PayloadManager

method), 455
trait_metadata() (IPython.core.plugin.Plugin

method), 458
trait_metadata() (IPython.core.plugin.PluginManager

method), 460
trait_metadata() (IPython.core.prefilter.AliasChecker

method), 463
trait_metadata() (IPython.core.prefilter.AliasHandler

method), 465
trait_metadata() (IPython.core.prefilter.AssignMagicTransformer

method), 467
trait_metadata() (IPython.core.prefilter.AssignmentChecker

method), 470
trait_metadata() (IPython.core.prefilter.AssignSystemTransformer

method), 468
trait_metadata() (IPython.core.prefilter.AutocallChecker

method), 476
trait_metadata() (IPython.core.prefilter.AutoHandler

method), 472
trait_metadata() (IPython.core.prefilter.AutoMagicChecker

method), 474
trait_metadata() (IPython.core.prefilter.EmacsChecker

method), 478
trait_metadata() (IPython.core.prefilter.EmacsHandler

method), 479
trait_metadata() (IPython.core.prefilter.EscCharsChecker

method), 481
trait_metadata() (IPython.core.prefilter.HelpHandler

method), 483
trait_metadata() (IPython.core.prefilter.IPyAutocallChecker

method), 485
trait_metadata() (IPython.core.prefilter.IPyPromptTransformer

method), 487
trait_metadata() (IPython.core.prefilter.MacroChecker

method), 489
trait_metadata() (IPython.core.prefilter.MacroHandler

method), 491
trait_metadata() (IPython.core.prefilter.MagicHandler

method), 493
trait_metadata() (IPython.core.prefilter.MultiLineMagicChecker

method), 495
trait_metadata() (IPython.core.prefilter.PrefilterChecker

method), 497
trait_metadata() (IPython.core.prefilter.PrefilterHandler

method), 499
trait_metadata() (IPython.core.prefilter.PrefilterManager

method), 502
trait_metadata() (IPython.core.prefilter.PrefilterTransformer

method), 504
trait_metadata() (IPython.core.prefilter.PyPromptTransformer

method), 506
trait_metadata() (IPython.core.prefilter.PythonOpsChecker

method), 508
trait_metadata() (IPython.core.prefilter.ShellEscapeChecker

method), 510
trait_metadata() (IPython.core.prefilter.ShellEscapeHandler

method), 512
trait_metadata() (IPython.core.profileapp.ProfileApp

1074 Index

IPython Documentation, Release 0.11

method), 516
trait_metadata() (IPython.core.profileapp.ProfileCreate

method), 521
trait_metadata() (IPython.core.profileapp.ProfileList

method), 524
trait_metadata() (IPython.core.profiledir.ProfileDir

method), 528
trait_metadata() (IPython.core.shellapp.InteractiveShellApp

method), 535
trait_metadata() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 592
trait_metadata() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 597
trait_metadata() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602
trait_metadata() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
trait_metadata() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 614
trait_metadata() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 620
trait_metadata() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 627
trait_metadata() (IPython.parallel.apps.ipengineapp.MPI

method), 629
trait_metadata() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 635
trait_metadata() (IPython.parallel.apps.launcher.BaseLauncher

method), 638
trait_metadata() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 642
trait_metadata() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 645
trait_metadata() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 658
trait_metadata() (IPython.parallel.apps.launcher.LocalEngineLauncher

method), 661
trait_metadata() (IPython.parallel.apps.launcher.LocalEngineSetLauncher

method), 664
trait_metadata() (IPython.parallel.apps.launcher.LocalProcessLauncher

method), 666
trait_metadata() (IPython.parallel.apps.launcher.LSFControllerLauncher

method), 648
trait_metadata() (IPython.parallel.apps.launcher.LSFEngineSetLauncher

method), 652
trait_metadata() (IPython.parallel.apps.launcher.LSFLauncher

method), 655
trait_metadata() (IPython.parallel.apps.launcher.MPIExecControllerLauncher

method), 669
trait_metadata() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

method), 672
trait_metadata() (IPython.parallel.apps.launcher.MPIExecLauncher

method), 675
trait_metadata() (IPython.parallel.apps.launcher.PBSControllerLauncher

method), 679
trait_metadata() (IPython.parallel.apps.launcher.PBSEngineSetLauncher

method), 682
trait_metadata() (IPython.parallel.apps.launcher.PBSLauncher

method), 686
trait_metadata() (IPython.parallel.apps.launcher.SGEControllerLauncher

method), 689
trait_metadata() (IPython.parallel.apps.launcher.SGEEngineSetLauncher

method), 693
trait_metadata() (IPython.parallel.apps.launcher.SGELauncher

method), 696
trait_metadata() (IPython.parallel.apps.launcher.SSHControllerLauncher

method), 699
trait_metadata() (IPython.parallel.apps.launcher.SSHEngineLauncher

method), 702
trait_metadata() (IPython.parallel.apps.launcher.SSHEngineSetLauncher

method), 705
trait_metadata() (IPython.parallel.apps.launcher.SSHLauncher

method), 708
trait_metadata() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

method), 711
trait_metadata() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

method), 714
trait_metadata() (IPython.parallel.apps.launcher.WindowsHPCLauncher

method), 717
trait_metadata() (IPython.parallel.apps.logwatcher.LogWatcher

method), 719
trait_metadata() (IPython.parallel.apps.winhpcjob.IPControllerJob

method), 724
trait_metadata() (IPython.parallel.apps.winhpcjob.IPControllerTask

method), 727
trait_metadata() (IPython.parallel.apps.winhpcjob.IPEngineSetJob

method), 730
trait_metadata() (IPython.parallel.apps.winhpcjob.IPEngineTask

method), 732
trait_metadata() (IPython.parallel.apps.winhpcjob.WinHPCJob

method), 735
trait_metadata() (IPython.parallel.apps.winhpcjob.WinHPCTask

method), 738
trait_metadata() (IPython.parallel.client.client.Client

method), 750
trait_metadata() (IPython.parallel.client.view.DirectView

Index 1075

IPython Documentation, Release 0.11

method), 761
trait_metadata() (IPython.parallel.client.view.LoadBalancedView

method), 766
trait_metadata() (IPython.parallel.client.view.View

method), 771
trait_metadata() (IPython.parallel.controller.dictdb.BaseDB

method), 777
trait_metadata() (IPython.parallel.controller.dictdb.DictDB

method), 780
trait_metadata() (IPython.parallel.controller.heartmonitor.HeartMonitor

method), 784
trait_metadata() (IPython.parallel.controller.hub.EngineConnector

method), 785
trait_metadata() (IPython.parallel.controller.hub.Hub

method), 790
trait_metadata() (IPython.parallel.controller.hub.HubFactory

method), 794
trait_metadata() (IPython.parallel.controller.scheduler.TaskScheduler

method), 799
trait_metadata() (IPython.parallel.controller.sqlitedb.SQLiteDB

method), 802
trait_metadata() (IPython.parallel.engine.engine.EngineFactory

method), 805
trait_metadata() (IPython.parallel.engine.streamkernel.Kernel

method), 811
trait_metadata() (IPython.parallel.factory.RegistrationFactory

method), 825
trait_metadata() (IPython.utils.traitlets.HasTraits

method), 920
trait_names() (IPython.config.application.Application

method), 267
trait_names() (IPython.config.configurable.Configurable

method), 270
trait_names() (IPython.config.configurable.LoggingConfigurable

method), 272
trait_names() (IPython.config.configurable.SingletonConfigurable

method), 275
trait_names() (IPython.core.alias.AliasManager

method), 286
trait_names() (IPython.core.application.BaseIPythonApplication

method), 292
trait_names() (IPython.core.builtin_trap.BuiltinTrap

method), 295
trait_names() (IPython.core.display_trap.DisplayTrap

method), 318
trait_names() (IPython.core.displayhook.DisplayHook

method), 321
trait_names() (IPython.core.displaypub.DisplayPublisher

method), 324
trait_names() (IPython.core.extensions.ExtensionManager

method), 330
trait_names() (IPython.core.formatters.BaseFormatter

method), 333
trait_names() (IPython.core.formatters.DisplayFormatter

method), 336
trait_names() (IPython.core.formatters.HTMLFormatter

method), 339
trait_names() (IPython.core.formatters.JavascriptFormatter

method), 345
trait_names() (IPython.core.formatters.JSONFormatter

method), 342
trait_names() (IPython.core.formatters.LatexFormatter

method), 348
trait_names() (IPython.core.formatters.PlainTextFormatter

method), 354
trait_names() (IPython.core.formatters.PNGFormatter

method), 351
trait_names() (IPython.core.formatters.SVGFormatter

method), 357
trait_names() (IPython.core.history.HistoryManager

method), 363
trait_names() (IPython.core.interactiveshell.InteractiveShell

method), 414
trait_names() (IPython.core.payload.PayloadManager

method), 455
trait_names() (IPython.core.plugin.Plugin method),

458
trait_names() (IPython.core.plugin.PluginManager

method), 460
trait_names() (IPython.core.prefilter.AliasChecker

method), 463
trait_names() (IPython.core.prefilter.AliasHandler

method), 465
trait_names() (IPython.core.prefilter.AssignMagicTransformer

method), 467
trait_names() (IPython.core.prefilter.AssignmentChecker

method), 470
trait_names() (IPython.core.prefilter.AssignSystemTransformer

method), 469
trait_names() (IPython.core.prefilter.AutocallChecker

method), 476
trait_names() (IPython.core.prefilter.AutoHandler

method), 472
trait_names() (IPython.core.prefilter.AutoMagicChecker

method), 474
trait_names() (IPython.core.prefilter.EmacsChecker

1076 Index

IPython Documentation, Release 0.11

method), 478
trait_names() (IPython.core.prefilter.EmacsHandler

method), 479
trait_names() (IPython.core.prefilter.EscCharsChecker

method), 481
trait_names() (IPython.core.prefilter.HelpHandler

method), 483
trait_names() (IPython.core.prefilter.IPyAutocallChecker

method), 485
trait_names() (IPython.core.prefilter.IPyPromptTransformer

method), 487
trait_names() (IPython.core.prefilter.MacroChecker

method), 489
trait_names() (IPython.core.prefilter.MacroHandler

method), 491
trait_names() (IPython.core.prefilter.MagicHandler

method), 493
trait_names() (IPython.core.prefilter.MultiLineMagicChecker

method), 495
trait_names() (IPython.core.prefilter.PrefilterChecker

method), 497
trait_names() (IPython.core.prefilter.PrefilterHandler

method), 499
trait_names() (IPython.core.prefilter.PrefilterManager

method), 502
trait_names() (IPython.core.prefilter.PrefilterTransformer

method), 504
trait_names() (IPython.core.prefilter.PyPromptTransformer

method), 506
trait_names() (IPython.core.prefilter.PythonOpsChecker

method), 508
trait_names() (IPython.core.prefilter.ShellEscapeChecker

method), 510
trait_names() (IPython.core.prefilter.ShellEscapeHandler

method), 512
trait_names() (IPython.core.profileapp.ProfileApp

method), 516
trait_names() (IPython.core.profileapp.ProfileCreate

method), 521
trait_names() (IPython.core.profileapp.ProfileList

method), 524
trait_names() (IPython.core.profiledir.ProfileDir

method), 528
trait_names() (IPython.core.shellapp.InteractiveShellApp

method), 535
trait_names() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 592
trait_names() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 597
trait_names() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 602
trait_names() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
trait_names() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 614
trait_names() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 620
trait_names() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 627
trait_names() (IPython.parallel.apps.ipengineapp.MPI

method), 629
trait_names() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 635
trait_names() (IPython.parallel.apps.launcher.BaseLauncher

method), 638
trait_names() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 642
trait_names() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 645
trait_names() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 658
trait_names() (IPython.parallel.apps.launcher.LocalEngineLauncher

method), 661
trait_names() (IPython.parallel.apps.launcher.LocalEngineSetLauncher

method), 664
trait_names() (IPython.parallel.apps.launcher.LocalProcessLauncher

method), 666
trait_names() (IPython.parallel.apps.launcher.LSFControllerLauncher

method), 648
trait_names() (IPython.parallel.apps.launcher.LSFEngineSetLauncher

method), 652
trait_names() (IPython.parallel.apps.launcher.LSFLauncher

method), 655
trait_names() (IPython.parallel.apps.launcher.MPIExecControllerLauncher

method), 669
trait_names() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

method), 672
trait_names() (IPython.parallel.apps.launcher.MPIExecLauncher

method), 675
trait_names() (IPython.parallel.apps.launcher.PBSControllerLauncher

method), 679
trait_names() (IPython.parallel.apps.launcher.PBSEngineSetLauncher

method), 682
trait_names() (IPython.parallel.apps.launcher.PBSLauncher

method), 686
trait_names() (IPython.parallel.apps.launcher.SGEControllerLauncher

Index 1077

IPython Documentation, Release 0.11

method), 689
trait_names() (IPython.parallel.apps.launcher.SGEEngineSetLauncher

method), 693
trait_names() (IPython.parallel.apps.launcher.SGELauncher

method), 696
trait_names() (IPython.parallel.apps.launcher.SSHControllerLauncher

method), 699
trait_names() (IPython.parallel.apps.launcher.SSHEngineLauncher

method), 702
trait_names() (IPython.parallel.apps.launcher.SSHEngineSetLauncher

method), 705
trait_names() (IPython.parallel.apps.launcher.SSHLauncher

method), 708
trait_names() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

method), 711
trait_names() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

method), 714
trait_names() (IPython.parallel.apps.launcher.WindowsHPCLauncher

method), 717
trait_names() (IPython.parallel.apps.logwatcher.LogWatcher

method), 719
trait_names() (IPython.parallel.apps.winhpcjob.IPControllerJob

method), 724
trait_names() (IPython.parallel.apps.winhpcjob.IPControllerTask

method), 727
trait_names() (IPython.parallel.apps.winhpcjob.IPEngineSetJob

method), 730
trait_names() (IPython.parallel.apps.winhpcjob.IPEngineTask

method), 732
trait_names() (IPython.parallel.apps.winhpcjob.WinHPCJob

method), 736
trait_names() (IPython.parallel.apps.winhpcjob.WinHPCTask

method), 738
trait_names() (IPython.parallel.client.client.Client

method), 750
trait_names() (IPython.parallel.client.view.DirectView

method), 762
trait_names() (IPython.parallel.client.view.LoadBalancedView

method), 767
trait_names() (IPython.parallel.client.view.View

method), 771
trait_names() (IPython.parallel.controller.dictdb.BaseDB

method), 777
trait_names() (IPython.parallel.controller.dictdb.DictDB

method), 780
trait_names() (IPython.parallel.controller.heartmonitor.HeartMonitor

method), 784
trait_names() (IPython.parallel.controller.hub.EngineConnector

method), 786
trait_names() (IPython.parallel.controller.hub.Hub

method), 791
trait_names() (IPython.parallel.controller.hub.HubFactory

method), 794
trait_names() (IPython.parallel.controller.scheduler.TaskScheduler

method), 799
trait_names() (IPython.parallel.controller.sqlitedb.SQLiteDB

method), 802
trait_names() (IPython.parallel.engine.engine.EngineFactory

method), 805
trait_names() (IPython.parallel.engine.streamkernel.Kernel

method), 811
trait_names() (IPython.parallel.factory.RegistrationFactory

method), 825
trait_names() (IPython.utils.traitlets.HasTraits

method), 920
TraitError (class in IPython.utils.traitlets), 929
traits() (IPython.config.application.Application

method), 267
traits() (IPython.config.configurable.Configurable

method), 270
traits() (IPython.config.configurable.LoggingConfigurable

method), 272
traits() (IPython.config.configurable.SingletonConfigurable

method), 275
traits() (IPython.core.alias.AliasManager method),

286
traits() (IPython.core.application.BaseIPythonApplication

method), 292
traits() (IPython.core.builtin_trap.BuiltinTrap

method), 296
traits() (IPython.core.display_trap.DisplayTrap

method), 318
traits() (IPython.core.displayhook.DisplayHook

method), 321
traits() (IPython.core.displaypub.DisplayPublisher

method), 324
traits() (IPython.core.extensions.ExtensionManager

method), 330
traits() (IPython.core.formatters.BaseFormatter

method), 333
traits() (IPython.core.formatters.DisplayFormatter

method), 336
traits() (IPython.core.formatters.HTMLFormatter

method), 339
traits() (IPython.core.formatters.JavascriptFormatter

method), 345

1078 Index

IPython Documentation, Release 0.11

traits() (IPython.core.formatters.JSONFormatter
method), 342

traits() (IPython.core.formatters.LatexFormatter
method), 348

traits() (IPython.core.formatters.PlainTextFormatter
method), 354

traits() (IPython.core.formatters.PNGFormatter
method), 351

traits() (IPython.core.formatters.SVGFormatter
method), 357

traits() (IPython.core.history.HistoryManager
method), 363

traits() (IPython.core.interactiveshell.InteractiveShell
method), 414

traits() (IPython.core.payload.PayloadManager
method), 455

traits() (IPython.core.plugin.Plugin method), 458
traits() (IPython.core.plugin.PluginManager

method), 460
traits() (IPython.core.prefilter.AliasChecker

method), 463
traits() (IPython.core.prefilter.AliasHandler

method), 465
traits() (IPython.core.prefilter.AssignMagicTransformer

method), 467
traits() (IPython.core.prefilter.AssignmentChecker

method), 470
traits() (IPython.core.prefilter.AssignSystemTransformer

method), 469
traits() (IPython.core.prefilter.AutocallChecker

method), 476
traits() (IPython.core.prefilter.AutoHandler method),

472
traits() (IPython.core.prefilter.AutoMagicChecker

method), 474
traits() (IPython.core.prefilter.EmacsChecker

method), 478
traits() (IPython.core.prefilter.EmacsHandler

method), 480
traits() (IPython.core.prefilter.EscCharsChecker

method), 481
traits() (IPython.core.prefilter.HelpHandler method),

483
traits() (IPython.core.prefilter.IPyAutocallChecker

method), 485
traits() (IPython.core.prefilter.IPyPromptTransformer

method), 487
traits() (IPython.core.prefilter.MacroChecker

method), 489
traits() (IPython.core.prefilter.MacroHandler

method), 491
traits() (IPython.core.prefilter.MagicHandler

method), 493
traits() (IPython.core.prefilter.MultiLineMagicChecker

method), 495
traits() (IPython.core.prefilter.PrefilterChecker

method), 497
traits() (IPython.core.prefilter.PrefilterHandler

method), 499
traits() (IPython.core.prefilter.PrefilterManager

method), 502
traits() (IPython.core.prefilter.PrefilterTransformer

method), 504
traits() (IPython.core.prefilter.PyPromptTransformer

method), 506
traits() (IPython.core.prefilter.PythonOpsChecker

method), 508
traits() (IPython.core.prefilter.ShellEscapeChecker

method), 510
traits() (IPython.core.prefilter.ShellEscapeHandler

method), 512
traits() (IPython.core.profileapp.ProfileApp

method), 516
traits() (IPython.core.profileapp.ProfileCreate

method), 521
traits() (IPython.core.profileapp.ProfileList method),

525
traits() (IPython.core.profiledir.ProfileDir method),

529
traits() (IPython.core.shellapp.InteractiveShellApp

method), 535
traits() (IPython.parallel.apps.baseapp.BaseParallelApplication

method), 592
traits() (IPython.parallel.apps.ipclusterapp.IPClusterApp

method), 597
traits() (IPython.parallel.apps.ipclusterapp.IPClusterEngines

method), 603
traits() (IPython.parallel.apps.ipclusterapp.IPClusterStart

method), 608
traits() (IPython.parallel.apps.ipclusterapp.IPClusterStop

method), 614
traits() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

method), 620
traits() (IPython.parallel.apps.ipengineapp.IPEngineApp

method), 627
traits() (IPython.parallel.apps.ipengineapp.MPI

Index 1079

IPython Documentation, Release 0.11

method), 629
traits() (IPython.parallel.apps.iploggerapp.IPLoggerApp

method), 635
traits() (IPython.parallel.apps.launcher.BaseLauncher

method), 638
traits() (IPython.parallel.apps.launcher.BatchSystemLauncher

method), 642
traits() (IPython.parallel.apps.launcher.IPClusterLauncher

method), 645
traits() (IPython.parallel.apps.launcher.LocalControllerLauncher

method), 658
traits() (IPython.parallel.apps.launcher.LocalEngineLauncher

method), 661
traits() (IPython.parallel.apps.launcher.LocalEngineSetLauncher

method), 664
traits() (IPython.parallel.apps.launcher.LocalProcessLauncher

method), 666
traits() (IPython.parallel.apps.launcher.LSFControllerLauncher

method), 648
traits() (IPython.parallel.apps.launcher.LSFEngineSetLauncher

method), 652
traits() (IPython.parallel.apps.launcher.LSFLauncher

method), 655
traits() (IPython.parallel.apps.launcher.MPIExecControllerLauncher

method), 669
traits() (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher

method), 672
traits() (IPython.parallel.apps.launcher.MPIExecLauncher

method), 675
traits() (IPython.parallel.apps.launcher.PBSControllerLauncher

method), 679
traits() (IPython.parallel.apps.launcher.PBSEngineSetLauncher

method), 682
traits() (IPython.parallel.apps.launcher.PBSLauncher

method), 686
traits() (IPython.parallel.apps.launcher.SGEControllerLauncher

method), 689
traits() (IPython.parallel.apps.launcher.SGEEngineSetLauncher

method), 693
traits() (IPython.parallel.apps.launcher.SGELauncher

method), 696
traits() (IPython.parallel.apps.launcher.SSHControllerLauncher

method), 699
traits() (IPython.parallel.apps.launcher.SSHEngineLauncher

method), 702
traits() (IPython.parallel.apps.launcher.SSHEngineSetLauncher

method), 705
traits() (IPython.parallel.apps.launcher.SSHLauncher

method), 708
traits() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher

method), 711
traits() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher

method), 714
traits() (IPython.parallel.apps.launcher.WindowsHPCLauncher

method), 717
traits() (IPython.parallel.apps.logwatcher.LogWatcher

method), 719
traits() (IPython.parallel.apps.winhpcjob.IPControllerJob

method), 724
traits() (IPython.parallel.apps.winhpcjob.IPControllerTask

method), 727
traits() (IPython.parallel.apps.winhpcjob.IPEngineSetJob

method), 730
traits() (IPython.parallel.apps.winhpcjob.IPEngineTask

method), 732
traits() (IPython.parallel.apps.winhpcjob.WinHPCJob

method), 736
traits() (IPython.parallel.apps.winhpcjob.WinHPCTask

method), 738
traits() (IPython.parallel.client.client.Client

method), 750
traits() (IPython.parallel.client.view.DirectView

method), 762
traits() (IPython.parallel.client.view.LoadBalancedView

method), 767
traits() (IPython.parallel.client.view.View method),

771
traits() (IPython.parallel.controller.dictdb.BaseDB

method), 778
traits() (IPython.parallel.controller.dictdb.DictDB

method), 780
traits() (IPython.parallel.controller.heartmonitor.HeartMonitor

method), 784
traits() (IPython.parallel.controller.hub.EngineConnector

method), 786
traits() (IPython.parallel.controller.hub.Hub

method), 791
traits() (IPython.parallel.controller.hub.HubFactory

method), 794
traits() (IPython.parallel.controller.scheduler.TaskScheduler

method), 799
traits() (IPython.parallel.controller.sqlitedb.SQLiteDB

method), 802
traits() (IPython.parallel.engine.engine.EngineFactory

method), 805
traits() (IPython.parallel.engine.streamkernel.Kernel

1080 Index

IPython Documentation, Release 0.11

method), 811
traits() (IPython.parallel.factory.RegistrationFactory

method), 825
traits() (IPython.utils.traitlets.HasTraits method),

920
TraitType (class in IPython.utils.traitlets), 930
transform() (IPython.core.prefilter.AssignMagicTransformer

method), 467
transform() (IPython.core.prefilter.AssignSystemTransformer

method), 469
transform() (IPython.core.prefilter.IPyPromptTransformer

method), 487
transform() (IPython.core.prefilter.PrefilterTransformer

method), 504
transform() (IPython.core.prefilter.PyPromptTransformer

method), 506
transform_alias() (IPython.core.alias.AliasManager

method), 286
transform_assign_magic() (in module

IPython.core.inputsplitter), 374
transform_assign_system() (in module

IPython.core.inputsplitter), 374
transform_classic_prompt() (in module

IPython.core.inputsplitter), 374
transform_help_end() (in module

IPython.core.inputsplitter), 374
transform_ipy_prompt() (in module

IPython.core.inputsplitter), 374
transform_line() (IPython.core.prefilter.PrefilterManager

method), 502
transformers (IPython.core.prefilter.PrefilterManager

attribute), 502
translate (IPython.utils.text.LSString attribute), 895
transport (IPython.parallel.controller.hub.HubFactory

attribute), 794
transport (IPython.parallel.engine.engine.EngineFactory

attribute), 805
transport (IPython.parallel.factory.RegistrationFactory

attribute), 825
try_import() (in module IPython.core.completerlib),

304
TryNext (class in IPython.core.error), 326
Tuple (class in IPython.utils.traitlets), 931
twobin() (in module

IPython.parallel.controller.scheduler),
800

Type (class in IPython.utils.traitlets), 932
type_printers (IPython.core.formatters.BaseFormatter

attribute), 334
type_printers (IPython.core.formatters.HTMLFormatter

attribute), 339
type_printers (IPython.core.formatters.JavascriptFormatter

attribute), 345
type_printers (IPython.core.formatters.JSONFormatter

attribute), 342
type_printers (IPython.core.formatters.LatexFormatter

attribute), 348
type_printers (IPython.core.formatters.PlainTextFormatter

attribute), 354
type_printers (IPython.core.formatters.PNGFormatter

attribute), 351
type_printers (IPython.core.formatters.SVGFormatter

attribute), 357

U
unassigned (IPython.parallel.controller.hub.Hub at-

tribute), 791
uncache() (IPython.utils.pickleshare.PickleShareDB

method), 881
uncan() (in module IPython.utils.pickleutil), 883
uncanDict() (in module IPython.utils.pickleutil), 883
uncanSequence() (in module

IPython.utils.pickleutil), 883
undefine_alias() (IPython.core.alias.AliasManager

method), 286
Undefined (in module IPython.utils.traitlets), 933
undoc_header (IPython.core.debugger.Pdb at-

tribute), 313
Unicode (class in IPython.utils.traitlets), 933
union (IPython.parallel.controller.dependency.Dependency

attribute), 774
uniq_stable() (in module IPython.utils.data), 859
unit_type (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 724
unit_type (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 727
unit_type (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 730
unit_type (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 733
unit_type (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 736
unit_type (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 739
UnknownStatus (class in

IPython.parallel.apps.launcher), 708

Index 1081

IPython Documentation, Release 0.11

unload_extension() (IPython.core.extensions.ExtensionManager
method), 330

UnmetDependency (class in IPython.parallel.error),
822

unpack_apply_message() (in module
IPython.parallel.util), 829

UnpickleableException (class in
IPython.parallel.error), 822

unquote_ends() (in module IPython.utils.text), 899
unreachable() (IPython.parallel.controller.dependency.Dependency

method), 774
unregister_checker()

(IPython.core.prefilter.PrefilterManager
method), 502

unregister_engine() (IPython.parallel.controller.hub.Hub
method), 791

unregister_handler()
(IPython.core.prefilter.PrefilterManager
method), 502

unregister_plugin() (IPython.core.plugin.PluginManager
method), 460

unregister_transformer()
(IPython.core.prefilter.PrefilterManager
method), 502

unserialize() (in module
IPython.utils.newserialized), 875

unserialize_object() (in module
IPython.parallel.util), 829

UnSerialized (class in IPython.utils.newserialized),
875

UnSerializeIt (class in IPython.utils.newserialized),
874

unset() (IPython.core.display_trap.DisplayTrap
method), 318

unwrap_exception() (in module
IPython.parallel.error), 823

update (IPython.config.loader.Config attribute), 279
update (IPython.parallel.client.client.Metadata at-

tribute), 752
update (IPython.parallel.controller.dependency.Dependency

attribute), 774
update (IPython.parallel.util.Namespace attribute),

827
update (IPython.parallel.util.ReverseDict attribute),

828
update (IPython.utils.coloransi.ColorSchemeTable

attribute), 856
update (IPython.utils.ipstruct.Struct attribute), 871

update() (IPython.parallel.client.view.DirectView
method), 762

update() (IPython.testing.globalipapp.ipnsdict
method), 834

update() (IPython.utils.pickleshare.PickleShareDB
method), 881

update_config() (IPython.config.application.Application
method), 267

update_config() (IPython.core.application.BaseIPythonApplication
method), 292

update_config() (IPython.core.profileapp.ProfileApp
method), 516

update_config() (IPython.core.profileapp.ProfileCreate
method), 521

update_config() (IPython.core.profileapp.ProfileList
method), 525

update_config() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 592

update_config() (IPython.parallel.apps.ipclusterapp.IPClusterApp
method), 597

update_config() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 603

update_config() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 609

update_config() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 614

update_config() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 621

update_config() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 627

update_config() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 635

update_graph() (IPython.parallel.controller.scheduler.TaskScheduler
method), 799

update_record() (IPython.parallel.controller.dictdb.DictDB
method), 780

update_record() (IPython.parallel.controller.sqlitedb.SQLiteDB
method), 802

update_user_ns() (IPython.core.displayhook.DisplayHook
method), 321

upgrade_dir() (in module IPython.utils.upgradedir),
935

upper (IPython.utils.text.LSString attribute), 895
url (IPython.parallel.apps.logwatcher.LogWatcher

attribute), 720
url (IPython.parallel.controller.hub.HubFactory at-

tribute), 794
url (IPython.parallel.engine.engine.EngineFactory

1082 Index

IPython Documentation, Release 0.11

attribute), 806
url (IPython.parallel.factory.RegistrationFactory at-

tribute), 825
url_file (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 627
url_file_name (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 627
usage (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 603
usage (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 609
UsageError (class in IPython.core.error), 327
use (IPython.parallel.apps.ipengineapp.MPI at-

tribute), 629
use_rawinput (IPython.core.debugger.Pdb attribute),

313
use_threads (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 621
user (IPython.parallel.apps.launcher.SSHControllerLauncher

attribute), 699
user (IPython.parallel.apps.launcher.SSHEngineLauncher

attribute), 702
user (IPython.parallel.apps.launcher.SSHLauncher

attribute), 708
user_aliases (IPython.core.alias.AliasManager at-

tribute), 286
user_call() (IPython.core.debugger.Pdb method),

313
user_exception() (IPython.core.debugger.Pdb

method), 313
user_expressions() (IPython.core.interactiveshell.InteractiveShell

method), 414
user_line() (IPython.core.debugger.Pdb method),

313
user_ns (IPython.parallel.engine.engine.EngineFactory

attribute), 806
user_ns (IPython.parallel.engine.streamkernel.Kernel

attribute), 811
user_return() (IPython.core.debugger.Pdb method),

314
user_variables() (IPython.core.interactiveshell.InteractiveShell

method), 414
username (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 724
username (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 730
username (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 736

V
validate() (IPython.core.interactiveshell.SeparateUnicode

method), 416
validate() (IPython.utils.traitlets.Bool method), 903
validate() (IPython.utils.traitlets.Bytes method), 904
validate() (IPython.utils.traitlets.CaselessStrEnum

method), 911
validate() (IPython.utils.traitlets.CBool method),

904
validate() (IPython.utils.traitlets.CBytes method),

905
validate() (IPython.utils.traitlets.CComplex

method), 906
validate() (IPython.utils.traitlets.CFloat method),

907
validate() (IPython.utils.traitlets.CInt method), 908
validate() (IPython.utils.traitlets.CLong method),

909
validate() (IPython.utils.traitlets.Complex method),

913
validate() (IPython.utils.traitlets.Container method),

915
validate() (IPython.utils.traitlets.CUnicode method),

910
validate() (IPython.utils.traitlets.Dict method), 916
validate() (IPython.utils.traitlets.DottedObjectName

method), 917
validate() (IPython.utils.traitlets.Enum method), 918
validate() (IPython.utils.traitlets.Float method), 919
validate() (IPython.utils.traitlets.Instance method),

921
validate() (IPython.utils.traitlets.Int method), 922
validate() (IPython.utils.traitlets.List method), 923
validate() (IPython.utils.traitlets.Long method), 924
validate() (IPython.utils.traitlets.ObjectName

method), 926
validate() (IPython.utils.traitlets.Set method), 927
validate() (IPython.utils.traitlets.TCPAddress

method), 928
validate() (IPython.utils.traitlets.This method), 929
validate() (IPython.utils.traitlets.Tuple method), 932
validate() (IPython.utils.traitlets.Type method), 933
validate() (IPython.utils.traitlets.Unicode method),

934
validate_alias() (IPython.core.alias.AliasManager

method), 286
validate_elements() (IPython.utils.traitlets.Container

Index 1083

IPython Documentation, Release 0.11

method), 915
validate_elements() (IPython.utils.traitlets.List

method), 923
validate_elements() (IPython.utils.traitlets.Set

method), 927
validate_elements() (IPython.utils.traitlets.Tuple

method), 932
validate_url() (in module IPython.parallel.util), 829
validate_url_container() (in module

IPython.parallel.util), 829
values (IPython.config.loader.Config attribute), 280
values (IPython.parallel.client.client.Metadata at-

tribute), 752
values (IPython.parallel.util.Namespace attribute),

827
values (IPython.parallel.util.ReverseDict attribute),

828
values (IPython.testing.globalipapp.ipnsdict at-

tribute), 834
values (IPython.utils.coloransi.ColorSchemeTable

attribute), 856
values (IPython.utils.ipstruct.Struct attribute), 871
values() (IPython.utils.pickleshare.PickleShareDB

method), 881
var_expand() (IPython.core.interactiveshell.InteractiveShell

method), 415
verbose (IPython.core.formatters.PlainTextFormatter

attribute), 354
verbose() (IPython.core.ultratb.AutoFormattedTB

method), 539
verbose() (IPython.core.ultratb.ColorTB method),

540
verbose() (IPython.core.ultratb.FormattedTB

method), 542
VerboseTB (class in IPython.core.ultratb), 546
version (IPython.config.application.Application at-

tribute), 267
version (IPython.core.application.BaseIPythonApplication

attribute), 292
version (IPython.core.profileapp.ProfileApp at-

tribute), 516
version (IPython.core.profileapp.ProfileCreate at-

tribute), 521
version (IPython.core.profileapp.ProfileList at-

tribute), 525
version (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 592
version (IPython.parallel.apps.ipclusterapp.IPClusterApp

attribute), 597
version (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 603
version (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 609
version (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 614
version (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 621
version (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 627
version (IPython.parallel.apps.iploggerapp.IPLoggerApp

attribute), 635
version (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 724
version (IPython.parallel.apps.winhpcjob.IPControllerTask

attribute), 727
version (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 730
version (IPython.parallel.apps.winhpcjob.IPEngineTask

attribute), 733
version (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 736
version (IPython.parallel.apps.winhpcjob.WinHPCTask

attribute), 739
vformat() (IPython.utils.text.EvalFormatter method),

890
View (class in IPython.parallel.client.view), 767
view (IPython.parallel.client.remotefunction.ParallelFunction

attribute), 755
view (IPython.parallel.client.remotefunction.RemoteFunction

attribute), 755

W
wait() (AsyncResult method), 169
wait() (IPython.parallel.client.asyncresult.AsyncHubResult

method), 740
wait() (IPython.parallel.client.asyncresult.AsyncMapResult

method), 742
wait() (IPython.parallel.client.asyncresult.AsyncResult

method), 743
wait() (IPython.parallel.client.client.Client method),

751
wait() (IPython.parallel.client.view.DirectView

method), 762
wait() (IPython.parallel.client.view.LoadBalancedView

method), 767

1084 Index

IPython Documentation, Release 0.11

wait() (IPython.parallel.client.view.View method),
771

wait_for_send() (IPython.parallel.client.asyncresult.AsyncHubResult
method), 741

wait_for_send() (IPython.parallel.client.asyncresult.AsyncMapResult
method), 742

wait_for_send() (IPython.parallel.client.asyncresult.AsyncResult
method), 743

wait_for_url_file (IPython.parallel.apps.ipengineapp.IPEngineApp
attribute), 627

waitget() (IPython.utils.pickleshare.PickleShareDB
method), 881

warn() (in module IPython.utils.warn), 936
weighted() (in module

IPython.parallel.controller.scheduler),
800

White (IPython.utils.coloransi.InputTermColors at-
tribute), 857

White (IPython.utils.coloransi.TermColors at-
tribute), 858

wildcards_case_sensitive
(IPython.core.interactiveshell.InteractiveShell
attribute), 415

win32_clipboard_get() (in module
IPython.lib.clipboard), 553

WindowsHPCControllerLauncher (class in
IPython.parallel.apps.launcher), 709

WindowsHPCEngineSetLauncher (class in
IPython.parallel.apps.launcher), 712

WindowsHPCLauncher (class in
IPython.parallel.apps.launcher), 714

WinHPCJob (class in
IPython.parallel.apps.winhpcjob), 733

WinHPCTask (class in
IPython.parallel.apps.winhpcjob), 736

with_obj() (in module IPython.utils.attic), 851
work_dir (IPython.parallel.apps.baseapp.BaseParallelApplication

attribute), 592
work_dir (IPython.parallel.apps.ipclusterapp.IPClusterEngines

attribute), 603
work_dir (IPython.parallel.apps.ipclusterapp.IPClusterStart

attribute), 609
work_dir (IPython.parallel.apps.ipclusterapp.IPClusterStop

attribute), 614
work_dir (IPython.parallel.apps.ipcontrollerapp.IPControllerApp

attribute), 621
work_dir (IPython.parallel.apps.ipengineapp.IPEngineApp

attribute), 627

work_dir (IPython.parallel.apps.iploggerapp.IPLoggerApp
attribute), 635

work_dir (IPython.parallel.apps.launcher.BaseLauncher
attribute), 638

work_dir (IPython.parallel.apps.launcher.BatchSystemLauncher
attribute), 642

work_dir (IPython.parallel.apps.launcher.IPClusterLauncher
attribute), 645

work_dir (IPython.parallel.apps.launcher.LocalControllerLauncher
attribute), 658

work_dir (IPython.parallel.apps.launcher.LocalEngineLauncher
attribute), 661

work_dir (IPython.parallel.apps.launcher.LocalEngineSetLauncher
attribute), 664

work_dir (IPython.parallel.apps.launcher.LocalProcessLauncher
attribute), 667

work_dir (IPython.parallel.apps.launcher.LSFControllerLauncher
attribute), 648

work_dir (IPython.parallel.apps.launcher.LSFEngineSetLauncher
attribute), 652

work_dir (IPython.parallel.apps.launcher.LSFLauncher
attribute), 655

work_dir (IPython.parallel.apps.launcher.MPIExecControllerLauncher
attribute), 670

work_dir (IPython.parallel.apps.launcher.MPIExecEngineSetLauncher
attribute), 673

work_dir (IPython.parallel.apps.launcher.MPIExecLauncher
attribute), 675

work_dir (IPython.parallel.apps.launcher.PBSControllerLauncher
attribute), 679

work_dir (IPython.parallel.apps.launcher.PBSEngineSetLauncher
attribute), 682

work_dir (IPython.parallel.apps.launcher.PBSLauncher
attribute), 686

work_dir (IPython.parallel.apps.launcher.SGEControllerLauncher
attribute), 689

work_dir (IPython.parallel.apps.launcher.SGEEngineSetLauncher
attribute), 693

work_dir (IPython.parallel.apps.launcher.SGELauncher
attribute), 696

work_dir (IPython.parallel.apps.launcher.SSHControllerLauncher
attribute), 699

work_dir (IPython.parallel.apps.launcher.SSHEngineLauncher
attribute), 702

work_dir (IPython.parallel.apps.launcher.SSHEngineSetLauncher
attribute), 705

work_dir (IPython.parallel.apps.launcher.SSHLauncher
attribute), 708

Index 1085

IPython Documentation, Release 0.11

work_dir (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
attribute), 711

work_dir (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
attribute), 714

work_dir (IPython.parallel.apps.launcher.WindowsHPCLauncher
attribute), 717

work_directory (IPython.parallel.apps.winhpcjob.IPControllerTask
attribute), 727

work_directory (IPython.parallel.apps.winhpcjob.IPEngineTask
attribute), 733

work_directory (IPython.parallel.apps.winhpcjob.WinHPCTask
attribute), 739

wrap_deprecated() (in module IPython.utils.attic),
851

wrap_exception() (in module IPython.parallel.error),
823

wrap_paragraphs() (in module IPython.utils.text),
899

write() (IPython.core.interactiveshell.InteractiveShell
method), 415

write() (IPython.core.prompts.BasePrompt method),
530

write() (IPython.core.prompts.Prompt1 method),
531

write() (IPython.core.prompts.Prompt2 method),
531

write() (IPython.core.prompts.PromptOut method),
532

write() (IPython.parallel.apps.winhpcjob.IPControllerJob
method), 724

write() (IPython.parallel.apps.winhpcjob.IPEngineSetJob
method), 730

write() (IPython.parallel.apps.winhpcjob.WinHPCJob
method), 736

write() (IPython.testing.globalipapp.StreamProxy
method), 833

write() (IPython.testing.mkdoctests.IndentOut
method), 839

write() (IPython.utils.io.IOStream method), 865
write() (IPython.utils.io.Tee method), 866
write_batch_script()

(IPython.parallel.apps.launcher.BatchSystemLauncher
method), 642

write_batch_script()
(IPython.parallel.apps.launcher.LSFControllerLauncher
method), 648

write_batch_script()
(IPython.parallel.apps.launcher.LSFEngineSetLauncher

method), 652
write_batch_script()

(IPython.parallel.apps.launcher.LSFLauncher
method), 655

write_batch_script()
(IPython.parallel.apps.launcher.PBSControllerLauncher
method), 679

write_batch_script()
(IPython.parallel.apps.launcher.PBSEngineSetLauncher
method), 682

write_batch_script()
(IPython.parallel.apps.launcher.PBSLauncher
method), 686

write_batch_script()
(IPython.parallel.apps.launcher.SGEControllerLauncher
method), 690

write_batch_script()
(IPython.parallel.apps.launcher.SGEEngineSetLauncher
method), 693

write_batch_script()
(IPython.parallel.apps.launcher.SGELauncher
method), 696

write_err() (IPython.core.interactiveshell.InteractiveShell
method), 415

write_format_data()
(IPython.core.displayhook.DisplayHook
method), 321

write_job_file() (IPython.parallel.apps.launcher.WindowsHPCControllerLauncher
method), 711

write_job_file() (IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher
method), 714

write_job_file() (IPython.parallel.apps.launcher.WindowsHPCLauncher
method), 717

write_output_prompt()
(IPython.core.displayhook.DisplayHook
method), 321

write_payload() (IPython.core.payload.PayloadManager
method), 455

write_pid_file() (IPython.parallel.apps.baseapp.BaseParallelApplication
method), 592

write_pid_file() (IPython.parallel.apps.ipclusterapp.IPClusterEngines
method), 603

write_pid_file() (IPython.parallel.apps.ipclusterapp.IPClusterStart
method), 609

write_pid_file() (IPython.parallel.apps.ipclusterapp.IPClusterStop
method), 614

write_pid_file() (IPython.parallel.apps.ipcontrollerapp.IPControllerApp
method), 621

1086 Index

IPython Documentation, Release 0.11

write_pid_file() (IPython.parallel.apps.ipengineapp.IPEngineApp
method), 627

write_pid_file() (IPython.parallel.apps.iploggerapp.IPLoggerApp
method), 635

writelines() (IPython.testing.globalipapp.StreamProxy
method), 833

writelines() (IPython.utils.io.IOStream method), 865
writeout_cache() (IPython.core.history.HistoryManager

method), 363

X
xmlns (IPython.parallel.apps.winhpcjob.IPControllerJob

attribute), 724
xmlns (IPython.parallel.apps.winhpcjob.IPEngineSetJob

attribute), 730
xmlns (IPython.parallel.apps.winhpcjob.WinHPCJob

attribute), 736
xmode (IPython.core.interactiveshell.InteractiveShell

attribute), 415
xsys() (in module IPython.testing.globalipapp), 834

Y
Yellow (IPython.utils.coloransi.InputTermColors at-

tribute), 857
Yellow (IPython.utils.coloransi.TermColors at-

tribute), 858

Z
zfill (IPython.utils.text.LSString attribute), 895
ZMQExitAutocall (class in IPython.core.autocall),

293

Index 1087

	Introduction
	Overview
	Enhanced interactive Python shell
	Interactive parallel computing

	What's new in IPython
	Development version
	0.11 Series
	Issues closed in the 0.11 development cycle
	0.10 series
	0.9 series
	0.8 series

	Installation
	Overview
	Quickstart
	Installing IPython itself
	Basic optional dependencies
	Dependencies for IPython.parallel (parallel computing)
	Dependencies for IPython.zmq
	Dependencies for ipython qtconsole (new GUI)

	Using IPython for interactive work
	Introducing IPython
	IPython Tips & Tricks
	IPython reference
	IPython as a system shell
	A Qt Console for IPython

	Using IPython for parallel computing
	Overview and getting started
	Starting the IPython controller and engines
	IPython's Direct interface
	The IPython task interface
	Using MPI with IPython
	IPython's Task Database
	Security details of IPython
	Getting started with Windows HPC Server 2008
	Parallel examples
	DAG Dependencies
	Details of Parallel Computing with IPython
	Transitioning from IPython.kernel to IPython.parallel

	Configuration and customization
	Overview of the IPython configuration system
	IPython extensions
	IPython plugins
	Configuring the ipython command line application
	Editor configuration
	Outdated configuration information that might still be useful

	IPython developer's guide
	How to contribute to IPython
	Working with IPython source code
	Coding guide
	Documenting IPython
	Testing IPython for users and developers
	Releasing IPython
	Development roadmap
	IPython module organization
	Messaging in IPython
	Messaging for Parallel Computing
	Connection Diagrams of The IPython ZMQ Cluster
	The magic commands subsystem
	Notes on code execution in InteractiveShell
	IPython Qt interface
	Porting IPython to a two process model using zeromq

	The IPython API
	config.application
	config.configurable
	config.loader
	core.alias
	core.application
	core.autocall
	core.builtin_trap
	core.compilerop
	core.completer
	core.completerlib
	core.crashhandler
	core.debugger
	core.display
	core.display_trap
	core.displayhook
	core.displaypub
	core.error
	core.excolors
	core.extensions
	core.formatters
	core.history
	core.hooks
	core.inputsplitter
	core.interactiveshell
	core.ipapi
	core.logger
	core.macro
	core.magic
	core.magic_arguments
	core.oinspect
	core.page
	core.payload
	core.payloadpage
	core.plugin
	core.prefilter
	core.profileapp
	core.profiledir
	core.prompts
	core.shellapp
	core.splitinput
	core.ultratb
	lib.backgroundjobs
	lib.clipboard
	lib.deepreload
	lib.demo
	lib.guisupport
	lib.inputhook
	lib.irunner
	lib.latextools
	lib.pretty
	lib.pylabtools
	parallel.apps.baseapp
	parallel.apps.ipclusterapp
	parallel.apps.ipcontrollerapp
	parallel.apps.ipengineapp
	parallel.apps.iploggerapp
	parallel.apps.launcher
	parallel.apps.logwatcher
	parallel.apps.win32support
	parallel.apps.winhpcjob
	parallel.client.asyncresult
	parallel.client.client
	parallel.client.map
	parallel.client.remotefunction
	parallel.client.view
	parallel.controller.dependency
	parallel.controller.dictdb
	parallel.controller.heartmonitor
	parallel.controller.hub
	parallel.controller.scheduler
	parallel.controller.sqlitedb
	parallel.engine.engine
	parallel.engine.kernelstarter
	parallel.engine.streamkernel
	parallel.error
	parallel.factory
	parallel.util
	testing
	testing.decorators
	testing.globalipapp
	testing.iptest
	testing.ipunittest
	testing.mkdoctests
	testing.nosepatch
	testing.plugin.dtexample
	testing.plugin.show_refs
	testing.plugin.simple
	testing.plugin.test_ipdoctest
	testing.plugin.test_refs
	testing.skipdoctest
	testing.tools
	utils.PyColorize
	utils.attic
	utils.autoattr
	utils.codeutil
	utils.coloransi
	utils.daemonize
	utils.data
	utils.decorators
	utils.dir2
	utils.doctestreload
	utils.frame
	utils.generics
	utils.growl
	utils.importstring
	utils.io
	utils.ipstruct
	utils.jsonutil
	utils.newserialized
	utils.notification
	utils.path
	utils.pickleshare
	utils.pickleutil
	utils.process
	utils.strdispatch
	utils.sysinfo
	utils.syspathcontext
	utils.terminal
	utils.text
	utils.timing
	utils.traitlets
	utils.upgradedir
	utils.warn
	utils.wildcard

	About IPython
	Credits
	History
	License and Copyright

	Bibliography
	Python Module Index
	Index

